Abstract

The dynamical properties of a mode-locked thin disk laser with cavity-dumping in the solitary regime are studied using numerical simulations along with experimental data. Limitations of this system as well as their origin are identified. The results of these investigations agree very well with recently published experimental results. Based on these findings design criteria for future systems are deducted and estimates of possible pulse energies are made.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Fernandez, T. Fuji, A. Poppe, A. Fürbach, F. Krausz, and A. Apolonski, "Chirped-pulse oscillators: a route to high-power femtosecond pulses without external amplification," Opt. Lett. 29, 1366-1368 (2003).
    [CrossRef]
  2. S. Naumov, A. Fernandez, R. Graf, P. Dombi, F. Krausz, and A. Apolonski, "Approaching the microjoule frontier with femtosecond laser oscillators," N. J. Phys. 7, 217 (2005).
    [CrossRef]
  3. S. Dewald, T. Lang, C.D. Schröter, R. Moshammer, J. Ullrich, M. Siegel, and U. Morgner, "Ionization of noble gases with pulses directly from a laser oscillator," Opt. Lett. 31, 2072-2074 (2006).
    [CrossRef] [PubMed]
  4. A. Killi, A. Steinmann, J. Dörring, U. Morgner, M. J. Lederer, D. Kopf, and C. Fallnich, "High-peak-power pulses from a cavity-dumped Yb:KY(WO4)2 oscillator," Opt. Lett. 30, 1891-1893 (2005).
    [CrossRef] [PubMed]
  5. S. V. Marchese, S. Hashimoto, C. R. E. Baer, M. S. Ruosch, R. Grange, M. Golling, T. Südmeyer, U. Keller, G. L´epine, G. Gingras, and B. Witzel, "Passively mode-locked thin disk lasers reach 10 microjoules pulse energy at megahertz repetition rate and drive high field physics experiments," presented at CLEO / Europe 2007, Munich, Germany, 17-22 June 2007.
  6. G. Palmer, M. Siegel, A. Steinmann, and U. Morgner, "Microjoule pulses from a passively mode-locked Yb:KYW thin disk oscillator with cavity-dumping," Opt. Lett. 32, 1593-1595 (2007).
    [CrossRef] [PubMed]
  7. T. R. Schibli, E. R. Thoen, F. X. Kärtner, and E. P. Ippen, "Suppression of Q-switched mode locking and break-up into multiple pulses by inverse saturable absorption," Appl. Phys. B 70, 41 (2000).
  8. F. X. Kärtner and U. Keller, "Stabilization of solitonlike pulses with a slow saturable absorber," Opt. Lett. 20, 16-18 (1995).
    [CrossRef] [PubMed]
  9. F. X. Kärtner, L. R. Brovelli, D. Kopf, M. Kamp, I. G. Calasso, and U. Keller, "Control of sold-state laser dynamics by semiconductor devices," Opt. Eng. 34, 2024-2036 (1995).
    [CrossRef]
  10. A. Killi and U. Morgner, "Solitary pulse shaping dynamics in cavity-dumped laser oscillators," Opt. Express 12, 3397-3407 (2004).
    [CrossRef] [PubMed]
  11. S. V. Marchese, T. Südmeyer, M. Golling, R. Grange, and U. Keller, "Pulse energy scaling to 5 μJ from a femtosecond thin disk laser," Opt. Lett. 31, 2728-2730 (2006).
    [CrossRef] [PubMed]
  12. W. Koechner, Solid-State Laser Engineering (Springer, 2006).
  13. C. Hönninger, R. Paschotta, F. Morier-Genoud, M. Moser, and U. Keller, "Q-switching stability limits of continouos-wave passive mode-locking," J. Opt. Soc. Am. B 16, 46-56 (1999).
    [CrossRef]

2007 (1)

2006 (2)

2005 (2)

