Abstract

The electric field enhancing properties of the V-shaped optical resonant antenna are studied by using finite-difference time-domain method. Both dipolar and quadrupolar modes can be effectively excited and strong electric field enhancement in the gap of the V-shaped antenna is found. Compared with full-wave dipole antenna, the V-shaped antenna has a greater electric field enhancement, which can be attributed to the higher radiation directivity and the smaller curvature radius of the antenna arms. The more asymmetrical structure also contributes to the efficient quadrupolar excitation. The electric field enhancement of the V-shaped antenna has different dependences on the open angle of the V-shaped antenna for the dipolar and quadrupolar excitation. We obtained stronger electric field enhancing properties by using V-shaped bow-tie antennas, especially for the quadrupolar excitation. The V-shaped antenna and the bow-tie antenna can realize strongly localized and enhanced field and thus are well suitable for the use of near-field optics applications.

© 2007 Optical Society of America

Full Article  |  PDF Article
Related Articles
Enhanced directional excitation and emission of single emitters by a nano-optical Yagi-Uda antenna

Tim H. Taminiau, Fernando D. Stefani, and Niek F. van Hulst
Opt. Express 16(14) 10858-10866 (2008)

Near-field imaging of optical antenna modes in the mid-infrared

Robert L. Olmon, Peter M. Krenz, Andrew C. Jones, Glenn D. Boreman, and Markus B. Raschke
Opt. Express 16(25) 20295-20305 (2008)

Multi-wavelength mid-infrared plasmonic antennas with single nanoscale focal point

Romain Blanchard, Svetlana V. Boriskina, Patrice Genevet, Mikhail A. Kats, Jean-Philippe Tetienne, Nanfang Yu, Marlan O. Scully, Luca Dal Negro, and Federico Capasso
Opt. Express 19(22) 22113-22124 (2011)

References

  • View by:
  • |
  • |
  • |

  1. A. Hartschuh, E. J. Sanchez, X. S. Xie, and L. Novotny, “High-resolution near-field Raman microscopy of single-walled carbon nanotubes,” Phys. Rev. Lett. 90, 095503-1–095503-4 (2003).
    [Crossref]
  2. A. J. Haes, W. P. Hall, L. Chang, W. L. Klein, and R. P. Van Duyne, “A localized Surface Plasmon resonance biosensor: first steps toward an assay for Alzheimer’s disease,” Nano Lett. 4, 1029–1034 (2004).
    [Crossref]
  3. L. Novotny, R. X. Bian, and X. S. Xie, “Theory of nanometric optical tweezers,” Phys. Rev. Lett. 79, 645–648 (1997).
    [Crossref]
  4. E. Cubukcu, E. A. Kort, K. B. Crozier, and F. Capasso, “Plasmonic laser antenna,” Appl. Phys. Lett. 89, 093120-1–093120-3 (2006).
    [Crossref]
  5. P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, “A quantum dot single-photon turnstile device,” Science 290, 2282–2285 (2000).
    [Crossref] [PubMed]
  6. S. I. Bozhevolnyi, J. Erland, K. Leosson, P. M. W. Skovgaard, and J. M. Hyam, “Waveguiding in Surface Plasmon Polariton Band Gap Structures,” Phys. Rev. Lett. 86, 3008–3011 (2001).
    [Crossref] [PubMed]
  7. K. B. Crozier, A. Sundaramurthy, G. S. Kino, and C. F. Quate, “Optical antennas: resonators for local field enhancement,” J. Appl. Phys. 94, 4632–4642 (2003).
    [Crossref]
  8. D. W. Pohl, “Near field optics seen as an antenna problem,” in Near-field optics: principles and applications: the second Asia-Pacific Workshop on Near Field Optics, Xing Zhu and Motoichi Ohtsu, ed., (World Scientific, Singapore, 2000), pp. 9–21.
  9. J. J. Greffet, “Nanoantennas for light emission,” Science 308, 1561–1563 (2005).
    [Crossref] [PubMed]
  10. P. Muhlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308, 1607–1609 (2005).
    [Crossref] [PubMed]
  11. D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, and W. E. Moerner, “Gap-dependent optical coupling of single “bowtie” nanoantennas resonant in the visible,” Nano Lett. 4, 957–961 (2004).
    [Crossref]
  12. P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas” Phys. Rev. Lett. 94, 017402-1–017402-4 (2005).
    [Crossref]
  13. A. Sundaramurthy, P. J. Schuck, N. R. Conley, D. P. Fromm, G. S. Kino, and W. E. Moerner, “Toward nanometer-scale optical photolithography: utilizing the near-field of bow-tie optical nanoantennas,” Nano Lett. 6, 355–360 (2006).
    [Crossref] [PubMed]
  14. L. Wang, S. M. Uppuluri, E. X. Jin, and X. F. Xu, “Nanolithography using high transmission nanoscale bowtie apertures,” Nano Lett. 6, 361–364 (2006).
    [Crossref] [PubMed]
  15. J. N. Farahani, D. W. Pohl, H. J. Eisler, and B. Hecht, “Single quantum dot coupled to a scanning optical antenna: a tunable superemitter,” Phys. Rev. Lett. 95, 017402-1–017402-4 (2005).
    [Crossref]
  16. J. N. Farahani, H. J. Eisler, D. W. Pohl, M. Pavius, P. Fluckiger, P. Gasser, and B. Hecht, “Bow-tie optical antenna probes for single-emitter scanning near-field optical microscopy,” Nanotechology 18, 125506-1–125506-4 (2005).
  17. T. H. Taminiau, R. J. Moerland, F. B. Segerink, L. Kuipers, and N. F. V. Hulst, Nano Lett. “λ/4 Resonance of an optical monopole antenna probed by single molecule fluorescence,” Nano Lett. 7, 28–33 (2007).
    [Crossref] [PubMed]
  18. J. Aizpurua, G. W. Bryant, L. J. Richter, F. J. Garcia de Abajo, B. K. Kelley, and T. Mallouk, “Optical properties of coupled metallic nanorods for field-enhanced spectroscopy,” Phys. Rev. B 71, 235420-1–235420-13 (2005).
    [Crossref]
  19. G. Schider, J. R. Krenn, A. Hohenau, H. Ditlbacher, A. Leitner, F. R. Aussenegg, W. L. Schaich, I. Puscasu, B. Monacelli, and G. Boreman, “Plasmon dispersion relation of Au and Ag nanowires,” Phys. Rev. B 68, 155427-1–155427-4 (2003).
    [Crossref]
  20. I. Romero, J. Aizpurua, G. W. Bryant, and F. J. Garcia de Abajo, “Plasmons in nearly touching metallic nanoparticles: singular response in the limit of touching dimmers,” Opt. Express 14, 9988–9999 (2006).
    [Crossref] [PubMed]
  21. M. A. Suarez, T. Grosjean, D. Charraut, and D. Courjon, “Nanoring as a magnetic or electric field sensitive nano-antenna for near-field optics applications,” Opt. Commun. 270, 447–454 (2007).
    [Crossref]
  22. K. S. Kunz and R. J. Luebbers, The Finite Difference Time Domain Method for Electrodynamics, CRC Press, Florida, 1998.
  23. W. L. Stutzman and G. A. Thiele, Antenna Theory and Design (Second Edition), Wiley, New York, 1995.
  24. L. Novotny, “Effective wavelength scaling for optical antennas,” Phys. Rev. Lett. 98, 266802-1–266802-4 (2007).
    [Crossref]
  25. A. V. Goncharenko, Hung-Chih Chang, and Juen-Kai Wang, “Electric near-field enhancing properties of a finite-size metal conical nano-tip,” Ultramicroscopy 107, 151–157 (2007).
    [Crossref]
  26. A. Sundaramurthy, K. B. Crozier, G. S. Kino, D. P. Fromm, P. J. Schuck, and W. E. Moerner, “Field enhancement and gap-dependent resonance in a system of two opposing tip-to-tip Au nanotriangles,” Phys. Rev. B 72, 165409-1–165409-6 (2005).
    [Crossref]

