Abstract

The electric field enhancing properties of the V-shaped optical resonant antenna are studied by using finite-difference time-domain method. Both dipolar and quadrupolar modes can be effectively excited and strong electric field enhancement in the gap of the V-shaped antenna is found. Compared with full-wave dipole antenna, the V-shaped antenna has a greater electric field enhancement, which can be attributed to the higher radiation directivity and the smaller curvature radius of the antenna arms. The more asymmetrical structure also contributes to the efficient quadrupolar excitation. The electric field enhancement of the V-shaped antenna has different dependences on the open angle of the V-shaped antenna for the dipolar and quadrupolar excitation. We obtained stronger electric field enhancing properties by using V-shaped bow-tie antennas, especially for the quadrupolar excitation. The V-shaped antenna and the bow-tie antenna can realize strongly localized and enhanced field and thus are well suitable for the use of near-field optics applications.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Hartschuh, E. J. Sanchez, X. S. Xie and L. Novotny, "High-resolution near-field Raman microscopy of single-walled carbon nanotubes," Phys. Rev. Lett. 90, 095503-1-095503-4 (2003).
    [CrossRef]
  2. A. J. Haes, W. P. Hall, L. Chang, W. L. Klein and R. P. Van Duyne, "A localized Surface Plasmon resonance biosensor: first steps toward an assay for Alzheimer's disease," Nano Lett. 4, 1029-1034 (2004).
    [CrossRef]
  3. L. Novotny, R. X. Bian and X. S. Xie, "Theory of nanometric optical tweezers," Phys. Rev. Lett. 79, 645-648 (1997).
    [CrossRef]
  4. E. Cubukcu, E. A. Kort, K. B. Crozier and F. Capasso, "Plasmonic laser antenna," Appl. Phys. Lett. 89, 093120-1-093120-3 (2006).
    [CrossRef]
  5. P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, "A quantum dot single-photon turnstile device," Science 290, 2282-2285 (2000).
    [CrossRef] [PubMed]
  6. S. I. Bozhevolnyi, J. Erland, K. Leosson, P. M. W. Skovgaard and J. M. Hyam, "Waveguiding in Surface Plasmon Polariton Band Gap Structures," Phys. Rev. Lett. 86, 3008-3011 (2001).
    [CrossRef] [PubMed]
  7. K. B. Crozier, A. Sundaramurthy, G. S. Kino and C. F. Quate, "Optical antennas: resonators for local field enhancement," J. Appl. Phys. 94, 4632-4642 (2003).
    [CrossRef]
  8. D. W. Pohl, "Near field optics seen as an antenna problem," in Near-field optics: principles and applications: the second Asia-Pacific Workshop on Near Field Optics, X. Zhu and M. Ohtsu, ed., (World Scientific, Singapore, 2000), pp. 9-21.
  9. J. J. Greffet, "Nanoantennas for light emission," Science 308, 1561-1563 (2005).
    [CrossRef] [PubMed]
  10. P. Muhlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht and D. W. Pohl, "Resonant optical antennas," Science 308, 1607-1609 (2005).
    [CrossRef] [PubMed]
  11. D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino and W. E. Moerner, "Gap-dependent optical coupling of single "bowtie" nanoantennas resonant in the visible," Nano Lett. 4, 957-961 (2004).
