Abstract

CMOS compatible infrared waveguide Si photodiodes are made responsive from 1100 to 1750 nm by Si+ implantation and annealing. This article compares diodes fabricated using two annealing temperatures, 300 and 475 °C. 0.25-mm-long diodes annealed to 300 °C have a response to 1539 nm radiation of 0.1 A W-1 at a reverse bias of 5 V and 1.2 A W-1 at 20 V. 3-mm-long diodes processed to 475 °C exhibited two states, L1 and L2, with photo responses of 0.3 ±0.1 A W-1 at 5 V and 0.7 ±0.2 A W-1 at 20 V for the L1 state and 0.5 ±0.2 A W-1 at 5 V and 4 to 20 A W-1 at 20 V for the L2 state. The diodes can be switched between L1 and L2. The bandwidths vary from 10 to 20 GHz. These diodes will generate electrical power from the incident radiation with efficiencies from 4 to 10 %.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Y. Fan and A. K. Ramdas,"Infrared Absorption and Photoconductivity in Irradiated Silicon," J. Appl. Phys. 30, 1127-1134 (1959).
    [CrossRef]
  2. A. Knights, A. House, R. MacNaughton, and F. Hopper, "Optical power monitoring function compatible with single chip integration on silicon-on-insulator," Conference on Optical Fiber Communication, Technical Digest Series 86, 705-706 (2003).
  3. A. P. Knights, J. D. Bradley, S. H. Gou, and P. E. Jessop, "Silicon-on-insulator waveguide photodiode with self-ion-implantation-engineered-enhanced infrared response," J. Vac. Sci. Technol. A 24, 783-786 (2005).
    [CrossRef]
  4. M. W. Geis, S. J. Spector, M. E. Grein, R.T. Schulein, J. U. Yoon, D. M. Lennon, S. Denault, F. Gan, F. X. Kaertner, and T. M. Lyszczarz, "CMOS-compatible all-Si high-speed waveguide photodiodes with high responsivity in near-infrared communication band," IEEE Photon. Technol. Lett. 19, 152-154 (2007).
    [CrossRef]
  5. M. Moll, Ph.D. Thesis, University of Hamburg, DESY-Thesis-1999-040, Dec. 1999, "Radiation Damage in Silicon Particle Detectors," http://mmoll.web.cern.ch/mmoll/publist/publist.htm>.
  6. M. Moll, E. Fretwurst, M. Kuhnke, and G. Lindstrom, "Relation between microscopic defects and microscopic changes in silicon detector properties after hadron irradiation," Nucl. Instrum. and Methods B 186, 100-110 (2002).
    [CrossRef]
  7. L. J. Cheng, J. C. Corelli, J. W. Corbett, and G. D. Watkins, "1.8-, 3.3-, 3.9-u bands in irradiated silicon: correlation with the divacancy," Phys. Rev. 152, 761-774 (1966).
    [CrossRef]
  8. J. L. Benton, S. Libertino, P. Kringhoj, D. J. Eaglesham, and J. M. Poate, "Evolution from point extended defects in ion implanted silicon," J. Appl. Phys. 82, 120-125 (1997).
    [CrossRef]
  9. C. J. Ortiz, P. Pichler, T. Fuhner, F. Cristiano, B. Colombeau, N. E. B. Cowern, and A. Claverie, "A physically based model for the spatial and temporal evolution of self-interstitial agglomerates in ion-implanted silicon," J. Appl. Phys. 96, 4866-4877 (2004).
    [CrossRef]
  10. F. Schiettekatte, S. Roorda, R. Poirier, M. O. Fortin, S. Chazel, and R. Heliou, "Direct evidence for 8-interstital-controlled nucleation of extended defects in c-Si," Appl. Phys. Lett. 77, 4322-4324 (2000).
    [CrossRef]
  11. N. E. B. Cowern, G. Mannino, P. A. Stolk, F. Roozeboom, H. G. Huizing, J. G. M. van Berkum, F. Cristiano, and A. Cleaverie, "Energetics of self-Interstitial clusters in Si," Phys. Rev. Lett. 82, 4460-4463 (1999).
    [CrossRef]
  12. P. K. Giri, "Photoluminescence signature of silicon interstitial cluster evolution from compact to extended structures in ion-implanted silicon," Semicond. Sci. Technol. 20, 638-644 (2005).
    [CrossRef]
  13. M. Bruel, "Separation of Silicon wafers by the smart-cut method," Mater. Res. Innovations 3, 9-13 (1999).
    [CrossRef]
  14. T. K. Liang and H. K. Tsang, "Role of free carriers from two-photon absorption in Raman amplification in silicon-on-insulator waveguides," Appl. Phys. Lett. 84, 2745-2747 (2004).
    [CrossRef]
  15. M. Ley and Z. T. Kuznick, "Near-IR improvement of Si photovoltaic conversion by a nanoscale modification," Physica E 14, 255-258 (2002).
  16. P. K. Giri and Y. M. Mohapatra, "Evidence of metastability with athermal ionization from defect clusters in ion-damaged silicon," Phys Rev. B 2, 16561-16565 (2000).
    [CrossRef]
  17. S. Libertino, S. Coffa, and J. L. Benton, "Formation, evolution and annihilation of interstitial clusters in ion implanted Si," Phys. Rev. B 63, 195206 (2001).
    [CrossRef]
  18. P. Dolgolenko, P. G. Litovchenko, M. D. Varentsov, G. P. Gaidar, and A. P. Litovchenko, "Particularities of the formation of radiation defects in silicon with low and high concentration oxygen," Phys. Status Solidi B 243, 1842-1852 (2006).
    [CrossRef]
  19. S. Libertino, S. Coffa, J. L. Benton, K. Halliburton, and D. J. Eaglesham, "Formation, evolution and annihilation of interstitial clusters in ion implanted Si," Nucl. Instrum. Methods B 148, 247-251 (1999).
    [CrossRef]
  20. S. Libertino, S. Coffa, C. Spinella, J. L. Benton, and D. Arcifa, "Cluster formation and growth in Si ion implanted c-Si," Mater. Sci. Eng. B 7, 137-142 (2000).
    [CrossRef]
  21. A. P. Knights and G. H. Hopper, "Effect of ion implantation induced defects on optical attenuation in silicon waveguides," Electr. Lett. 39, 1648-1649 (2003).
    [CrossRef]
  22. J. E. Carey, C. H. Crouch, M. Shen, and E. Mazur, "Visible and near-infrared responsivity of femtrosecond-laser microstructured silicon photodiodes," Opt. Lett. 30, 1773-11775 (2005).
    [CrossRef] [PubMed]
  23. F. Raissi and M. M. Far, "Highly sensitive PtSi/porous Si Schottky detectors," IEEE Sensors J. 2, 476-481 (2002).
    [CrossRef]