2007 (4)

T. H. Taminiau, R. J. Moerland, F. B. Segerink, L. Kuipers, and N. F. V. Hulst, Nano Lett. “λ/4 Resonance of an optical monopole antenna probed by single molecule fluorescence,” Nano Lett. 7, 28–33 (2007).
[Crossref] [PubMed]

M. A. Suarez, T. Grosjean, D. Charraut, and D. Courjon, “Nanoring as a magnetic or electric field sensitive nano-antenna for near-field optics applications,” Opt. Commun. 270, 447–454 (2007).
[Crossref]

L. Novotny, “Effective wavelength scaling for optical antennas,” Phys. Rev. Lett. 98, 266802-1–266802-4 (2007).
[Crossref]

A. V. Goncharenko, Hung-Chih Chang, and Juen-Kai Wang, “Electric near-field enhancing properties of a finite-size metal conical nano-tip,” Ultramicroscopy 107, 151–157 (2007).
[Crossref]

2006 (4)

I. Romero, J. Aizpurua, G. W. Bryant, and F. J. Garcia de Abajo, “Plasmons in nearly touching metallic nanoparticles: singular response in the limit of touching dimmers,” Opt. Express 14, 9988–9999 (2006).
[Crossref] [PubMed]

A. Sundaramurthy, P. J. Schuck, N. R. Conley, D. P. Fromm, G. S. Kino, and W. E. Moerner, “Toward nanometer-scale optical photolithography: utilizing the near-field of bow-tie optical nanoantennas,” Nano Lett. 6, 355–360 (2006).
[Crossref] [PubMed]

L. Wang, S. M. Uppuluri, E. X. Jin, and X. F. Xu, “Nanolithography using high transmission nanoscale bowtie apertures,” Nano Lett. 6, 361–364 (2006).
[Crossref] [PubMed]

E. Cubukcu, E. A. Kort, K. B. Crozier, and F. Capasso, “Plasmonic laser antenna,” Appl. Phys. Lett. 89, 093120-1–093120-3 (2006).
[Crossref]

2005 (7)

J. J. Greffet, “Nanoantennas for light emission,” Science 308, 1561–1563 (2005).
[Crossref] [PubMed]

P. Muhlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308, 1607–1609 (2005).
[Crossref] [PubMed]

J. N. Farahani, D. W. Pohl, H. J. Eisler, and B. Hecht, “Single quantum dot coupled to a scanning optical antenna: a tunable superemitter,” Phys. Rev. Lett. 95, 017402-1–017402-4 (2005).
[Crossref]

J. N. Farahani, H. J. Eisler, D. W. Pohl, M. Pavius, P. Fluckiger, P. Gasser, and B. Hecht, “Bow-tie optical antenna probes for single-emitter scanning near-field optical microscopy,” Nanotechology 18, 125506-1–125506-4 (2005).

J. Aizpurua, G. W. Bryant, L. J. Richter, F. J. Garcia de Abajo, B. K. Kelley, and T. Mallouk, “Optical properties of coupled metallic nanorods for field-enhanced spectroscopy,” Phys. Rev. B 71, 235420-1–235420-13 (2005).
[Crossref]

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas” Phys. Rev. Lett. 94, 017402-1–017402-4 (2005).
[Crossref]

A. Sundaramurthy, K. B. Crozier, G. S. Kino, D. P. Fromm, P. J. Schuck, and W. E. Moerner, “Field enhancement and gap-dependent resonance in a system of two opposing tip-to-tip Au nanotriangles,” Phys. Rev. B 72, 165409-1–165409-6 (2005).
[Crossref]

2004 (2)

D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, and W. E. Moerner, “Gap-dependent optical coupling of single “bowtie” nanoantennas resonant in the visible,” Nano Lett. 4, 957–961 (2004).
[Crossref]

A. J. Haes, W. P. Hall, L. Chang, W. L. Klein, and R. P. Van Duyne, “A localized Surface Plasmon resonance biosensor: first steps toward an assay for Alzheimer’s disease,” Nano Lett. 4, 1029–1034 (2004).
[Crossref]

2003 (3)

A. Hartschuh, E. J. Sanchez, X. S. Xie, and L. Novotny, “High-resolution near-field Raman microscopy of single-walled carbon nanotubes,” Phys. Rev. Lett. 90, 095503-1–095503-4 (2003).
[Crossref]

K. B. Crozier, A. Sundaramurthy, G. S. Kino, and C. F. Quate, “Optical antennas: resonators for local field enhancement,” J. Appl. Phys. 94, 4632–4642 (2003).
[Crossref]