    [CrossRef]
  12. P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino and W. E. Moerner, "Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas" Phys. Rev. Lett.  94, 017402-1-017402-4 (2005).
    [CrossRef]
  13. A. Sundaramurthy, P. J. Schuck, N. R. Conley, D. P. Fromm, G. S. Kino and W. E. Moerner, "Toward nanometer-scale optical photolithography: utilizing the near-field of bow-tie optical nanoantennas," Nano Lett. 6, 355-360 (2006).
    [CrossRef] [PubMed]
  14. L. Wang, S. M. Uppuluri, E. X. Jin and X. F. Xu, "Nanolithography using high transmission nanoscale bowtie apertures," Nano Lett. 6, 361-364 (2006).
    [CrossRef] [PubMed]
  15. J. N. Farahani, D. W. Pohl, H. J. Eisler, and B. Hecht, "Single quantum dot coupled to a scanning optical antenna: a tunable superemitter," Phys. Rev. Lett.  95, 017402-1-017402-4 (2005).
    [CrossRef]
  16. J. N. Farahani, H. J. Eisler, D. W. Pohl, M. Pavius, P. Fluckiger, P. Gasser and B. Hecht, "Bow-tie optical antenna probes for single-emitter scanning near-field optical microscopy," Nanotechology 18, 125506-1-125506-4 (2005).
  17. T. H. Taminiau, R. J. Moerland, F. B. Segerink, L. Kuipers and N. F. V. Hulst, Nano Lett. "λ/4 Resonance of an optical monopole antenna probed by single molecule fluorescence," Nano Lett. 7, 28-33 (2007).
    [CrossRef] [PubMed]
  18. J. Aizpurua, G. W. Bryant, L. J. Richter, F. J. Garcia de Abajo, B. K. Kelley and T. Mallouk, "Optical properties of coupled metallic nanorods for field-enhanced spectroscopy," Phys. Rev. B  71, 235420-1-235420-13 (2005).
    [CrossRef]
  19. G. Schider, J. R. Krenn, A. Hohenau, H. Ditlbacher, A. Leitner, F. R. Aussenegg, W. L. Schaich, I. Puscasu, B. Monacelli and G. Boreman, "Plasmon dispersion relation of Au and Ag nanowires," Phys. Rev. B  68, 155427-1-155427-4 (2003).
    [CrossRef]
  20. I. Romero, J. Aizpurua, G. W. Bryant and F. J. Garcia de Abajo, "Plasmons in nearly touching metallic nanoparticles: singular response in the limit of touching dimmers," Opt. Express 14, 9988-9999 (2006).
    [CrossRef] [PubMed]
  21. M. A. Suarez, T. Grosjean, D. Charraut and D. Courjon, "Nanoring as a magnetic or electric field sensitive nano-antenna for near-field optics applications," Opt. Commun. 270, 447-454 (2007).
    [CrossRef]
  22. K. S. Kunz, R. J. Luebbers, The Finite Difference Time Domain Method for Electrodynamics, CRC Press, Florida, 1998.
  23. W. L. Stutzman and G. A. Thiele, Antenna Theory and Design (Second Edition), Wiley, New York, 1995.
  24. L. Novotny, "Effective wavelength scaling for optical antennas," Phys. Rev. Lett. 98, 266802-1-266802-4 (2007).
    [CrossRef]
  25. A. V. Goncharenko, H.-C. Chang, J.-K. Wang, "Electric near-field enhancing properties of a finite-size metal conical nano-tip," Ultramicroscopy 107, 151-157 (2007).
    [CrossRef]
  26. A. Sundaramurthy, K. B. Crozier, G. S. Kino, D. P. Fromm, P. J. Schuck and W. E. Moerner, "Field enhancement and gap-dependent resonance in a system of two opposing tip-to-tip Au nanotriangles," Phys. Rev. B  72, 165409-1-165409-6 (2005).
    [CrossRef]