2007 (1)

M. W. Geis, S. J. Spector, M. E. Grein, R.T. Schulein, J. U. Yoon, D. M. Lennon, S. Denault, F. Gan, F. X. Kaertner, and T. M. Lyszczarz, "CMOS-compatible all-Si high-speed waveguide photodiodes with high responsivity in near-infrared communication band," IEEE Photon. Technol. Lett. 19, 152-154 (2007).
[CrossRef]

2006 (1)

P. Dolgolenko, P. G. Litovchenko, M. D. Varentsov, G. P. Gaidar, and A. P. Litovchenko, "Particularities of the formation of radiation defects in silicon with low and high concentration oxygen," Phys. Status Solidi B 243, 1842-1852 (2006).
[CrossRef]

2005 (3)

A. P. Knights, J. D. Bradley, S. H. Gou, and P. E. Jessop, "Silicon-on-insulator waveguide photodiode with self-ion-implantation-engineered-enhanced infrared response," J. Vac. Sci. Technol. A 24, 783-786 (2005).
[CrossRef]

P. K. Giri, "Photoluminescence signature of silicon interstitial cluster evolution from compact to extended structures in ion-implanted silicon," Semicond. Sci. Technol. 20, 638-644 (2005).
[CrossRef]

J. E. Carey, C. H. Crouch, M. Shen, and E. Mazur, "Visible and near-infrared responsivity of femtrosecond-laser microstructured silicon photodiodes," Opt. Lett. 30, 1773-11775 (2005).
[CrossRef] [PubMed]

2004 (2)

C. J. Ortiz, P. Pichler, T. Fuhner, F. Cristiano, B. Colombeau, N. E. B. Cowern, and A. Claverie, "A physically based model for the spatial and temporal evolution of self-interstitial agglomerates in ion-implanted silicon," J. Appl. Phys. 96, 4866-4877 (2004).
[CrossRef]

T. K. Liang and H. K. Tsang, "Role of free carriers from two-photon absorption in Raman amplification in silicon-on-insulator waveguides," Appl. Phys. Lett. 84, 2745-2747 (2004).
[CrossRef]

2003 (1)

A. P. Knights and G. H. Hopper, "Effect of ion implantation induced defects on optical attenuation in silicon waveguides," Electr. Lett. 39, 1648-1649 (2003).
[CrossRef]

2002 (3)

M. Ley and Z. T. Kuznick, "Near-IR improvement of Si photovoltaic conversion by a nanoscale modification," Physica E 14, 255-258 (2002).

M. Moll, E. Fretwurst, M. Kuhnke, and G. Lindstrom, "Relation between microscopic defects and microscopic changes in silicon detector properties after hadron irradiation," Nucl. Instrum. and Methods B 186, 100-110 (2002).
[CrossRef]

F. Raissi and M. M. Far, "Highly sensitive PtSi/porous Si Schottky detectors," IEEE Sensors J. 2, 476-481 (2002).
[CrossRef]

2001 (1)

S. Libertino, S. Coffa, and J. L. Benton, "Formation, evolution and annihilation of interstitial clusters in ion implanted Si," Phys. Rev. B 63, 195206 (2001).
[CrossRef]

2000 (3)

P. K. Giri and Y. M. Mohapatra, "Evidence of metastability with athermal ionization from defect clusters in ion-damaged silicon," Phys Rev. B 2, 16561-16565 (2000).
[CrossRef]

S. Libertino, S. Coffa, C. Spinella, J. L. Benton, and D. Arcifa, "Cluster formation and growth in Si ion implanted c-Si," Mater. Sci. Eng. B 7, 137-142 (2000).
[CrossRef]

F. Schiettekatte, S. Roorda, R. Poirier, M. O. Fortin, S. Chazel, and R. Heliou, "Direct evidence for 8-interstital-controlled nucleation of extended defects in c-Si," Appl. Phys. Lett. 77, 4322-4324 (2000).
[CrossRef]

1999 (3)

N. E. B. Cowern, G. Mannino, P. A. Stolk, F. Roozeboom, H. G. Huizing, J. G. M. van Berkum, F. Cristiano, and A. Cleaverie, "Energetics of self-Interstitial clusters in Si," Phys. Rev. Lett. 82, 4460-4463 (1999).
[CrossRef]

M. Bruel, "Separation of Silicon wafers by the smart-cut method," Mater. Res. Innovations 3, 9-13 (1999).
[CrossRef]

S. Libertino, S. Coffa, J. L. Benton, K. Halliburton, and D. J. Eaglesham, "Formation, evolution and annihilation of interstitial clusters in ion implanted Si," Nucl. Instrum. Methods B 148, 247-251 (1999).
[CrossRef]

1997 (1)

J. L. Benton, S. Libertino, P. Kringhoj, D. J. Eaglesham, and J. M. Poate, "Evolution from point extended defects in ion implanted silicon," J. Appl. Phys. 82, 120-125 (1997).
[CrossRef]

1966 (1)

L. J. Cheng, J. C. Corelli, J. W. Corbett, and G. D. Watkins, "1.8-, 3.3-, 3.9-u bands in irradiated silicon: correlation with the divacancy," Phys. Rev. 152, 761-774 (1966).
[CrossRef]

1959 (1)

H. Y. Fan and A. K. Ramdas,"Infrared Absorption and Photoconductivity in Irradiated Silicon," J. Appl. Phys. 30, 1127-1134 (1959).
[CrossRef]

Arcifa, D.