S. Naumov, A. Fernandez, R. Graf, P. Dombi, F. Krausz, and A. Apolonski, "Approaching the microjoule frontier with femtosecond laser oscillators," N. J. Phys. 7, 217 (2005).
[CrossRef]

A. Killi, A. Steinmann, J. Dörring, U. Morgner, M. J. Lederer, D. Kopf, and C. Fallnich, "High-peak-power pulses from a cavity-dumped Yb:KY(WO4)2 oscillator," Opt. Lett. 30, 1891-1893 (2005).
[CrossRef] [PubMed]

2004 (1)

2003 (1)

2000 (1)

T. R. Schibli, E. R. Thoen, F. X. Kärtner, and E. P. Ippen, "Suppression of Q-switched mode locking and break-up into multiple pulses by inverse saturable absorption," Appl. Phys. B 70, 41 (2000).

1999 (1)

1995 (2)

F. X. Kärtner, L. R. Brovelli, D. Kopf, M. Kamp, I. G. Calasso, and U. Keller, "Control of sold-state laser dynamics by semiconductor devices," Opt. Eng. 34, 2024-2036 (1995).
[CrossRef]

F. X. Kärtner and U. Keller, "Stabilization of solitonlike pulses with a slow saturable absorber," Opt. Lett. 20, 16-18 (1995).
[CrossRef] [PubMed]

Apolonski, A.

S. Naumov, A. Fernandez, R. Graf, P. Dombi, F. Krausz, and A. Apolonski, "Approaching the microjoule frontier with femtosecond laser oscillators," N. J. Phys. 7, 217 (2005).
[CrossRef]

A. Fernandez, T. Fuji, A. Poppe, A. Fürbach, F. Krausz, and A. Apolonski, "Chirped-pulse oscillators: a route to high-power femtosecond pulses without external amplification," Opt. Lett. 29, 1366-1368 (2003).
[CrossRef]

Brovelli, L. R.

F. X. Kärtner, L. R. Brovelli, D. Kopf, M. Kamp, I. G. Calasso, and U. Keller, "Control of sold-state laser dynamics by semiconductor devices," Opt. Eng. 34, 2024-2036 (1995).
[CrossRef]

Calasso, I. G.

F. X. Kärtner, L. R. Brovelli, D. Kopf, M. Kamp, I. G. Calasso, and U. Keller, "Control of sold-state laser dynamics by semiconductor devices," Opt. Eng. 34, 2024-2036 (1995).
[CrossRef]

Dewald, S.

Dombi, P.

S. Naumov, A. Fernandez, R. Graf, P. Dombi, F. Krausz, and A. Apolonski, "Approaching the microjoule frontier with femtosecond laser oscillators," N. J. Phys. 7, 217 (2005).
[CrossRef]

Dörring, J.

Fallnich, C.

Fernandez, A.

S. Naumov, A. Fernandez, R. Graf, P. Dombi, F. Krausz, and A. Apolonski, "Approaching the microjoule frontier with femtosecond laser oscillators," N. J. Phys. 7, 217 (2005).
[CrossRef]

A. Fernandez, T. Fuji, A. Poppe, A. Fürbach, F. Krausz, and A. Apolonski, "Chirped-pulse oscillators: a route to high-power femtosecond pulses without external amplification," Opt. Lett. 29, 1366-1368 (2003).
[CrossRef]

Fuji, T.

Fürbach, A.

Golling, M.

Graf, R.

S. Naumov, A. Fernandez, R. Graf, P. Dombi, F. Krausz, and A. Apolonski, "Approaching the microjoule frontier with femtosecond laser oscillators," N. J. Phys. 7, 217 (2005).
[CrossRef]

Grange, R.

Hönninger, C.

Ippen, E. P.

T. R. Schibli, E. R. Thoen, F. X. Kärtner, and E. P. Ippen, "Suppression of Q-switched mode locking and break-up into multiple pulses by inverse saturable absorption," Appl. Phys. B 70, 41 (2000).

Kamp, M.