2007 (3)

T. H. Taminiau, R. J. Moerland, F. B. Segerink, L. Kuipers and N. F. V. Hulst, Nano Lett. "λ/4 Resonance of an optical monopole antenna probed by single molecule fluorescence," Nano Lett. 7, 28-33 (2007).
[CrossRef] [PubMed]

M. A. Suarez, T. Grosjean, D. Charraut and D. Courjon, "Nanoring as a magnetic or electric field sensitive nano-antenna for near-field optics applications," Opt. Commun. 270, 447-454 (2007).
[CrossRef]

A. V. Goncharenko, H.-C. Chang, J.-K. Wang, "Electric near-field enhancing properties of a finite-size metal conical nano-tip," Ultramicroscopy 107, 151-157 (2007).
[CrossRef]

2006 (3)

I. Romero, J. Aizpurua, G. W. Bryant and F. J. Garcia de Abajo, "Plasmons in nearly touching metallic nanoparticles: singular response in the limit of touching dimmers," Opt. Express 14, 9988-9999 (2006).
[CrossRef] [PubMed]

A. Sundaramurthy, P. J. Schuck, N. R. Conley, D. P. Fromm, G. S. Kino and W. E. Moerner, "Toward nanometer-scale optical photolithography: utilizing the near-field of bow-tie optical nanoantennas," Nano Lett. 6, 355-360 (2006).
[CrossRef] [PubMed]

L. Wang, S. M. Uppuluri, E. X. Jin and X. F. Xu, "Nanolithography using high transmission nanoscale bowtie apertures," Nano Lett. 6, 361-364 (2006).
[CrossRef] [PubMed]

2005 (2)

J. J. Greffet, "Nanoantennas for light emission," Science 308, 1561-1563 (2005).
[CrossRef] [PubMed]

P. Muhlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht and D. W. Pohl, "Resonant optical antennas," Science 308, 1607-1609 (2005).
[CrossRef] [PubMed]

2004 (2)

D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino and W. E. Moerner, "Gap-dependent optical coupling of single "bowtie" nanoantennas resonant in the visible," Nano Lett. 4, 957-961 (2004).
[CrossRef]

A. J. Haes, W. P. Hall, L. Chang, W. L. Klein and R. P. Van Duyne, "A localized Surface Plasmon resonance biosensor: first steps toward an assay for Alzheimer's disease," Nano Lett. 4, 1029-1034 (2004).
[CrossRef]

2003 (1)

K. B. Crozier, A. Sundaramurthy, G. S. Kino and C. F. Quate, "Optical antennas: resonators for local field enhancement," J. Appl. Phys. 94, 4632-4642 (2003).
[CrossRef]

2001 (1)

S. I. Bozhevolnyi, J. Erland, K. Leosson, P. M. W. Skovgaard and J. M. Hyam, "Waveguiding in Surface Plasmon Polariton Band Gap Structures," Phys. Rev. Lett. 86, 3008-3011 (2001).
[CrossRef] [PubMed]

2000 (1)

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, "A quantum dot single-photon turnstile device," Science 290, 2282-2285 (2000).
[CrossRef] [PubMed]

1997 (1)

L. Novotny, R. X. Bian and X. S. Xie, "Theory of nanometric optical tweezers," Phys. Rev. Lett. 79, 645-648 (1997).
[CrossRef]

Aizpurua, J.

Becher, C.

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, "A quantum dot single-photon turnstile device," Science 290, 2282-2285 (2000).
[CrossRef] [PubMed]

Bian, R. X.

L. Novotny, R. X. Bian and X. S. Xie, "Theory of nanometric optical tweezers," Phys. Rev. Lett. 79, 645-648 (1997).
[CrossRef]

Bozhevolnyi, S. I.

S. I. Bozhevolnyi, J. Erland, K. Leosson, P. M. W. Skovgaard and J. M. Hyam, "Waveguiding in Surface Plasmon Polariton Band Gap Structures," Phys. Rev. Lett. 86, 3008-3011 (2001).
[CrossRef] [PubMed]

Bryant, G. W.

Chang, L.

A. J. Haes, W. P. Hall, L. Chang, W. L. Klein and R. P. Van Duyne, "A localized Surface Plasmon resonance biosensor: first steps toward an assay for Alzheimer's disease," Nano Lett. 4, 1029-1034 (2004).
[CrossRef]

Charraut, D.

M. A. Suarez, T. Grosjean, D. Charraut and D. Courjon, "Nanoring as a magnetic or electric field sensitive nano-antenna for near-field optics applications," Opt. Commun. 270, 447-454 (2007).
[CrossRef]

Conley, N. R.

A. Sundaramurthy, P. J. Schuck, N. R. Conley, D. P. Fromm, G. S. Kino and W. E. Moerner, "Toward nanometer-scale optical photolithography: utilizing the near-field of bow-tie optical nanoantennas," Nano Lett. 6, 355-360 (2006).
[CrossRef] [PubMed]

Courjon, D.