S. Libertino, S. Coffa, C. Spinella, J. L. Benton, and D. Arcifa, "Cluster formation and growth in Si ion implanted c-Si," Mater. Sci. Eng. B 7, 137-142 (2000).
[CrossRef]

Benton, J. L.

S. Libertino, S. Coffa, and J. L. Benton, "Formation, evolution and annihilation of interstitial clusters in ion implanted Si," Phys. Rev. B 63, 195206 (2001).
[CrossRef]

S. Libertino, S. Coffa, C. Spinella, J. L. Benton, and D. Arcifa, "Cluster formation and growth in Si ion implanted c-Si," Mater. Sci. Eng. B 7, 137-142 (2000).
[CrossRef]

S. Libertino, S. Coffa, J. L. Benton, K. Halliburton, and D. J. Eaglesham, "Formation, evolution and annihilation of interstitial clusters in ion implanted Si," Nucl. Instrum. Methods B 148, 247-251 (1999).
[CrossRef]

J. L. Benton, S. Libertino, P. Kringhoj, D. J. Eaglesham, and J. M. Poate, "Evolution from point extended defects in ion implanted silicon," J. Appl. Phys. 82, 120-125 (1997).
[CrossRef]

Bradley, J. D.

A. P. Knights, J. D. Bradley, S. H. Gou, and P. E. Jessop, "Silicon-on-insulator waveguide photodiode with self-ion-implantation-engineered-enhanced infrared response," J. Vac. Sci. Technol. A 24, 783-786 (2005).
[CrossRef]

Bruel, M.

M. Bruel, "Separation of Silicon wafers by the smart-cut method," Mater. Res. Innovations 3, 9-13 (1999).
[CrossRef]

Carey, J. E.

Chazel, S.

F. Schiettekatte, S. Roorda, R. Poirier, M. O. Fortin, S. Chazel, and R. Heliou, "Direct evidence for 8-interstital-controlled nucleation of extended defects in c-Si," Appl. Phys. Lett. 77, 4322-4324 (2000).
[CrossRef]

Cheng, L. J.

L. J. Cheng, J. C. Corelli, J. W. Corbett, and G. D. Watkins, "1.8-, 3.3-, 3.9-u bands in irradiated silicon: correlation with the divacancy," Phys. Rev. 152, 761-774 (1966).
[CrossRef]

Claverie, A.

C. J. Ortiz, P. Pichler, T. Fuhner, F. Cristiano, B. Colombeau, N. E. B. Cowern, and A. Claverie, "A physically based model for the spatial and temporal evolution of self-interstitial agglomerates in ion-implanted silicon," J. Appl. Phys. 96, 4866-4877 (2004).
[CrossRef]

Cleaverie, A.

N. E. B. Cowern, G. Mannino, P. A. Stolk, F. Roozeboom, H. G. Huizing, J. G. M. van Berkum, F. Cristiano, and A. Cleaverie, "Energetics of self-Interstitial clusters in Si," Phys. Rev. Lett. 82, 4460-4463 (1999).
[CrossRef]

Coffa, S.

S. Libertino, S. Coffa, and J. L. Benton, "Formation, evolution and annihilation of interstitial clusters in ion implanted Si," Phys. Rev. B 63, 195206 (2001).
[CrossRef]

S. Libertino, S. Coffa, C. Spinella, J. L. Benton, and D. Arcifa, "Cluster formation and growth in Si ion implanted c-Si," Mater. Sci. Eng. B 7, 137-142 (2000).
[CrossRef]

S. Libertino, S. Coffa, J. L. Benton, K. Halliburton, and D. J. Eaglesham, "Formation, evolution and annihilation of interstitial clusters in ion implanted Si," Nucl. Instrum. Methods B 148, 247-251 (1999).
[CrossRef]

Colombeau, B.

C. J. Ortiz, P. Pichler, T. Fuhner, F. Cristiano, B. Colombeau, N. E. B. Cowern, and A. Claverie, "A physically based model for the spatial and temporal evolution of self-interstitial agglomerates in ion-implanted silicon," J. Appl. Phys. 96, 4866-4877 (2004).
[CrossRef]

Corbett, J. W.

L. J. Cheng, J. C. Corelli, J. W. Corbett, and G. D. Watkins, "1.8-, 3.3-, 3.9-u bands in irradiated silicon: correlation with the divacancy," Phys. Rev. 152, 761-774 (1966).
[CrossRef]

Corelli, J. C.

L. J. Cheng, J. C. Corelli, J. W. Corbett, and G. D. Watkins, "1.8-, 3.3-, 3.9-u bands in irradiated silicon: correlation with the divacancy," Phys. Rev. 152, 761-774 (1966).
[CrossRef]

Cowern, N. E. B.

C. J. Ortiz, P. Pichler, T. Fuhner, F. Cristiano, B. Colombeau, N. E. B. Cowern, and A. Claverie, "A physically based model for the spatial and temporal evolution of self-interstitial agglomerates in ion-implanted silicon," J. Appl. Phys. 96, 4866-4877 (2004).
[CrossRef]

N. E. B. Cowern, G. Mannino, P. A. Stolk, F. Roozeboom, H. G. Huizing, J. G. M. van Berkum, F. Cristiano, and A. Cleaverie, "Energetics of self-Interstitial clusters in Si," Phys. Rev. Lett. 82, 4460-4463 (1999).
[CrossRef]

Cristiano, F.