G. Schider, J. R. Krenn, A. Hohenau, H. Ditlbacher, A. Leitner, F. R. Aussenegg, W. L. Schaich, I. Puscasu, B. Monacelli, and G. Boreman, “Plasmon dispersion relation of Au and Ag nanowires,” Phys. Rev. B 68, 155427-1–155427-4 (2003).
[Crossref]

2001 (1)

S. I. Bozhevolnyi, J. Erland, K. Leosson, P. M. W. Skovgaard, and J. M. Hyam, “Waveguiding in Surface Plasmon Polariton Band Gap Structures,” Phys. Rev. Lett. 86, 3008–3011 (2001).
[Crossref] [PubMed]

2000 (1)

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, “A quantum dot single-photon turnstile device,” Science 290, 2282–2285 (2000).
[Crossref] [PubMed]

1997 (1)

L. Novotny, R. X. Bian, and X. S. Xie, “Theory of nanometric optical tweezers,” Phys. Rev. Lett. 79, 645–648 (1997).
[Crossref]

Aizpurua, J.

I. Romero, J. Aizpurua, G. W. Bryant, and F. J. Garcia de Abajo, “Plasmons in nearly touching metallic nanoparticles: singular response in the limit of touching dimmers,” Opt. Express 14, 9988–9999 (2006).
[Crossref] [PubMed]

J. Aizpurua, G. W. Bryant, L. J. Richter, F. J. Garcia de Abajo, B. K. Kelley, and T. Mallouk, “Optical properties of coupled metallic nanorods for field-enhanced spectroscopy,” Phys. Rev. B 71, 235420-1–235420-13 (2005).
[Crossref]

Aussenegg, F. R.

G. Schider, J. R. Krenn, A. Hohenau, H. Ditlbacher, A. Leitner, F. R. Aussenegg, W. L. Schaich, I. Puscasu, B. Monacelli, and G. Boreman, “Plasmon dispersion relation of Au and Ag nanowires,” Phys. Rev. B 68, 155427-1–155427-4 (2003).
[Crossref]

Becher, C.

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, “A quantum dot single-photon turnstile device,” Science 290, 2282–2285 (2000).
[Crossref] [PubMed]

Bian, R. X.

L. Novotny, R. X. Bian, and X. S. Xie, “Theory of nanometric optical tweezers,” Phys. Rev. Lett. 79, 645–648 (1997).
[Crossref]

Boreman, G.

G. Schider, J. R. Krenn, A. Hohenau, H. Ditlbacher, A. Leitner, F. R. Aussenegg, W. L. Schaich, I. Puscasu, B. Monacelli, and G. Boreman, “Plasmon dispersion relation of Au and Ag nanowires,” Phys. Rev. B 68, 155427-1–155427-4 (2003).
[Crossref]

Bozhevolnyi, S. I.

S. I. Bozhevolnyi, J. Erland, K. Leosson, P. M. W. Skovgaard, and J. M. Hyam, “Waveguiding in Surface Plasmon Polariton Band Gap Structures,” Phys. Rev. Lett. 86, 3008–3011 (2001).
[Crossref] [PubMed]

Bryant, G. W.

I. Romero, J. Aizpurua, G. W. Bryant, and F. J. Garcia de Abajo, “Plasmons in nearly touching metallic nanoparticles: singular response in the limit of touching dimmers,” Opt. Express 14, 9988–9999 (2006).
[Crossref] [PubMed]

J. Aizpurua, G. W. Bryant, L. J. Richter, F. J. Garcia de Abajo, B. K. Kelley, and T. Mallouk, “Optical properties of coupled metallic nanorods for field-enhanced spectroscopy,” Phys. Rev. B 71, 235420-1–235420-13 (2005).
[Crossref]

Capasso, F.

E. Cubukcu, E. A. Kort, K. B. Crozier, and F. Capasso, “Plasmonic laser antenna,” Appl. Phys. Lett. 89, 093120-1–093120-3 (2006).
[Crossref]

Chang, Hung-Chih

A. V. Goncharenko, Hung-Chih Chang, and Juen-Kai Wang, “Electric near-field enhancing properties of a finite-size metal conical nano-tip,” Ultramicroscopy 107, 151–157 (2007).
[Crossref]

Chang, L.

A. J. Haes, W. P. Hall, L. Chang, W. L. Klein, and R. P. Van Duyne, “A localized Surface Plasmon resonance biosensor: first steps toward an assay for Alzheimer’s disease,” Nano Lett. 4, 1029–1034 (2004).
[Crossref]

Charraut, D.

M. A. Suarez, T. Grosjean, D. Charraut, and D. Courjon, “Nanoring as a magnetic or electric field sensitive nano-antenna for near-field optics applications,” Opt. Commun. 270, 447–454 (2007).
[Crossref]

Conley, N. R.

A. Sundaramurthy, P. J. Schuck, N. R. Conley, D. P. Fromm, G. S. Kino, and W. E. Moerner, “Toward nanometer-scale optical photolithography: utilizing the near-field of bow-tie optical nanoantennas,” Nano Lett. 6, 355–360 (2006).
[Crossref] [PubMed]

Courjon, D.

M. A. Suarez, T. Grosjean, D. Charraut, and D. Courjon, “Nanoring as a magnetic or electric field sensitive nano-antenna for near-field optics applications,” Opt. Commun. 270, 447–454 (2007).
[Crossref]

Crozier, K. B.

E. Cubukcu, E. A. Kort, K. B. Crozier, and F. Capasso, “Plasmonic laser antenna,” Appl. Phys. Lett. 89, 093120-1–093120-3 (2006).
[Crossref]

A. Sundaramurthy, K. B. Crozier, G. S. Kino, D. P. Fromm, P. J. Schuck, and W. E. Moerner, “Field enhancement and gap-dependent resonance in a system of two opposing tip-to-tip Au nanotriangles,” Phys. Rev. B 72, 165409-1–165409-6 (2005).
[Crossref]

K. B. Crozier, A. Sundaramurthy, G. S. Kino, and C. F. Quate, “Optical antennas: resonators for local field enhancement,” J. Appl. Phys. 94, 4632–4642 (2003).
[Crossref]

Cubukcu, E.

E. Cubukcu, E. A. Kort, K. B. Crozier, and F. Capasso, “Plasmonic laser antenna,” Appl. Phys. Lett. 89, 093120-1–093120-3 (2006).
[Crossref]

Ditlbacher, H.