F. X. Kärtner, L. R. Brovelli, D. Kopf, M. Kamp, I. G. Calasso, and U. Keller, "Control of sold-state laser dynamics by semiconductor devices," Opt. Eng. 34, 2024-2036 (1995).
[CrossRef]

Kärtner, F. X.

T. R. Schibli, E. R. Thoen, F. X. Kärtner, and E. P. Ippen, "Suppression of Q-switched mode locking and break-up into multiple pulses by inverse saturable absorption," Appl. Phys. B 70, 41 (2000).

F. X. Kärtner, L. R. Brovelli, D. Kopf, M. Kamp, I. G. Calasso, and U. Keller, "Control of sold-state laser dynamics by semiconductor devices," Opt. Eng. 34, 2024-2036 (1995).
[CrossRef]

F. X. Kärtner and U. Keller, "Stabilization of solitonlike pulses with a slow saturable absorber," Opt. Lett. 20, 16-18 (1995).
[CrossRef] [PubMed]

Keller, U.

Killi, A.

Kopf, D.

A. Killi, A. Steinmann, J. Dörring, U. Morgner, M. J. Lederer, D. Kopf, and C. Fallnich, "High-peak-power pulses from a cavity-dumped Yb:KY(WO4)2 oscillator," Opt. Lett. 30, 1891-1893 (2005).
[CrossRef] [PubMed]

F. X. Kärtner, L. R. Brovelli, D. Kopf, M. Kamp, I. G. Calasso, and U. Keller, "Control of sold-state laser dynamics by semiconductor devices," Opt. Eng. 34, 2024-2036 (1995).
[CrossRef]

Krausz, F.

S. Naumov, A. Fernandez, R. Graf, P. Dombi, F. Krausz, and A. Apolonski, "Approaching the microjoule frontier with femtosecond laser oscillators," N. J. Phys. 7, 217 (2005).
[CrossRef]

A. Fernandez, T. Fuji, A. Poppe, A. Fürbach, F. Krausz, and A. Apolonski, "Chirped-pulse oscillators: a route to high-power femtosecond pulses without external amplification," Opt. Lett. 29, 1366-1368 (2003).
[CrossRef]

Lang, T.

Lederer, M. J.

Marchese, S. V.

Morgner, U.

Morier-Genoud, F.

Moser, M.

Moshammer, R.

Naumov, S.

S. Naumov, A. Fernandez, R. Graf, P. Dombi, F. Krausz, and A. Apolonski, "Approaching the microjoule frontier with femtosecond laser oscillators," N. J. Phys. 7, 217 (2005).
[CrossRef]

Palmer, G.

Paschotta, R.

Poppe, A.

Schibli, T. R.

T. R. Schibli, E. R. Thoen, F. X. Kärtner, and E. P. Ippen, "Suppression of Q-switched mode locking and break-up into multiple pulses by inverse saturable absorption," Appl. Phys. B 70, 41 (2000).

Schröter, C.D.

Siegel, M.

Steinmann, A.

Südmeyer, T.

Thoen, E. R.

T. R. Schibli, E. R. Thoen, F. X. Kärtner, and E. P. Ippen, "Suppression of Q-switched mode locking and break-up into multiple pulses by inverse saturable absorption," Appl. Phys. B 70, 41 (2000).

Ullrich, J.

Appl. Phys. B (1)

T. R. Schibli, E. R. Thoen, F. X. Kärtner, and E. P. Ippen, "Suppression of Q-switched mode locking and break-up into multiple pulses by inverse saturable absorption," Appl. Phys. B 70, 41 (2000).