C. J. Ortiz, P. Pichler, T. Fuhner, F. Cristiano, B. Colombeau, N. E. B. Cowern, and A. Claverie, "A physically based model for the spatial and temporal evolution of self-interstitial agglomerates in ion-implanted silicon," J. Appl. Phys. 96, 4866-4877 (2004).
[CrossRef]

N. E. B. Cowern, G. Mannino, P. A. Stolk, F. Roozeboom, H. G. Huizing, J. G. M. van Berkum, F. Cristiano, and A. Cleaverie, "Energetics of self-Interstitial clusters in Si," Phys. Rev. Lett. 82, 4460-4463 (1999).
[CrossRef]

Crouch, C. H.

Denault, S.

M. W. Geis, S. J. Spector, M. E. Grein, R.T. Schulein, J. U. Yoon, D. M. Lennon, S. Denault, F. Gan, F. X. Kaertner, and T. M. Lyszczarz, "CMOS-compatible all-Si high-speed waveguide photodiodes with high responsivity in near-infrared communication band," IEEE Photon. Technol. Lett. 19, 152-154 (2007).
[CrossRef]

Dolgolenko, P.

P. Dolgolenko, P. G. Litovchenko, M. D. Varentsov, G. P. Gaidar, and A. P. Litovchenko, "Particularities of the formation of radiation defects in silicon with low and high concentration oxygen," Phys. Status Solidi B 243, 1842-1852 (2006).
[CrossRef]

Eaglesham, D. J.

S. Libertino, S. Coffa, J. L. Benton, K. Halliburton, and D. J. Eaglesham, "Formation, evolution and annihilation of interstitial clusters in ion implanted Si," Nucl. Instrum. Methods B 148, 247-251 (1999).
[CrossRef]

Eaglesham, D.J.

J. L. Benton, S. Libertino, P. Kringhoj, D. J. Eaglesham, and J. M. Poate, "Evolution from point extended defects in ion implanted silicon," J. Appl. Phys. 82, 120-125 (1997).
[CrossRef]

Fan, H. Y.

H. Y. Fan and A. K. Ramdas,"Infrared Absorption and Photoconductivity in Irradiated Silicon," J. Appl. Phys. 30, 1127-1134 (1959).
[CrossRef]

Far, M. M.

F. Raissi and M. M. Far, "Highly sensitive PtSi/porous Si Schottky detectors," IEEE Sensors J. 2, 476-481 (2002).
[CrossRef]

Fortin, M.O.

F. Schiettekatte, S. Roorda, R. Poirier, M. O. Fortin, S. Chazel, and R. Heliou, "Direct evidence for 8-interstital-controlled nucleation of extended defects in c-Si," Appl. Phys. Lett. 77, 4322-4324 (2000).
[CrossRef]

Fretwurst, E.

M. Moll, E. Fretwurst, M. Kuhnke, and G. Lindstrom, "Relation between microscopic defects and microscopic changes in silicon detector properties after hadron irradiation," Nucl. Instrum. and Methods B 186, 100-110 (2002).
[CrossRef]

Fuhner, T.

C. J. Ortiz, P. Pichler, T. Fuhner, F. Cristiano, B. Colombeau, N. E. B. Cowern, and A. Claverie, "A physically based model for the spatial and temporal evolution of self-interstitial agglomerates in ion-implanted silicon," J. Appl. Phys. 96, 4866-4877 (2004).
[CrossRef]

Gaidar, G. P.

P. Dolgolenko, P. G. Litovchenko, M. D. Varentsov, G. P. Gaidar, and A. P. Litovchenko, "Particularities of the formation of radiation defects in silicon with low and high concentration oxygen," Phys. Status Solidi B 243, 1842-1852 (2006).
[CrossRef]

Gan, F.

M. W. Geis, S. J. Spector, M. E. Grein, R.T. Schulein, J. U. Yoon, D. M. Lennon, S. Denault, F. Gan, F. X. Kaertner, and T. M. Lyszczarz, "CMOS-compatible all-Si high-speed waveguide photodiodes with high responsivity in near-infrared communication band," IEEE Photon. Technol. Lett. 19, 152-154 (2007).
[CrossRef]

Geis, M. W.

M. W. Geis, S. J. Spector, M. E. Grein, R.T. Schulein, J. U. Yoon, D. M. Lennon, S. Denault, F. Gan, F. X. Kaertner, and T. M. Lyszczarz, "CMOS-compatible all-Si high-speed waveguide photodiodes with high responsivity in near-infrared communication band," IEEE Photon. Technol. Lett. 19, 152-154 (2007).
[CrossRef]

Giri, P. K.

P. K. Giri, "Photoluminescence signature of silicon interstitial cluster evolution from compact to extended structures in ion-implanted silicon," Semicond. Sci. Technol. 20, 638-644 (2005).
[CrossRef]

P. K. Giri and Y. M. Mohapatra, "Evidence of metastability with athermal ionization from defect clusters in ion-damaged silicon," Phys Rev. B 2, 16561-16565 (2000).
[CrossRef]

Gou, S.H.

A. P. Knights, J. D. Bradley, S. H. Gou, and P. E. Jessop, "Silicon-on-insulator waveguide photodiode with self-ion-implantation-engineered-enhanced infrared response," J. Vac. Sci. Technol. A 24, 783-786 (2005).
[CrossRef]

Grein, M. E.

M. W. Geis, S. J. Spector, M. E. Grein, R.T. Schulein, J. U. Yoon, D. M. Lennon, S. Denault, F. Gan, F. X. Kaertner, and T. M. Lyszczarz, "CMOS-compatible all-Si high-speed waveguide photodiodes with high responsivity in near-infrared communication band," IEEE Photon. Technol. Lett. 19, 152-154 (2007).
[CrossRef]

Halliburton, K.