G. Schider, J. R. Krenn, A. Hohenau, H. Ditlbacher, A. Leitner, F. R. Aussenegg, W. L. Schaich, I. Puscasu, B. Monacelli, and G. Boreman, “Plasmon dispersion relation of Au and Ag nanowires,” Phys. Rev. B 68, 155427-1–155427-4 (2003).
[Crossref]

Eisler, H. J.

J. N. Farahani, H. J. Eisler, D. W. Pohl, M. Pavius, P. Fluckiger, P. Gasser, and B. Hecht, “Bow-tie optical antenna probes for single-emitter scanning near-field optical microscopy,” Nanotechology 18, 125506-1–125506-4 (2005).

J. N. Farahani, D. W. Pohl, H. J. Eisler, and B. Hecht, “Single quantum dot coupled to a scanning optical antenna: a tunable superemitter,” Phys. Rev. Lett. 95, 017402-1–017402-4 (2005).
[Crossref]

P. Muhlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308, 1607–1609 (2005).
[Crossref] [PubMed]

Erland, J.

S. I. Bozhevolnyi, J. Erland, K. Leosson, P. M. W. Skovgaard, and J. M. Hyam, “Waveguiding in Surface Plasmon Polariton Band Gap Structures,” Phys. Rev. Lett. 86, 3008–3011 (2001).
[Crossref] [PubMed]

Farahani, J. N.

J. N. Farahani, H. J. Eisler, D. W. Pohl, M. Pavius, P. Fluckiger, P. Gasser, and B. Hecht, “Bow-tie optical antenna probes for single-emitter scanning near-field optical microscopy,” Nanotechology 18, 125506-1–125506-4 (2005).

J. N. Farahani, D. W. Pohl, H. J. Eisler, and B. Hecht, “Single quantum dot coupled to a scanning optical antenna: a tunable superemitter,” Phys. Rev. Lett. 95, 017402-1–017402-4 (2005).
[Crossref]

Fluckiger, P.

J. N. Farahani, H. J. Eisler, D. W. Pohl, M. Pavius, P. Fluckiger, P. Gasser, and B. Hecht, “Bow-tie optical antenna probes for single-emitter scanning near-field optical microscopy,” Nanotechology 18, 125506-1–125506-4 (2005).

Fromm, D. P.

A. Sundaramurthy, P. J. Schuck, N. R. Conley, D. P. Fromm, G. S. Kino, and W. E. Moerner, “Toward nanometer-scale optical photolithography: utilizing the near-field of bow-tie optical nanoantennas,” Nano Lett. 6, 355–360 (2006).
[Crossref] [PubMed]

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas” Phys. Rev. Lett. 94, 017402-1–017402-4 (2005).
[Crossref]

A. Sundaramurthy, K. B. Crozier, G. S. Kino, D. P. Fromm, P. J. Schuck, and W. E. Moerner, “Field enhancement and gap-dependent resonance in a system of two opposing tip-to-tip Au nanotriangles,” Phys. Rev. B 72, 165409-1–165409-6 (2005).
[Crossref]

D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, and W. E. Moerner, “Gap-dependent optical coupling of single “bowtie” nanoantennas resonant in the visible,” Nano Lett. 4, 957–961 (2004).
[Crossref]

Garcia de Abajo, F. J.

I. Romero, J. Aizpurua, G. W. Bryant, and F. J. Garcia de Abajo, “Plasmons in nearly touching metallic nanoparticles: singular response in the limit of touching dimmers,” Opt. Express 14, 9988–9999 (2006).
[Crossref] [PubMed]

J. Aizpurua, G. W. Bryant, L. J. Richter, F. J. Garcia de Abajo, B. K. Kelley, and T. Mallouk, “Optical properties of coupled metallic nanorods for field-enhanced spectroscopy,” Phys. Rev. B 71, 235420-1–235420-13 (2005).
[Crossref]

Gasser, P.

J. N. Farahani, H. J. Eisler, D. W. Pohl, M. Pavius, P. Fluckiger, P. Gasser, and B. Hecht, “Bow-tie optical antenna probes for single-emitter scanning near-field optical microscopy,” Nanotechology 18, 125506-1–125506-4 (2005).

Goncharenko, A. V.

A. V. Goncharenko, Hung-Chih Chang, and Juen-Kai Wang, “Electric near-field enhancing properties of a finite-size metal conical nano-tip,” Ultramicroscopy 107, 151–157 (2007).
[Crossref]

Greffet, J. J.

J. J. Greffet, “Nanoantennas for light emission,” Science 308, 1561–1563 (2005).
[Crossref] [PubMed]

Grosjean, T.

M. A. Suarez, T. Grosjean, D. Charraut, and D. Courjon, “Nanoring as a magnetic or electric field sensitive nano-antenna for near-field optics applications,” Opt. Commun. 270, 447–454 (2007).
[Crossref]

Haes, A. J.

A. J. Haes, W. P. Hall, L. Chang, W. L. Klein, and R. P. Van Duyne, “A localized Surface Plasmon resonance biosensor: first steps toward an assay for Alzheimer’s disease,” Nano Lett. 4, 1029–1034 (2004).
[Crossref]

Hall, W. P.

A. J. Haes, W. P. Hall, L. Chang, W. L. Klein, and R. P. Van Duyne, “A localized Surface Plasmon resonance biosensor: first steps toward an assay for Alzheimer’s disease,” Nano Lett. 4, 1029–1034 (2004).
[Crossref]

Hartschuh, A.

A. Hartschuh, E. J. Sanchez, X. S. Xie, and L. Novotny, “High-resolution near-field Raman microscopy of single-walled carbon nanotubes,” Phys. Rev. Lett. 90, 095503-1–095503-4 (2003).
[Crossref]

Hecht, B.

P. Muhlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308, 1607–1609 (2005).
[Crossref] [PubMed]

J. N. Farahani, H. J. Eisler, D. W. Pohl, M. Pavius, P. Fluckiger, P. Gasser, and B. Hecht, “Bow-tie optical antenna probes for single-emitter scanning near-field optical microscopy,” Nanotechology 18, 125506-1–125506-4 (2005).

J. N. Farahani, D. W. Pohl, H. J. Eisler, and B. Hecht, “Single quantum dot coupled to a scanning optical antenna: a tunable superemitter,” Phys. Rev. Lett. 95, 017402-1–017402-4 (2005).
[Crossref]

Hohenau, A.