M. A. Suarez, T. Grosjean, D. Charraut and D. Courjon, "Nanoring as a magnetic or electric field sensitive nano-antenna for near-field optics applications," Opt. Commun. 270, 447-454 (2007).
[CrossRef]

Crozier, K. B.

K. B. Crozier, A. Sundaramurthy, G. S. Kino and C. F. Quate, "Optical antennas: resonators for local field enhancement," J. Appl. Phys. 94, 4632-4642 (2003).
[CrossRef]

Eisler, H. J.

P. Muhlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht and D. W. Pohl, "Resonant optical antennas," Science 308, 1607-1609 (2005).
[CrossRef] [PubMed]

Erland, J.

S. I. Bozhevolnyi, J. Erland, K. Leosson, P. M. W. Skovgaard and J. M. Hyam, "Waveguiding in Surface Plasmon Polariton Band Gap Structures," Phys. Rev. Lett. 86, 3008-3011 (2001).
[CrossRef] [PubMed]

Fromm, D. P.

A. Sundaramurthy, P. J. Schuck, N. R. Conley, D. P. Fromm, G. S. Kino and W. E. Moerner, "Toward nanometer-scale optical photolithography: utilizing the near-field of bow-tie optical nanoantennas," Nano Lett. 6, 355-360 (2006).
[CrossRef] [PubMed]

D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino and W. E. Moerner, "Gap-dependent optical coupling of single "bowtie" nanoantennas resonant in the visible," Nano Lett. 4, 957-961 (2004).
[CrossRef]

Garcia de Abajo, F. J.

Goncharenko, A. V.

A. V. Goncharenko, H.-C. Chang, J.-K. Wang, "Electric near-field enhancing properties of a finite-size metal conical nano-tip," Ultramicroscopy 107, 151-157 (2007).
[CrossRef]

Greffet, J. J.

J. J. Greffet, "Nanoantennas for light emission," Science 308, 1561-1563 (2005).
[CrossRef] [PubMed]

Grosjean, T.

M. A. Suarez, T. Grosjean, D. Charraut and D. Courjon, "Nanoring as a magnetic or electric field sensitive nano-antenna for near-field optics applications," Opt. Commun. 270, 447-454 (2007).
[CrossRef]

Haes, A. J.

A. J. Haes, W. P. Hall, L. Chang, W. L. Klein and R. P. Van Duyne, "A localized Surface Plasmon resonance biosensor: first steps toward an assay for Alzheimer's disease," Nano Lett. 4, 1029-1034 (2004).
[CrossRef]

Hall, W. P.

A. J. Haes, W. P. Hall, L. Chang, W. L. Klein and R. P. Van Duyne, "A localized Surface Plasmon resonance biosensor: first steps toward an assay for Alzheimer's disease," Nano Lett. 4, 1029-1034 (2004).
[CrossRef]

Hecht, B.

P. Muhlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht and D. W. Pohl, "Resonant optical antennas," Science 308, 1607-1609 (2005).
[CrossRef] [PubMed]

Hu, E.

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, "A quantum dot single-photon turnstile device," Science 290, 2282-2285 (2000).
[CrossRef] [PubMed]

Hulst, N. F. V.

T. H. Taminiau, R. J. Moerland, F. B. Segerink, L. Kuipers and N. F. V. Hulst, Nano Lett. "λ/4 Resonance of an optical monopole antenna probed by single molecule fluorescence," Nano Lett. 7, 28-33 (2007).
[CrossRef] [PubMed]

Hyam, J. M.

S. I. Bozhevolnyi, J. Erland, K. Leosson, P. M. W. Skovgaard and J. M. Hyam, "Waveguiding in Surface Plasmon Polariton Band Gap Structures," Phys. Rev. Lett. 86, 3008-3011 (2001).
[CrossRef] [PubMed]

Imamoglu, A.