S. Libertino, S. Coffa, J. L. Benton, K. Halliburton, and D. J. Eaglesham, "Formation, evolution and annihilation of interstitial clusters in ion implanted Si," Nucl. Instrum. Methods B 148, 247-251 (1999).
[CrossRef]

Heliou, R.

F. Schiettekatte, S. Roorda, R. Poirier, M. O. Fortin, S. Chazel, and R. Heliou, "Direct evidence for 8-interstital-controlled nucleation of extended defects in c-Si," Appl. Phys. Lett. 77, 4322-4324 (2000).
[CrossRef]

Hopper, G. H.

A. P. Knights and G. H. Hopper, "Effect of ion implantation induced defects on optical attenuation in silicon waveguides," Electr. Lett. 39, 1648-1649 (2003).
[CrossRef]

Huizing, H. G.

N. E. B. Cowern, G. Mannino, P. A. Stolk, F. Roozeboom, H. G. Huizing, J. G. M. van Berkum, F. Cristiano, and A. Cleaverie, "Energetics of self-Interstitial clusters in Si," Phys. Rev. Lett. 82, 4460-4463 (1999).
[CrossRef]

Jessop, P. E.

A. P. Knights, J. D. Bradley, S. H. Gou, and P. E. Jessop, "Silicon-on-insulator waveguide photodiode with self-ion-implantation-engineered-enhanced infrared response," J. Vac. Sci. Technol. A 24, 783-786 (2005).
[CrossRef]

Kaertner, F. X.

M. W. Geis, S. J. Spector, M. E. Grein, R.T. Schulein, J. U. Yoon, D. M. Lennon, S. Denault, F. Gan, F. X. Kaertner, and T. M. Lyszczarz, "CMOS-compatible all-Si high-speed waveguide photodiodes with high responsivity in near-infrared communication band," IEEE Photon. Technol. Lett. 19, 152-154 (2007).
[CrossRef]

Knights, A. P.

A. P. Knights and G. H. Hopper, "Effect of ion implantation induced defects on optical attenuation in silicon waveguides," Electr. Lett. 39, 1648-1649 (2003).
[CrossRef]

Knights, A.P.

A. P. Knights, J. D. Bradley, S. H. Gou, and P. E. Jessop, "Silicon-on-insulator waveguide photodiode with self-ion-implantation-engineered-enhanced infrared response," J. Vac. Sci. Technol. A 24, 783-786 (2005).
[CrossRef]

Kringhoj, P.

J. L. Benton, S. Libertino, P. Kringhoj, D. J. Eaglesham, and J. M. Poate, "Evolution from point extended defects in ion implanted silicon," J. Appl. Phys. 82, 120-125 (1997).
[CrossRef]

Kuhnke, M.

M. Moll, E. Fretwurst, M. Kuhnke, and G. Lindstrom, "Relation between microscopic defects and microscopic changes in silicon detector properties after hadron irradiation," Nucl. Instrum. and Methods B 186, 100-110 (2002).
[CrossRef]

Kuznick, Z. T.

M. Ley and Z. T. Kuznick, "Near-IR improvement of Si photovoltaic conversion by a nanoscale modification," Physica E 14, 255-258 (2002).

Lennon, D. M.

M. W. Geis, S. J. Spector, M. E. Grein, R.T. Schulein, J. U. Yoon, D. M. Lennon, S. Denault, F. Gan, F. X. Kaertner, and T. M. Lyszczarz, "CMOS-compatible all-Si high-speed waveguide photodiodes with high responsivity in near-infrared communication band," IEEE Photon. Technol. Lett. 19, 152-154 (2007).
[CrossRef]

Ley, M.

M. Ley and Z. T. Kuznick, "Near-IR improvement of Si photovoltaic conversion by a nanoscale modification," Physica E 14, 255-258 (2002).

Liang, T. K.

T. K. Liang and H. K. Tsang, "Role of free carriers from two-photon absorption in Raman amplification in silicon-on-insulator waveguides," Appl. Phys. Lett. 84, 2745-2747 (2004).
[CrossRef]

Libertino, S.

S. Libertino, S. Coffa, and J. L. Benton, "Formation, evolution and annihilation of interstitial clusters in ion implanted Si," Phys. Rev. B 63, 195206 (2001).
[CrossRef]

S. Libertino, S. Coffa, C. Spinella, J. L. Benton, and D. Arcifa, "Cluster formation and growth in Si ion implanted c-Si," Mater. Sci. Eng. B 7, 137-142 (2000).
[CrossRef]

S. Libertino, S. Coffa, J. L. Benton, K. Halliburton, and D. J. Eaglesham, "Formation, evolution and annihilation of interstitial clusters in ion implanted Si," Nucl. Instrum. Methods B 148, 247-251 (1999).
[CrossRef]

J. L. Benton, S. Libertino, P. Kringhoj, D. J. Eaglesham, and J. M. Poate, "Evolution from point extended defects in ion implanted silicon," J. Appl. Phys. 82, 120-125 (1997).
[CrossRef]

Lindstrom, G.

M. Moll, E. Fretwurst, M. Kuhnke, and G. Lindstrom, "Relation between microscopic defects and microscopic changes in silicon detector properties after hadron irradiation," Nucl. Instrum. and Methods B 186, 100-110 (2002).
[CrossRef]

Litovchenko, A. P.

P. Dolgolenko, P. G. Litovchenko, M. D. Varentsov, G. P. Gaidar, and A. P. Litovchenko, "Particularities of the formation of radiation defects in silicon with low and high concentration oxygen," Phys. Status Solidi B 243, 1842-1852 (2006).
[CrossRef]

Litovchenko, P. G.

P. Dolgolenko, P. G. Litovchenko, M. D. Varentsov, G. P. Gaidar, and A. P. Litovchenko, "Particularities of the formation of radiation defects in silicon with low and high concentration oxygen," Phys. Status Solidi B 243, 1842-1852 (2006).
[CrossRef]

Lyszczarz, T. M.