G. Schider, J. R. Krenn, A. Hohenau, H. Ditlbacher, A. Leitner, F. R. Aussenegg, W. L. Schaich, I. Puscasu, B. Monacelli, and G. Boreman, “Plasmon dispersion relation of Au and Ag nanowires,” Phys. Rev. B 68, 155427-1–155427-4 (2003).
[Crossref]

Hu, E.

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, “A quantum dot single-photon turnstile device,” Science 290, 2282–2285 (2000).
[Crossref] [PubMed]

Hulst, N. F. V.

T. H. Taminiau, R. J. Moerland, F. B. Segerink, L. Kuipers, and N. F. V. Hulst, Nano Lett. “λ/4 Resonance of an optical monopole antenna probed by single molecule fluorescence,” Nano Lett. 7, 28–33 (2007).
[Crossref] [PubMed]

Hyam, J. M.

S. I. Bozhevolnyi, J. Erland, K. Leosson, P. M. W. Skovgaard, and J. M. Hyam, “Waveguiding in Surface Plasmon Polariton Band Gap Structures,” Phys. Rev. Lett. 86, 3008–3011 (2001).
[Crossref] [PubMed]

Imamoglu, A.

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, “A quantum dot single-photon turnstile device,” Science 290, 2282–2285 (2000).
[Crossref] [PubMed]

Jin, E. X.

L. Wang, S. M. Uppuluri, E. X. Jin, and X. F. Xu, “Nanolithography using high transmission nanoscale bowtie apertures,” Nano Lett. 6, 361–364 (2006).
[Crossref] [PubMed]

Kelley, B. K.

J. Aizpurua, G. W. Bryant, L. J. Richter, F. J. Garcia de Abajo, B. K. Kelley, and T. Mallouk, “Optical properties of coupled metallic nanorods for field-enhanced spectroscopy,” Phys. Rev. B 71, 235420-1–235420-13 (2005).
[Crossref]

Kino, G.

D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, and W. E. Moerner, “Gap-dependent optical coupling of single “bowtie” nanoantennas resonant in the visible,” Nano Lett. 4, 957–961 (2004).
[Crossref]

Kino, G. S.

A. Sundaramurthy, P. J. Schuck, N. R. Conley, D. P. Fromm, G. S. Kino, and W. E. Moerner, “Toward nanometer-scale optical photolithography: utilizing the near-field of bow-tie optical nanoantennas,” Nano Lett. 6, 355–360 (2006).
[Crossref] [PubMed]

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas” Phys. Rev. Lett. 94, 017402-1–017402-4 (2005).
[Crossref]

A. Sundaramurthy, K. B. Crozier, G. S. Kino, D. P. Fromm, P. J. Schuck, and W. E. Moerner, “Field enhancement and gap-dependent resonance in a system of two opposing tip-to-tip Au nanotriangles,” Phys. Rev. B 72, 165409-1–165409-6 (2005).
[Crossref]

K. B. Crozier, A. Sundaramurthy, G. S. Kino, and C. F. Quate, “Optical antennas: resonators for local field enhancement,” J. Appl. Phys. 94, 4632–4642 (2003).
[Crossref]

Kiraz, A.

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, “A quantum dot single-photon turnstile device,” Science 290, 2282–2285 (2000).
[Crossref] [PubMed]

Klein, W. L.

A. J. Haes, W. P. Hall, L. Chang, W. L. Klein, and R. P. Van Duyne, “A localized Surface Plasmon resonance biosensor: first steps toward an assay for Alzheimer’s disease,” Nano Lett. 4, 1029–1034 (2004).
[Crossref]

Kort, E. A.

E. Cubukcu, E. A. Kort, K. B. Crozier, and F. Capasso, “Plasmonic laser antenna,” Appl. Phys. Lett. 89, 093120-1–093120-3 (2006).
[Crossref]

Krenn, J. R.

G. Schider, J. R. Krenn, A. Hohenau, H. Ditlbacher, A. Leitner, F. R. Aussenegg, W. L. Schaich, I. Puscasu, B. Monacelli, and G. Boreman, “Plasmon dispersion relation of Au and Ag nanowires,” Phys. Rev. B 68, 155427-1–155427-4 (2003).
[Crossref]

Kuipers, L.

T. H. Taminiau, R. J. Moerland, F. B. Segerink, L. Kuipers, and N. F. V. Hulst, Nano Lett. “λ/4 Resonance of an optical monopole antenna probed by single molecule fluorescence,” Nano Lett. 7, 28–33 (2007).
[Crossref] [PubMed]

Kunz, K. S.

K. S. Kunz and R. J. Luebbers, The Finite Difference Time Domain Method for Electrodynamics, CRC Press, Florida, 1998.

Leitner, A.

G. Schider, J. R. Krenn, A. Hohenau, H. Ditlbacher, A. Leitner, F. R. Aussenegg, W. L. Schaich, I. Puscasu, B. Monacelli, and G. Boreman, “Plasmon dispersion relation of Au and Ag nanowires,” Phys. Rev. B 68, 155427-1–155427-4 (2003).
[Crossref]

Leosson, K.

S. I. Bozhevolnyi, J. Erland, K. Leosson, P. M. W. Skovgaard, and J. M. Hyam, “Waveguiding in Surface Plasmon Polariton Band Gap Structures,” Phys. Rev. Lett. 86, 3008–3011 (2001).
[Crossref] [PubMed]

Luebbers, R. J.

K. S. Kunz and R. J. Luebbers, The Finite Difference Time Domain Method for Electrodynamics, CRC Press, Florida, 1998.

Mallouk, T.

J. Aizpurua, G. W. Bryant, L. J. Richter, F. J. Garcia de Abajo, B. K. Kelley, and T. Mallouk, “Optical properties of coupled metallic nanorods for field-enhanced spectroscopy,” Phys. Rev. B 71, 235420-1–235420-13 (2005).
[Crossref]

Martin, O. J. F.

P. Muhlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308, 1607–1609 (2005).
[Crossref] [PubMed]

Michler, P.

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, “A quantum dot single-photon turnstile device,” Science 290, 2282–2285 (2000).
[Crossref] [PubMed]

Moerland, R. J.