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, "A quantum dot single-photon turnstile device," Science 290, 2282-2285 (2000).
[CrossRef] [PubMed]

Jin, E. X.

L. Wang, S. M. Uppuluri, E. X. Jin and X. F. Xu, "Nanolithography using high transmission nanoscale bowtie apertures," Nano Lett. 6, 361-364 (2006).
[CrossRef] [PubMed]

Kino, G.

D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino and W. E. Moerner, "Gap-dependent optical coupling of single "bowtie" nanoantennas resonant in the visible," Nano Lett. 4, 957-961 (2004).
[CrossRef]

Kino, G. S.

A. Sundaramurthy, P. J. Schuck, N. R. Conley, D. P. Fromm, G. S. Kino and W. E. Moerner, "Toward nanometer-scale optical photolithography: utilizing the near-field of bow-tie optical nanoantennas," Nano Lett. 6, 355-360 (2006).
[CrossRef] [PubMed]

K. B. Crozier, A. Sundaramurthy, G. S. Kino and C. F. Quate, "Optical antennas: resonators for local field enhancement," J. Appl. Phys. 94, 4632-4642 (2003).
[CrossRef]

Kiraz, A.

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, "A quantum dot single-photon turnstile device," Science 290, 2282-2285 (2000).
[CrossRef] [PubMed]

Klein, W. L.

A. J. Haes, W. P. Hall, L. Chang, W. L. Klein and R. P. Van Duyne, "A localized Surface Plasmon resonance biosensor: first steps toward an assay for Alzheimer's disease," Nano Lett. 4, 1029-1034 (2004).
[CrossRef]

Kuipers, L.

T. H. Taminiau, R. J. Moerland, F. B. Segerink, L. Kuipers and N. F. V. Hulst, Nano Lett. "λ/4 Resonance of an optical monopole antenna probed by single molecule fluorescence," Nano Lett. 7, 28-33 (2007).
[CrossRef] [PubMed]

Leosson, K.

S. I. Bozhevolnyi, J. Erland, K. Leosson, P. M. W. Skovgaard and J. M. Hyam, "Waveguiding in Surface Plasmon Polariton Band Gap Structures," Phys. Rev. Lett. 86, 3008-3011 (2001).
[CrossRef] [PubMed]

Martin, O. J. F.

P. Muhlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht and D. W. Pohl, "Resonant optical antennas," Science 308, 1607-1609 (2005).
[CrossRef] [PubMed]

Michler, P.

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, "A quantum dot single-photon turnstile device," Science 290, 2282-2285 (2000).
[CrossRef] [PubMed]

Moerland, R. J.

T. H. Taminiau, R. J. Moerland, F. B. Segerink, L. Kuipers and N. F. V. Hulst, Nano Lett. "λ/4 Resonance of an optical monopole antenna probed by single molecule fluorescence," Nano Lett. 7, 28-33 (2007).
[CrossRef] [PubMed]

Moerner, W. E.

A. Sundaramurthy, P. J. Schuck, N. R. Conley, D. P. Fromm, G. S. Kino and W. E. Moerner, "Toward nanometer-scale optical photolithography: utilizing the near-field of bow-tie optical nanoantennas," Nano Lett. 6, 355-360 (2006).
[CrossRef] [PubMed]

D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino and W. E. Moerner, "Gap-dependent optical coupling of single "bowtie" nanoantennas resonant in the visible," Nano Lett. 4, 957-961 (2004).
[CrossRef]

Muhlschlegel, P.

P. Muhlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht and D. W. Pohl, "Resonant optical antennas," Science 308, 1607-1609 (2005).
[CrossRef] [PubMed]

Novotny, L.

L. Novotny, R. X. Bian and X. S. Xie, "Theory of nanometric optical tweezers," Phys. Rev. Lett. 79, 645-648 (1997).
[CrossRef]

Petroff, P. M.

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, "A quantum dot single-photon turnstile device," Science 290, 2282-2285 (2000).
[CrossRef] [PubMed]

Pohl, D. W.

P. Muhlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht and D. W. Pohl, "Resonant optical antennas," Science 308, 1607-1609 (2005).
[CrossRef] [PubMed]

Quate, C. F.

K. B. Crozier, A. Sundaramurthy, G. S. Kino and C. F. Quate, "Optical antennas: resonators for local field enhancement," J. Appl. Phys. 94, 4632-4642 (2003).
[CrossRef]

Romero, I.

Schoenfeld, W. V.

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, "A quantum dot single-photon turnstile device," Science 290, 2282-2285 (2000).
[CrossRef] [PubMed]

Schuck, P. J.

A. Sundaramurthy, P. J. Schuck, N. R. Conley, D. P. Fromm, G. S. Kino and W. E. Moerner, "Toward nanometer-scale optical photolithography: utilizing the near-field of bow-tie optical nanoantennas," Nano Lett. 6, 355-360 (2006).
[CrossRef] [PubMed]

D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino and W. E. Moerner, "Gap-dependent optical coupling of single "bowtie" nanoantennas resonant in the visible," Nano Lett. 4, 957-961 (2004).
[CrossRef]

Segerink, F. B.

T. H. Taminiau, R. J. Moerland, F. B. Segerink, L. Kuipers and N. F. V. Hulst, Nano Lett. "λ/4 Resonance of an optical monopole antenna probed by single molecule fluorescence," Nano Lett. 7, 28-33 (2007).
[CrossRef] [PubMed]

Skovgaard, P. M. W.

S. I. Bozhevolnyi, J. Erland, K. Leosson, P. M. W. Skovgaard and J. M. Hyam, "Waveguiding in Surface Plasmon Polariton Band Gap Structures," Phys. Rev. Lett. 86, 3008-3011 (2001).
[CrossRef] [PubMed]

Suarez, M. A.

M. A. Suarez, T. Grosjean, D. Charraut and D. Courjon, "Nanoring as a magnetic or electric field sensitive nano-antenna for near-field optics applications," Opt. Commun. 270, 447-454 (2007).
[CrossRef]

Sundaramurthy, A.

A. Sundaramurthy, P. J. Schuck, N. R. Conley, D. P. Fromm, G. S. Kino and W. E. Moerner, "Toward nanometer-scale optical photolithography: utilizing the near-field of bow-tie optical nanoantennas," Nano Lett. 6, 355-360 (2006).
[CrossRef] [PubMed]

D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino and W. E. Moerner, "Gap-dependent optical coupling of single "bowtie" nanoantennas resonant in the visible," Nano Lett. 4, 957-961 (2004).
[CrossRef]

K. B. Crozier, A. Sundaramurthy, G. S. Kino and C. F. Quate, "Optical antennas: resonators for local field enhancement," J. Appl. Phys. 94, 4632-4642 (2003).
[CrossRef]

Taminiau, T. H.

T. H. Taminiau, R. J. Moerland, F. B. Segerink, L. Kuipers and N. F. V. Hulst, Nano Lett. "λ/4 Resonance of an optical monopole antenna probed by single molecule fluorescence," Nano Lett. 7, 28-33 (2007).
[CrossRef] [PubMed]

Uppuluri, S. M.

L. Wang, S. M. Uppuluri, E. X. Jin and X. F. Xu, "Nanolithography using high transmission nanoscale bowtie apertures," Nano Lett. 6, 361-364 (2006).
[CrossRef] [PubMed]

Van Duyne, R. P.

A. J. Haes, W. P. Hall, L. Chang, W. L. Klein and R. P. Van Duyne, "A localized Surface Plasmon resonance biosensor: first steps toward an assay for Alzheimer's disease," Nano Lett. 4, 1029-1034 (2004).
[CrossRef]

Wang, L.

L. Wang, S. M. Uppuluri, E. X. Jin and X. F. Xu, "Nanolithography using high transmission nanoscale bowtie apertures," Nano Lett. 6, 361-364 (2006).
[CrossRef] [PubMed]

Xie, X. S.