M. W. Geis, S. J. Spector, M. E. Grein, R.T. Schulein, J. U. Yoon, D. M. Lennon, S. Denault, F. Gan, F. X. Kaertner, and T. M. Lyszczarz, "CMOS-compatible all-Si high-speed waveguide photodiodes with high responsivity in near-infrared communication band," IEEE Photon. Technol. Lett. 19, 152-154 (2007).
[CrossRef]

Mannino, G.

N. E. B. Cowern, G. Mannino, P. A. Stolk, F. Roozeboom, H. G. Huizing, J. G. M. van Berkum, F. Cristiano, and A. Cleaverie, "Energetics of self-Interstitial clusters in Si," Phys. Rev. Lett. 82, 4460-4463 (1999).
[CrossRef]

Mazur, E.

Mohapatra, Y. M.

P. K. Giri and Y. M. Mohapatra, "Evidence of metastability with athermal ionization from defect clusters in ion-damaged silicon," Phys Rev. B 2, 16561-16565 (2000).
[CrossRef]

Moll, M.

M. Moll, E. Fretwurst, M. Kuhnke, and G. Lindstrom, "Relation between microscopic defects and microscopic changes in silicon detector properties after hadron irradiation," Nucl. Instrum. and Methods B 186, 100-110 (2002).
[CrossRef]

Ortiz, C. J.

C. J. Ortiz, P. Pichler, T. Fuhner, F. Cristiano, B. Colombeau, N. E. B. Cowern, and A. Claverie, "A physically based model for the spatial and temporal evolution of self-interstitial agglomerates in ion-implanted silicon," J. Appl. Phys. 96, 4866-4877 (2004).
[CrossRef]

Pichler, P.

C. J. Ortiz, P. Pichler, T. Fuhner, F. Cristiano, B. Colombeau, N. E. B. Cowern, and A. Claverie, "A physically based model for the spatial and temporal evolution of self-interstitial agglomerates in ion-implanted silicon," J. Appl. Phys. 96, 4866-4877 (2004).
[CrossRef]

Poate, J. M.

J. L. Benton, S. Libertino, P. Kringhoj, D. J. Eaglesham, and J. M. Poate, "Evolution from point extended defects in ion implanted silicon," J. Appl. Phys. 82, 120-125 (1997).
[CrossRef]

Poirier, R.

F. Schiettekatte, S. Roorda, R. Poirier, M. O. Fortin, S. Chazel, and R. Heliou, "Direct evidence for 8-interstital-controlled nucleation of extended defects in c-Si," Appl. Phys. Lett. 77, 4322-4324 (2000).
[CrossRef]

Raissi, F.

F. Raissi and M. M. Far, "Highly sensitive PtSi/porous Si Schottky detectors," IEEE Sensors J. 2, 476-481 (2002).
[CrossRef]

Ramdas, A. K.

H. Y. Fan and A. K. Ramdas,"Infrared Absorption and Photoconductivity in Irradiated Silicon," J. Appl. Phys. 30, 1127-1134 (1959).
[CrossRef]

Roorda, S.

F. Schiettekatte, S. Roorda, R. Poirier, M. O. Fortin, S. Chazel, and R. Heliou, "Direct evidence for 8-interstital-controlled nucleation of extended defects in c-Si," Appl. Phys. Lett. 77, 4322-4324 (2000).
[CrossRef]

Roozeboom, F.

N. E. B. Cowern, G. Mannino, P. A. Stolk, F. Roozeboom, H. G. Huizing, J. G. M. van Berkum, F. Cristiano, and A. Cleaverie, "Energetics of self-Interstitial clusters in Si," Phys. Rev. Lett. 82, 4460-4463 (1999).
[CrossRef]

Schiettekatte, F.

F. Schiettekatte, S. Roorda, R. Poirier, M. O. Fortin, S. Chazel, and R. Heliou, "Direct evidence for 8-interstital-controlled nucleation of extended defects in c-Si," Appl. Phys. Lett. 77, 4322-4324 (2000).
[CrossRef]

Schulein, R.T.

M. W. Geis, S. J. Spector, M. E. Grein, R.T. Schulein, J. U. Yoon, D. M. Lennon, S. Denault, F. Gan, F. X. Kaertner, and T. M. Lyszczarz, "CMOS-compatible all-Si high-speed waveguide photodiodes with high responsivity in near-infrared communication band," IEEE Photon. Technol. Lett. 19, 152-154 (2007).
[CrossRef]

Shen, M.

Spector, S. J.

M. W. Geis, S. J. Spector, M. E. Grein, R.T. Schulein, J. U. Yoon, D. M. Lennon, S. Denault, F. Gan, F. X. Kaertner, and T. M. Lyszczarz, "CMOS-compatible all-Si high-speed waveguide photodiodes with high responsivity in near-infrared communication band," IEEE Photon. Technol. Lett. 19, 152-154 (2007).
[CrossRef]

Spinella, C.

S. Libertino, S. Coffa, C. Spinella, J. L. Benton, and D. Arcifa, "Cluster formation and growth in Si ion implanted c-Si," Mater. Sci. Eng. B 7, 137-142 (2000).
[CrossRef]

Stolk, P. A.

N. E. B. Cowern, G. Mannino, P. A. Stolk, F. Roozeboom, H. G. Huizing, J. G. M. van Berkum, F. Cristiano, and A. Cleaverie, "Energetics of self-Interstitial clusters in Si," Phys. Rev. Lett. 82, 4460-4463 (1999).
[CrossRef]

Tsang, H. K.

T. K. Liang and H. K. Tsang, "Role of free carriers from two-photon absorption in Raman amplification in silicon-on-insulator waveguides," Appl. Phys. Lett. 84, 2745-2747 (2004).
[CrossRef]

van Berkum, J. G. M.