T. H. Taminiau, R. J. Moerland, F. B. Segerink, L. Kuipers, and N. F. V. Hulst, Nano Lett. “λ/4 Resonance of an optical monopole antenna probed by single molecule fluorescence,” Nano Lett. 7, 28–33 (2007).
[Crossref] [PubMed]

Moerner, W. E.

A. Sundaramurthy, P. J. Schuck, N. R. Conley, D. P. Fromm, G. S. Kino, and W. E. Moerner, “Toward nanometer-scale optical photolithography: utilizing the near-field of bow-tie optical nanoantennas,” Nano Lett. 6, 355–360 (2006).
[Crossref] [PubMed]

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas” Phys. Rev. Lett. 94, 017402-1–017402-4 (2005).
[Crossref]

A. Sundaramurthy, K. B. Crozier, G. S. Kino, D. P. Fromm, P. J. Schuck, and W. E. Moerner, “Field enhancement and gap-dependent resonance in a system of two opposing tip-to-tip Au nanotriangles,” Phys. Rev. B 72, 165409-1–165409-6 (2005).
[Crossref]

D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, and W. E. Moerner, “Gap-dependent optical coupling of single “bowtie” nanoantennas resonant in the visible,” Nano Lett. 4, 957–961 (2004).
[Crossref]

Monacelli, B.

G. Schider, J. R. Krenn, A. Hohenau, H. Ditlbacher, A. Leitner, F. R. Aussenegg, W. L. Schaich, I. Puscasu, B. Monacelli, and G. Boreman, “Plasmon dispersion relation of Au and Ag nanowires,” Phys. Rev. B 68, 155427-1–155427-4 (2003).
[Crossref]

Muhlschlegel, P.

P. Muhlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308, 1607–1609 (2005).
[Crossref] [PubMed]

Novotny, L.

L. Novotny, “Effective wavelength scaling for optical antennas,” Phys. Rev. Lett. 98, 266802-1–266802-4 (2007).
[Crossref]

A. Hartschuh, E. J. Sanchez, X. S. Xie, and L. Novotny, “High-resolution near-field Raman microscopy of single-walled carbon nanotubes,” Phys. Rev. Lett. 90, 095503-1–095503-4 (2003).
[Crossref]

L. Novotny, R. X. Bian, and X. S. Xie, “Theory of nanometric optical tweezers,” Phys. Rev. Lett. 79, 645–648 (1997).
[Crossref]

Pavius, M.

J. N. Farahani, H. J. Eisler, D. W. Pohl, M. Pavius, P. Fluckiger, P. Gasser, and B. Hecht, “Bow-tie optical antenna probes for single-emitter scanning near-field optical microscopy,” Nanotechology 18, 125506-1–125506-4 (2005).

Petroff, P. M.

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, “A quantum dot single-photon turnstile device,” Science 290, 2282–2285 (2000).
[Crossref] [PubMed]

Pohl, D. W.

P. Muhlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308, 1607–1609 (2005).
[Crossref] [PubMed]

J. N. Farahani, D. W. Pohl, H. J. Eisler, and B. Hecht, “Single quantum dot coupled to a scanning optical antenna: a tunable superemitter,” Phys. Rev. Lett. 95, 017402-1–017402-4 (2005).
[Crossref]

J. N. Farahani, H. J. Eisler, D. W. Pohl, M. Pavius, P. Fluckiger, P. Gasser, and B. Hecht, “Bow-tie optical antenna probes for single-emitter scanning near-field optical microscopy,” Nanotechology 18, 125506-1–125506-4 (2005).

D. W. Pohl, “Near field optics seen as an antenna problem,” in Near-field optics: principles and applications: the second Asia-Pacific Workshop on Near Field Optics, Xing Zhu and Motoichi Ohtsu, ed., (World Scientific, Singapore, 2000), pp. 9–21.

Puscasu, I.

G. Schider, J. R. Krenn, A. Hohenau, H. Ditlbacher, A. Leitner, F. R. Aussenegg, W. L. Schaich, I. Puscasu, B. Monacelli, and G. Boreman, “Plasmon dispersion relation of Au and Ag nanowires,” Phys. Rev. B 68, 155427-1–155427-4 (2003).
[Crossref]

Quate, C. F.

K. B. Crozier, A. Sundaramurthy, G. S. Kino, and C. F. Quate, “Optical antennas: resonators for local field enhancement,” J. Appl. Phys. 94, 4632–4642 (2003).
[Crossref]

Richter, L. J.

J. Aizpurua, G. W. Bryant, L. J. Richter, F. J. Garcia de Abajo, B. K. Kelley, and T. Mallouk, “Optical properties of coupled metallic nanorods for field-enhanced spectroscopy,” Phys. Rev. B 71, 235420-1–235420-13 (2005).
[Crossref]

Romero, I.

Sanchez, E. J.

A. Hartschuh, E. J. Sanchez, X. S. Xie, and L. Novotny, “High-resolution near-field Raman microscopy of single-walled carbon nanotubes,” Phys. Rev. Lett. 90, 095503-1–095503-4 (2003).
[Crossref]

Schaich, W. L.

G. Schider, J. R. Krenn, A. Hohenau, H. Ditlbacher, A. Leitner, F. R. Aussenegg, W. L. Schaich, I. Puscasu, B. Monacelli, and G. Boreman, “Plasmon dispersion relation of Au and Ag nanowires,” Phys. Rev. B 68, 155427-1–155427-4 (2003).
[Crossref]

Schider, G.

G. Schider, J. R. Krenn, A. Hohenau, H. Ditlbacher, A. Leitner, F. R. Aussenegg, W. L. Schaich, I. Puscasu, B. Monacelli, and G. Boreman, “Plasmon dispersion relation of Au and Ag nanowires,” Phys. Rev. B 68, 155427-1–155427-4 (2003).
[Crossref]

Schoenfeld, W. V.

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, “A quantum dot single-photon turnstile device,” Science 290, 2282–2285 (2000).
[Crossref] [PubMed]

Schuck, P. J.