L. Novotny, R. X. Bian and X. S. Xie, "Theory of nanometric optical tweezers," Phys. Rev. Lett. 79, 645-648 (1997).
[CrossRef]

Xu, X. F.

L. Wang, S. M. Uppuluri, E. X. Jin and X. F. Xu, "Nanolithography using high transmission nanoscale bowtie apertures," Nano Lett. 6, 361-364 (2006).
[CrossRef] [PubMed]

Zhang, L.

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, "A quantum dot single-photon turnstile device," Science 290, 2282-2285 (2000).
[CrossRef] [PubMed]

J. Appl. Phys. (1)

K. B. Crozier, A. Sundaramurthy, G. S. Kino and C. F. Quate, "Optical antennas: resonators for local field enhancement," J. Appl. Phys. 94, 4632-4642 (2003).
[CrossRef]

Nano Lett. (5)

A. J. Haes, W. P. Hall, L. Chang, W. L. Klein and R. P. Van Duyne, "A localized Surface Plasmon resonance biosensor: first steps toward an assay for Alzheimer's disease," Nano Lett. 4, 1029-1034 (2004).
[CrossRef]

A. Sundaramurthy, P. J. Schuck, N. R. Conley, D. P. Fromm, G. S. Kino and W. E. Moerner, "Toward nanometer-scale optical photolithography: utilizing the near-field of bow-tie optical nanoantennas," Nano Lett. 6, 355-360 (2006).
[CrossRef] [PubMed]

L. Wang, S. M. Uppuluri, E. X. Jin and X. F. Xu, "Nanolithography using high transmission nanoscale bowtie apertures," Nano Lett. 6, 361-364 (2006).
[CrossRef] [PubMed]

D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino and W. E. Moerner, "Gap-dependent optical coupling of single "bowtie" nanoantennas resonant in the visible," Nano Lett. 4, 957-961 (2004).
[CrossRef]

T. H. Taminiau, R. J. Moerland, F. B. Segerink, L. Kuipers and N. F. V. Hulst, Nano Lett. "λ/4 Resonance of an optical monopole antenna probed by single molecule fluorescence," Nano Lett. 7, 28-33 (2007).
[CrossRef] [PubMed]

Opt. Commun. (1)

M. A. Suarez, T. Grosjean, D. Charraut and D. Courjon, "Nanoring as a magnetic or electric field sensitive nano-antenna for near-field optics applications," Opt. Commun. 270, 447-454 (2007).
[CrossRef]

Opt. Express (1)

Phys. Rev. Lett. (2)

S. I. Bozhevolnyi, J. Erland, K. Leosson, P. M. W. Skovgaard and J. M. Hyam, "Waveguiding in Surface Plasmon Polariton Band Gap Structures," Phys. Rev. Lett. 86, 3008-3011 (2001).
[CrossRef] [PubMed]

L. Novotny, R. X. Bian and X. S. Xie, "Theory of nanometric optical tweezers," Phys. Rev. Lett. 79, 645-648 (1997).
[CrossRef]

Science (3)

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, "A quantum dot single-photon turnstile device," Science 290, 2282-2285 (2000).
[CrossRef] [PubMed]

J. J. Greffet, "Nanoantennas for light emission," Science 308, 1561-1563 (2005).
[CrossRef] [PubMed]

P. Muhlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht and D. W. Pohl, "Resonant optical antennas," Science 308, 1607-1609 (2005).
[CrossRef] [PubMed]

Ultramicroscopy (1)

A. V. Goncharenko, H.-C. Chang, J.-K. Wang, "Electric near-field enhancing properties of a finite-size metal conical nano-tip," Ultramicroscopy 107, 151-157 (2007).
[CrossRef]

Other (12)

A. Sundaramurthy, K. B. Crozier, G. S. Kino, D. P. Fromm, P. J. Schuck and W. E. Moerner, "Field enhancement and gap-dependent resonance in a system of two opposing tip-to-tip Au nanotriangles," Phys. Rev. B  72, 165409-1-165409-6 (2005).
[CrossRef]