J. Opt. Soc. Am. B (1)

N. J. Phys. (1)

S. Naumov, A. Fernandez, R. Graf, P. Dombi, F. Krausz, and A. Apolonski, "Approaching the microjoule frontier with femtosecond laser oscillators," N. J. Phys. 7, 217 (2005).
[CrossRef]

Opt. Eng. (1)

F. X. Kärtner, L. R. Brovelli, D. Kopf, M. Kamp, I. G. Calasso, and U. Keller, "Control of sold-state laser dynamics by semiconductor devices," Opt. Eng. 34, 2024-2036 (1995).
[CrossRef]

Opt. Express (1)

Opt. Lett. (6)

Other (2)

S. V. Marchese, S. Hashimoto, C. R. E. Baer, M. S. Ruosch, R. Grange, M. Golling, T. Südmeyer, U. Keller, G. L´epine, G. Gingras, and B. Witzel, "Passively mode-locked thin disk lasers reach 10 microjoules pulse energy at megahertz repetition rate and drive high field physics experiments," presented at CLEO / Europe 2007, Munich, Germany, 17-22 June 2007.

W. Koechner, Solid-State Laser Engineering (Springer, 2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Comparison of calculated (red) and measured (blue) spectra of the cavity dumped thin-disk laser. The left spectrum is for the laser running in dry air, the right spectrum for the laser running under a Helium atmosphere.

Fig. 2.
Fig. 2.

Comparison of calculated (red) and measured (blue) spectra of the cavity dumped bulk laser. The Fourier limit of the measured spectrum is 380 fs while the simulated spectrum corresponds to a Fourier limited pulse duration of 385 fs.

Fig. 3.
Fig. 3.

Typical pulse evolution dynamics observed in the numerical simulation. Left: Stable cavity-dumping; Right: Q-switching instabilities prohibit stable dumping.

Fig. 4.
Fig. 4.

Calculated maximum dumping ratio for stable cw mode-locking operation in the thin disk laser as a function of the beam radius on the laser disk. The black dot marks the parameters of the thin disk laser system.

Fig. 5.
Fig. 5.

Left: Maximum dumping ratio as a function of the mode radius on the disk and the modulation depth of the SESAM. Red color denotes a high ratio, blue color a low ratio. Right: Resulting out-coupled pulse energies in µJ for the same set of parameters. Red color denotes high energy, blue color low energy. The dashed lines indicate experimental limits. The maximum power density on the disk (horizontal) and the minimal modulation depth for stable mode-locking (vertical) leave only the upper right quadrant experimentally accessible.

Fig. 6.
Fig. 6.

Calculated maximum dumping ratio for stable mode-locking as a function of the mode size on the saturable absorber. Parameters as given in the text and Tab. 2. The vertical lines represent experimental limitations for the mode radius. To the right the SESAM was destroyed while to the left no stable cw-modelocking was possible.

Tables (5)

Tables Icon

Table 1. Key Parameter values from the thin disk laser experiment running in ambient air. The SESAM parameters are given as specified by the manufacturer.

Tables Icon

Table 2. Parameter values used in the simulation of the thin disk laser. In parenthesis the small signal gain value for the laser running under Helium atmosphere.

Tables Icon

Table 3. Comparison between experimental and numerical values for the thin-disk laser in air and in Helium. Ep is the pulse energy, τFL the transform-limited pulse duration and τp the pulse duration.

Tables Icon

Table 4. Comparison between experimental and numerical values for the crystal based laser system.

Tables Icon

Table 5. Parameter values used in the simulation of the Yb:KYW bulk laser.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

T R T A ( t , T ) = [ g ( T ) l + D g , f 2 t 2 +i β 2 2 2 t 2 q ( t , T , A ) i γ A ( t , T ) 2 ] A ( t , T ) .
T R T g ( T ) = T R g ( T ) g 0 τ L g ( T ) E ( T ) E sat , L
t q ( t , T ) = q ( t , T ) q 0 τ abs q ( t , T ) A ( t , T ) 2 E sat , A ,
g 0 = σ L τ L R p 2 π r gain 2 and E sat , L = π h ν m σ L r gain 2
E p 2 > E sat , A E sat , L Δ R ,
E sat , A = π Φ abs r abs 2

Metrics