A. Sundaramurthy, P. J. Schuck, N. R. Conley, D. P. Fromm, G. S. Kino, and W. E. Moerner, “Toward nanometer-scale optical photolithography: utilizing the near-field of bow-tie optical nanoantennas,” Nano Lett. 6, 355–360 (2006).
[Crossref] [PubMed]

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas” Phys. Rev. Lett. 94, 017402-1–017402-4 (2005).
[Crossref]

A. Sundaramurthy, K. B. Crozier, G. S. Kino, D. P. Fromm, P. J. Schuck, and W. E. Moerner, “Field enhancement and gap-dependent resonance in a system of two opposing tip-to-tip Au nanotriangles,” Phys. Rev. B 72, 165409-1–165409-6 (2005).
[Crossref]

D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, and W. E. Moerner, “Gap-dependent optical coupling of single “bowtie” nanoantennas resonant in the visible,” Nano Lett. 4, 957–961 (2004).
[Crossref]

Segerink, F. B.

T. H. Taminiau, R. J. Moerland, F. B. Segerink, L. Kuipers, and N. F. V. Hulst, Nano Lett. “λ/4 Resonance of an optical monopole antenna probed by single molecule fluorescence,” Nano Lett. 7, 28–33 (2007).
[Crossref] [PubMed]

Skovgaard, P. M. W.

S. I. Bozhevolnyi, J. Erland, K. Leosson, P. M. W. Skovgaard, and J. M. Hyam, “Waveguiding in Surface Plasmon Polariton Band Gap Structures,” Phys. Rev. Lett. 86, 3008–3011 (2001).
[Crossref] [PubMed]

Stutzman, W. L.

W. L. Stutzman and G. A. Thiele, Antenna Theory and Design (Second Edition), Wiley, New York, 1995.

Suarez, M. A.

M. A. Suarez, T. Grosjean, D. Charraut, and D. Courjon, “Nanoring as a magnetic or electric field sensitive nano-antenna for near-field optics applications,” Opt. Commun. 270, 447–454 (2007).
[Crossref]

Sundaramurthy, A.

A. Sundaramurthy, P. J. Schuck, N. R. Conley, D. P. Fromm, G. S. Kino, and W. E. Moerner, “Toward nanometer-scale optical photolithography: utilizing the near-field of bow-tie optical nanoantennas,” Nano Lett. 6, 355–360 (2006).
[Crossref] [PubMed]

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas” Phys. Rev. Lett. 94, 017402-1–017402-4 (2005).
[Crossref]

A. Sundaramurthy, K. B. Crozier, G. S. Kino, D. P. Fromm, P. J. Schuck, and W. E. Moerner, “Field enhancement and gap-dependent resonance in a system of two opposing tip-to-tip Au nanotriangles,” Phys. Rev. B 72, 165409-1–165409-6 (2005).
[Crossref]

D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, and W. E. Moerner, “Gap-dependent optical coupling of single “bowtie” nanoantennas resonant in the visible,” Nano Lett. 4, 957–961 (2004).
[Crossref]

K. B. Crozier, A. Sundaramurthy, G. S. Kino, and C. F. Quate, “Optical antennas: resonators for local field enhancement,” J. Appl. Phys. 94, 4632–4642 (2003).
[Crossref]

Taminiau, T. H.

T. H. Taminiau, R. J. Moerland, F. B. Segerink, L. Kuipers, and N. F. V. Hulst, Nano Lett. “λ/4 Resonance of an optical monopole antenna probed by single molecule fluorescence,” Nano Lett. 7, 28–33 (2007).
[Crossref] [PubMed]

Thiele, G. A.

W. L. Stutzman and G. A. Thiele, Antenna Theory and Design (Second Edition), Wiley, New York, 1995.

Uppuluri, S. M.

L. Wang, S. M. Uppuluri, E. X. Jin, and X. F. Xu, “Nanolithography using high transmission nanoscale bowtie apertures,” Nano Lett. 6, 361–364 (2006).
[Crossref] [PubMed]

Van Duyne, R. P.

A. J. Haes, W. P. Hall, L. Chang, W. L. Klein, and R. P. Van Duyne, “A localized Surface Plasmon resonance biosensor: first steps toward an assay for Alzheimer’s disease,” Nano Lett. 4, 1029–1034 (2004).
[Crossref]

Wang, Juen-Kai

A. V. Goncharenko, Hung-Chih Chang, and Juen-Kai Wang, “Electric near-field enhancing properties of a finite-size metal conical nano-tip,” Ultramicroscopy 107, 151–157 (2007).
[Crossref]

Wang, L.

L. Wang, S. M. Uppuluri, E. X. Jin, and X. F. Xu, “Nanolithography using high transmission nanoscale bowtie apertures,” Nano Lett. 6, 361–364 (2006).
[Crossref] [PubMed]

Xie, X. S.

A. Hartschuh, E. J. Sanchez, X. S. Xie, and L. Novotny, “High-resolution near-field Raman microscopy of single-walled carbon nanotubes,” Phys. Rev. Lett. 90, 095503-1–095503-4 (2003).
[Crossref]

L. Novotny, R. X. Bian, and X. S. Xie, “Theory of nanometric optical tweezers,” Phys. Rev. Lett. 79, 645–648 (1997).
[Crossref]

Xu, X. F.

L. Wang, S. M. Uppuluri, E. X. Jin, and X. F. Xu, “Nanolithography using high transmission nanoscale bowtie apertures,” Nano Lett. 6, 361–364 (2006).
[Crossref] [PubMed]

Zhang, L.

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, “A quantum dot single-photon turnstile device,” Science 290, 2282–2285 (2000).
[Crossref] [PubMed]

Appl. Phys. Lett. (1)

E. Cubukcu, E. A. Kort, K. B. Crozier, and F. Capasso, “Plasmonic laser antenna,” Appl. Phys. Lett. 89, 093120-1–093120-3 (2006).
[Crossref]

J. Appl. Phys. (1)

K. B. Crozier, A. Sundaramurthy, G. S. Kino, and C. F. Quate, “Optical antennas: resonators for local field enhancement,” J. Appl. Phys. 94, 4632–4642 (2003).
[Crossref]

Nano Lett. (5)

A. J. Haes, W. P. Hall, L. Chang, W. L. Klein, and R. P. Van Duyne, “A localized Surface Plasmon resonance biosensor: first steps toward an assay for Alzheimer’s disease,” Nano Lett. 4, 1029–1034 (2004).
[Crossref]

D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, and W. E. Moerner, “Gap-dependent optical coupling of single “bowtie” nanoantennas resonant in the visible,” Nano Lett. 4, 957–961 (2004).
[Crossref]