K. S. Kunz, R. J. Luebbers, The Finite Difference Time Domain Method for Electrodynamics, CRC Press, Florida, 1998.

W. L. Stutzman and G. A. Thiele, Antenna Theory and Design (Second Edition), Wiley, New York, 1995.

L. Novotny, "Effective wavelength scaling for optical antennas," Phys. Rev. Lett. 98, 266802-1-266802-4 (2007).
[CrossRef]

D. W. Pohl, "Near field optics seen as an antenna problem," in Near-field optics: principles and applications: the second Asia-Pacific Workshop on Near Field Optics, X. Zhu and M. Ohtsu, ed., (World Scientific, Singapore, 2000), pp. 9-21.

A. Hartschuh, E. J. Sanchez, X. S. Xie and L. Novotny, "High-resolution near-field Raman microscopy of single-walled carbon nanotubes," Phys. Rev. Lett. 90, 095503-1-095503-4 (2003).
[CrossRef]

E. Cubukcu, E. A. Kort, K. B. Crozier and F. Capasso, "Plasmonic laser antenna," Appl. Phys. Lett. 89, 093120-1-093120-3 (2006).
[CrossRef]

J. Aizpurua, G. W. Bryant, L. J. Richter, F. J. Garcia de Abajo, B. K. Kelley and T. Mallouk, "Optical properties of coupled metallic nanorods for field-enhanced spectroscopy," Phys. Rev. B  71, 235420-1-235420-13 (2005).
[CrossRef]

G. Schider, J. R. Krenn, A. Hohenau, H. Ditlbacher, A. Leitner, F. R. Aussenegg, W. L. Schaich, I. Puscasu, B. Monacelli and G. Boreman, "Plasmon dispersion relation of Au and Ag nanowires," Phys. Rev. B  68, 155427-1-155427-4 (2003).
[CrossRef]

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino and W. E. Moerner, "Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas" Phys. Rev. Lett.  94, 017402-1-017402-4 (2005).
[CrossRef]

J. N. Farahani, D. W. Pohl, H. J. Eisler, and B. Hecht, "Single quantum dot coupled to a scanning optical antenna: a tunable superemitter," Phys. Rev. Lett.  95, 017402-1-017402-4 (2005).
[CrossRef]

J. N. Farahani, H. J. Eisler, D. W. Pohl, M. Pavius, P. Fluckiger, P. Gasser and B. Hecht, "Bow-tie optical antenna probes for single-emitter scanning near-field optical microscopy," Nanotechology 18, 125506-1-125506-4 (2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

(a). Top view and (b). side view of the V-shaped antenna; (c). The geometrical model of a full-wave dipole antenna; (d). The geometry model of a modified full-wave dipole antenna.

Fig. 2.
Fig. 2.

(a). Electric field distribution in the z=0 plane for the V-shaped antenna with an open angle of 120°; (b). Electric field distribution along the line y=0 nm and y=10 nm in the z=0 plane. The FWHMs in (b) are 25 nm and 28 nm respectively. (c). Near-zone field scattering spectra for the V-shaped antennas with an open angle of 120°. The antenna lengths L are 70 nm (red curve) and 230 nm (black curve) respectively.

Fig. 3.
Fig. 3.

(a). Geometrical model of the bow-tie antenna; (b). Near-zone field scattering spectra for the bow-tie antennas with an open angle of 120°. The antenna lengths L are 84 nm (black curve) and 262 nm (red curve), respectively. (c) and (d) show the electric field distributions of the y=0 plane for the dipolar excitation and quadrupolar excitation, respectively. The value 0 dB equals a field value of 76.3 V/m.

Fig. 4.
Fig. 4.

Electric field values at the center of the bow-tie antenna gap

Tables (2)

Tables Icon

Table 1 Simulation results of the dipolar excitation of the V-shaped antenna at different open angles.

Tables Icon

Table 2 Simulation results of the quadrupolar excitation of the V-shaped antenna at different open angles.

Metrics