N. E. B. Cowern, G. Mannino, P. A. Stolk, F. Roozeboom, H. G. Huizing, J. G. M. van Berkum, F. Cristiano, and A. Cleaverie, "Energetics of self-Interstitial clusters in Si," Phys. Rev. Lett. 82, 4460-4463 (1999).
[CrossRef]

Varentsov, M. D.

P. Dolgolenko, P. G. Litovchenko, M. D. Varentsov, G. P. Gaidar, and A. P. Litovchenko, "Particularities of the formation of radiation defects in silicon with low and high concentration oxygen," Phys. Status Solidi B 243, 1842-1852 (2006).
[CrossRef]

Watkins, G. D.

L. J. Cheng, J. C. Corelli, J. W. Corbett, and G. D. Watkins, "1.8-, 3.3-, 3.9-u bands in irradiated silicon: correlation with the divacancy," Phys. Rev. 152, 761-774 (1966).
[CrossRef]

Yoon, J. U.

M. W. Geis, S. J. Spector, M. E. Grein, R.T. Schulein, J. U. Yoon, D. M. Lennon, S. Denault, F. Gan, F. X. Kaertner, and T. M. Lyszczarz, "CMOS-compatible all-Si high-speed waveguide photodiodes with high responsivity in near-infrared communication band," IEEE Photon. Technol. Lett. 19, 152-154 (2007).
[CrossRef]

Appl. Phys. Lett. (2)

F. Schiettekatte, S. Roorda, R. Poirier, M. O. Fortin, S. Chazel, and R. Heliou, "Direct evidence for 8-interstital-controlled nucleation of extended defects in c-Si," Appl. Phys. Lett. 77, 4322-4324 (2000).
[CrossRef]

T. K. Liang and H. K. Tsang, "Role of free carriers from two-photon absorption in Raman amplification in silicon-on-insulator waveguides," Appl. Phys. Lett. 84, 2745-2747 (2004).
[CrossRef]

Electr. Lett. (1)

A. P. Knights and G. H. Hopper, "Effect of ion implantation induced defects on optical attenuation in silicon waveguides," Electr. Lett. 39, 1648-1649 (2003).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

M. W. Geis, S. J. Spector, M. E. Grein, R.T. Schulein, J. U. Yoon, D. M. Lennon, S. Denault, F. Gan, F. X. Kaertner, and T. M. Lyszczarz, "CMOS-compatible all-Si high-speed waveguide photodiodes with high responsivity in near-infrared communication band," IEEE Photon. Technol. Lett. 19, 152-154 (2007).
[CrossRef]

IEEE Sensors J. (1)

F. Raissi and M. M. Far, "Highly sensitive PtSi/porous Si Schottky detectors," IEEE Sensors J. 2, 476-481 (2002).
[CrossRef]

J. Appl. Phys. (3)

H. Y. Fan and A. K. Ramdas,"Infrared Absorption and Photoconductivity in Irradiated Silicon," J. Appl. Phys. 30, 1127-1134 (1959).
[CrossRef]

J. L. Benton, S. Libertino, P. Kringhoj, D. J. Eaglesham, and J. M. Poate, "Evolution from point extended defects in ion implanted silicon," J. Appl. Phys. 82, 120-125 (1997).
[CrossRef]

C. J. Ortiz, P. Pichler, T. Fuhner, F. Cristiano, B. Colombeau, N. E. B. Cowern, and A. Claverie, "A physically based model for the spatial and temporal evolution of self-interstitial agglomerates in ion-implanted silicon," J. Appl. Phys. 96, 4866-4877 (2004).
[CrossRef]

J. Vac. Sci. Technol. A (1)

A. P. Knights, J. D. Bradley, S. H. Gou, and P. E. Jessop, "Silicon-on-insulator waveguide photodiode with self-ion-implantation-engineered-enhanced infrared response," J. Vac. Sci. Technol. A 24, 783-786 (2005).
[CrossRef]

Mater. Res. Innovations (1)

M. Bruel, "Separation of Silicon wafers by the smart-cut method," Mater. Res. Innovations 3, 9-13 (1999).
[CrossRef]

Mater. Sci. Eng. B (1)

S. Libertino, S. Coffa, C. Spinella, J. L. Benton, and D. Arcifa, "Cluster formation and growth in Si ion implanted c-Si," Mater. Sci. Eng. B 7, 137-142 (2000).
[CrossRef]

Nucl. Instrum. and Methods B (1)

M. Moll, E. Fretwurst, M. Kuhnke, and G. Lindstrom, "Relation between microscopic defects and microscopic changes in silicon detector properties after hadron irradiation," Nucl. Instrum. and Methods B 186, 100-110 (2002).
[CrossRef]

Nucl. Instrum. Methods B (1)

S. Libertino, S. Coffa, J. L. Benton, K. Halliburton, and D. J. Eaglesham, "Formation, evolution and annihilation of interstitial clusters in ion implanted Si," Nucl. Instrum. Methods B 148, 247-251 (1999).
[CrossRef]

Opt. Lett. (1)

Phys Rev. B (1)

P. K. Giri and Y. M. Mohapatra, "Evidence of metastability with athermal ionization from defect clusters in ion-damaged silicon," Phys Rev. B 2, 16561-16565 (2000).
[CrossRef]

Phys. Rev. (1)

L. J. Cheng, J. C. Corelli, J. W. Corbett, and G. D. Watkins, "1.8-, 3.3-, 3.9-u bands in irradiated silicon: correlation with the divacancy," Phys. Rev. 152, 761-774 (1966).
[CrossRef]

Phys. Rev. B (1)

S. Libertino, S. Coffa, and J. L. Benton, "Formation, evolution and annihilation of interstitial clusters in ion implanted Si," Phys. Rev. B 63, 195206 (2001).
[CrossRef]

Phys. Rev. Lett. (1)

N. E. B. Cowern, G. Mannino, P. A. Stolk, F. Roozeboom, H. G. Huizing, J. G. M. van Berkum, F. Cristiano, and A. Cleaverie, "Energetics of self-Interstitial clusters in Si," Phys. Rev. Lett. 82, 4460-4463 (1999).
[CrossRef]

Phys. Status Solidi B (1)

P. Dolgolenko, P. G. Litovchenko, M. D. Varentsov, G. P. Gaidar, and A. P. Litovchenko, "Particularities of the formation of radiation defects in silicon with low and high concentration oxygen," Phys. Status Solidi B 243, 1842-1852 (2006).
[CrossRef]

Physica E (1)

M. Ley and Z. T. Kuznick, "Near-IR improvement of Si photovoltaic conversion by a nanoscale modification," Physica E 14, 255-258 (2002).