A. Sundaramurthy, P. J. Schuck, N. R. Conley, D. P. Fromm, G. S. Kino, and W. E. Moerner, “Toward nanometer-scale optical photolithography: utilizing the near-field of bow-tie optical nanoantennas,” Nano Lett. 6, 355–360 (2006).
[Crossref] [PubMed]

L. Wang, S. M. Uppuluri, E. X. Jin, and X. F. Xu, “Nanolithography using high transmission nanoscale bowtie apertures,” Nano Lett. 6, 361–364 (2006).
[Crossref] [PubMed]

T. H. Taminiau, R. J. Moerland, F. B. Segerink, L. Kuipers, and N. F. V. Hulst, Nano Lett. “λ/4 Resonance of an optical monopole antenna probed by single molecule fluorescence,” Nano Lett. 7, 28–33 (2007).
[Crossref] [PubMed]

Nanotechology (1)

J. N. Farahani, H. J. Eisler, D. W. Pohl, M. Pavius, P. Fluckiger, P. Gasser, and B. Hecht, “Bow-tie optical antenna probes for single-emitter scanning near-field optical microscopy,” Nanotechology 18, 125506-1–125506-4 (2005).

Opt. Commun. (1)

M. A. Suarez, T. Grosjean, D. Charraut, and D. Courjon, “Nanoring as a magnetic or electric field sensitive nano-antenna for near-field optics applications,” Opt. Commun. 270, 447–454 (2007).
[Crossref]

Opt. Express (1)

Phys. Rev. B (3)

A. Sundaramurthy, K. B. Crozier, G. S. Kino, D. P. Fromm, P. J. Schuck, and W. E. Moerner, “Field enhancement and gap-dependent resonance in a system of two opposing tip-to-tip Au nanotriangles,” Phys. Rev. B 72, 165409-1–165409-6 (2005).
[Crossref]

J. Aizpurua, G. W. Bryant, L. J. Richter, F. J. Garcia de Abajo, B. K. Kelley, and T. Mallouk, “Optical properties of coupled metallic nanorods for field-enhanced spectroscopy,” Phys. Rev. B 71, 235420-1–235420-13 (2005).
[Crossref]

G. Schider, J. R. Krenn, A. Hohenau, H. Ditlbacher, A. Leitner, F. R. Aussenegg, W. L. Schaich, I. Puscasu, B. Monacelli, and G. Boreman, “Plasmon dispersion relation of Au and Ag nanowires,” Phys. Rev. B 68, 155427-1–155427-4 (2003).
[Crossref]

Phys. Rev. Lett. (6)

J. N. Farahani, D. W. Pohl, H. J. Eisler, and B. Hecht, “Single quantum dot coupled to a scanning optical antenna: a tunable superemitter,” Phys. Rev. Lett. 95, 017402-1–017402-4 (2005).
[Crossref]

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas” Phys. Rev. Lett. 94, 017402-1–017402-4 (2005).
[Crossref]

L. Novotny, R. X. Bian, and X. S. Xie, “Theory of nanometric optical tweezers,” Phys. Rev. Lett. 79, 645–648 (1997).
[Crossref]

A. Hartschuh, E. J. Sanchez, X. S. Xie, and L. Novotny, “High-resolution near-field Raman microscopy of single-walled carbon nanotubes,” Phys. Rev. Lett. 90, 095503-1–095503-4 (2003).
[Crossref]

S. I. Bozhevolnyi, J. Erland, K. Leosson, P. M. W. Skovgaard, and J. M. Hyam, “Waveguiding in Surface Plasmon Polariton Band Gap Structures,” Phys. Rev. Lett. 86, 3008–3011 (2001).
[Crossref] [PubMed]

L. Novotny, “Effective wavelength scaling for optical antennas,” Phys. Rev. Lett. 98, 266802-1–266802-4 (2007).
[Crossref]

Science (3)

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, “A quantum dot single-photon turnstile device,” Science 290, 2282–2285 (2000).
[Crossref] [PubMed]

J. J. Greffet, “Nanoantennas for light emission,” Science 308, 1561–1563 (2005).
[Crossref] [PubMed]

P. Muhlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308, 1607–1609 (2005).
[Crossref] [PubMed]

Ultramicroscopy (1)

A. V. Goncharenko, Hung-Chih Chang, and Juen-Kai Wang, “Electric near-field enhancing properties of a finite-size metal conical nano-tip,” Ultramicroscopy 107, 151–157 (2007).
[Crossref]

Other (3)

K. S. Kunz and R. J. Luebbers, The Finite Difference Time Domain Method for Electrodynamics, CRC Press, Florida, 1998.

W. L. Stutzman and G. A. Thiele, Antenna Theory and Design (Second Edition), Wiley, New York, 1995.

D. W. Pohl, “Near field optics seen as an antenna problem,” in Near-field optics: principles and applications: the second Asia-Pacific Workshop on Near Field Optics, Xing Zhu and Motoichi Ohtsu, ed., (World Scientific, Singapore, 2000), pp. 9–21.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

(a). Top view and (b). side view of the V-shaped antenna; (c). The geometrical model of a full-wave dipole antenna; (d). The geometry model of a modified full-wave dipole antenna.

Fig. 2.
Fig. 2.

(a). Electric field distribution in the z=0 plane for the V-shaped antenna with an open angle of 120°; (b). Electric field distribution along the line y=0 nm and y=10 nm in the z=0 plane. The FWHMs in (b) are 25 nm and 28 nm respectively. (c). Near-zone field scattering spectra for the V-shaped antennas with an open angle of 120°. The antenna lengths L are 70 nm (red curve) and 230 nm (black curve) respectively.

Fig. 3.
Fig. 3.

(a). Geometrical model of the bow-tie antenna; (b). Near-zone field scattering spectra for the bow-tie antennas with an open angle of 120°. The antenna lengths L are 84 nm (black curve) and 262 nm (red curve), respectively. (c) and (d) show the electric field distributions of the y=0 plane for the dipolar excitation and quadrupolar excitation, respectively. The value 0 dB equals a field value of 76.3 V/m.

Fig. 4.
Fig. 4.

Electric field values at the center of the bow-tie antenna gap

Tables (2)

Tables Icon

Table 1 Simulation results of the dipolar excitation of the V-shaped antenna at different open angles.

Tables Icon

Table 2 Simulation results of the quadrupolar excitation of the V-shaped antenna at different open angles.

Metrics