Semicond. Sci. Technol. (1)

P. K. Giri, "Photoluminescence signature of silicon interstitial cluster evolution from compact to extended structures in ion-implanted silicon," Semicond. Sci. Technol. 20, 638-644 (2005).
[CrossRef]

Other (2)

A. Knights, A. House, R. MacNaughton, and F. Hopper, "Optical power monitoring function compatible with single chip integration on silicon-on-insulator," Conference on Optical Fiber Communication, Technical Digest Series 86, 705-706 (2003).

M. Moll, Ph.D. Thesis, University of Hamburg, DESY-Thesis-1999-040, Dec. 1999, "Radiation Damage in Silicon Particle Detectors," http://mmoll.web.cern.ch/mmoll/publist/publist.htm>.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Plot of photo absorption and quantum efficiency for single crystal silicon damaged by 3.5×1018 cm-2 fast neutrons. Measurements made at 70 K. Data obtained from H.Y. Fan et al. [1].

Fig. 2.
Fig. 2.

(a) Schematic cross section drawing of a waveguide photodiode fabricated using liftoff patterning which limits processing temperatures≤300 °C after Si+ implantation. (b) Schematic cross section drawing of waveguide photodiode fabricated using the CMOS-compatible tungsten plug contact process which requires processing temperatures≤475 °C after Si+ implantation. (c) Top view optical micrograph of a 0.25-mm-long Si waveguide photodiode.

Fig. 3.
Fig. 3.

(a) Graph of quantum efficiency as a function of bias voltage for four processing conditions: photodiodes processed to 300 °C, photodiodes processed to 475 °C in the L2 and L1 states, and a diode not implanted but processed to 475 °C. The legend shows the waveguide optical absorption for each process. (b) Leakage currents for the same four processing conditions of Fig.3(a). The leakage current is for a diode of sufficient length to absorb 50 % of the incoming light. The 50 % absorption length for each diode is in the legend.

Fig. 4.
Fig. 4.

(a) Diode current in the dark and illuminated with ~1 mW of 1539 nm radiation as a function of bias voltage. (b) Plot of photocurrent as a function of optical power exiting the diode with a bias voltage of 0.25 V. A perfectly linear relationship between optical power and photocurrent would have a slope of 1. A least square power law fit to the data has a log-log slope of 1.053.

Fig. 5.
Fig. 5.

Diode current normalized at 0 V when illuminated by ~1 mW of 1539 nm radiation, as a function of bias voltage for 3-mm-long Si photodiodes in the L1 and L2 states and for a commercial planar InGaAs photodiode designed to detect 1550 nm radiation. The fill factor is the ratio of the maximum electrical power divided by the open circuit voltage and by the short circuit current.

Fig. 6.
Fig. 6.

(a) Frequency response of the same Si photodiode in the L1 and L2 states. A network analyzer was used to measure response from 0.01 to 60 GHz, dashed red curves. Fourier transform analysis of several pulse responses, an example of which is shown Fig. 6(b), was used to obtain the response from 0.1 to 150 GHz, solid blue curves. All the curves were shifted vertically to allow the L2 state set-of-curves to coincide with 0 dB at 10 GHz. (b) Transient response to a 1550 nm subpicosecond light pulse for the same diode shown in Fig. 6(a) in the L1 and L2 states and for a 50 GHz bandwidth InGaAs photodiode. The peak current for the diodes is shown in the legend. The same light intensity was used for the diode in the L1 and L2 states, but it was attenuated for the InGaAs photodiode.

Fig. 7.
Fig. 7.

(a) Photocurrent with the same input optical power as function of bias voltage for several activation times. At time 0 s the diode is in state L1 with additional activation time the diode continuously transforms to the L2 state, saturating in 6 min. Heating the diode to 250 °C for 10 s transforms the L2 back to the L1 state. The stair-stepping of the photocurrents is the result of Fabry-Perot optical resonances of the Si waveguide as it is heated by the product of photocurrent times the bias voltage. (b) Photocurrent for the same diode in the L1, L2, and modified L2 (L2m) states. The L2 state was transformed into the L2m state by operating for 15 min at 25 V bias with ~1 mW of 1539 nm illumination. This minimized the “after current pulse” and increases the diode’s bandwidth.

Fig. 8.
Fig. 8.

(a) Photocurrent and light exiting a photodiode as a function of activation time. Approximately 2 mW of 1539 nm radiation entered to photodiode. The curves are a smooth fit to the data. (b) Same data as in Fig. 8 (a) with the photocurrent divided by the transmitted light. The dotted curve is an exponential fit to the data and the solid curve is a power law fit. Note that data does not coincide with the exponential curve.

Tables (2)

Tables Icon

Table 1. Open circuit voltage and fill factor for ~1 mW of input 1539 nm radiation at room temperature

Tables Icon

Table 2. Summary of optical-electrical properties of Si waveguide diodes and a commercial 50-GHz-bandwidth InGaAs photodiode. The variation in the properties of the L2 state for 20 V bias reflects the change in the diode properties between the L2 and L2m states. All optical measurements were made at 1539 nm. The primary source of error in determining the quantum efficiency is the accurate measurement of optical power entering the diode.

Metrics