Abstract

We combine photonic crystal and quantum cascade band engineering to create an in-plane laser at terahertz frequency. We demonstrate that such photonic crystal lasers strongly improve the performances of terahertz quantum cascade material in terms of threshold current, waveguide losses, emission mode selection, tunability and maximum operation temperature. The laser operates in a slow-light regime between the M saddle point and K band-edge in reciprocal lattice. Coarse frequency control of half of a terahertz is achieved by lithographically tuning the photonic crystal period. Thanks to field assisted gain shift and cavity pulling, the single mode emission is continuously tuned over 30 GHz.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, "Quantum cascade laser," Science 264, 553-556 (1994).
    [CrossRef] [PubMed]
  2. B. S. Williams, "Terahertz quantum-cascade lasers," Nat. Photonics 1, 517-525 (2007).
    [CrossRef]
  3. R. Kohler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, "Terahertz semiconductor-heterostructure laser," Nature 417, 156-159 (2002).
    [CrossRef] [PubMed]
  4. B. S. Williams, S. Kumar, Q. Hu, and J. L. Reno, "Operation of terahertz quantum-cascade lasers at 164 K in pulsed mode and at 117 K in continuous-wave mode," Opt. Express 13, 3331-3339 (2005).
    [CrossRef] [PubMed]
  5. L. Mahler, R. Kohler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, D. A. Ritchie, and A. G. Davies, "Single-mode operation of terahertz quantum cascade lasers with distributed feedback resonators," Appl. Phys. Lett. 84, 5446-5448 (2004).
    [CrossRef]
  6. L. Ajili, J. Faist, H. Beere, D. Ritchie, G. Davies, and E. Linfield, "Loss-coupled distributed feedback far-infrared quantum cascade lasers," Electron. Lett. 41, 419-421 (2005).
    [CrossRef]
  7. S. Kumar, B. S. Williams, Q. Qin, A. W. M. Lee, Q. Hu, and J. L. Reno, "Surface-emitting distributed feedback terahertz quantum-cascade lasers in metal-metal waveguides," Opt. Express 15,113-128 (2007).
    [CrossRef] [PubMed]
  8. O. Demichel, L. Mahler, T. Losco, C. Mauro, R. Green, J. H. Xu, A. Tredicucci, F. Beltram, H. E. Beere, D. A. Ritchie, and V. Tamosiunas, "Surface plasmon photonic structures in terahertz quantum cascade lasers," Opt. Express 14, 5335-5345 (2006).
    [CrossRef] [PubMed]
  9. L. A. Dunbar, R. Houdre, G. Scalari, L. Sirigu, M. Giovannini, and J. Faist, "Small optical volume terahertz emitting microdisk quantum cascade lasers," Appl. Phys. Lett. 90, 141114 (2007).
    [CrossRef]
  10. D. W. Prather, S. Y. Shi, J. Murakowski, G. J. Schneider, A. Sharkawy, C. H. Chen, and B. L. Miao, "Photonic crystal structures and applications: Perspective, overview, and development," IEEE J. Sel. Top. Quantum Electron. 12, 1416-1437 (2006).
    [CrossRef]
  11. O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O'Brien, P. D. Dapkus, and I. Kim, "Two-dimensional photonic band-gap defect mode laser," Science 284, 1819-1821 (1999).
    [CrossRef] [PubMed]
  12. H. G. Park, S. H. Kim, S. H. Kwon, Y. G. Ju, J. K. Yang, J. H. Baek, S. B. Kim, and Y. H. Lee, "Electrically driven single-cell photonic crystal laser," Science 305, 1444-1447 (2004).
    [CrossRef] [PubMed]
  13. R. Colombelli, K. Srinivasan, M. Troccoli, O. Painter, C. F. Gmachl, D. M. Tennant, A. M. Sergent, D. L. Sivco, A. Y. Cho, and F. Capasso, "Quantum cascade surface-emitting photonic crystal laser," Science 302, 1374-1377 (2003).
    [CrossRef] [PubMed]
  14. J. P. Dowling, M. Scalora, M. J. Bloemer, and C. M. Bowden, "The Photonic Band-Edge Laser - a New Approach to Gain Enhancement," J. Appl. Phys. 75, 1896-1899 (1994).
    [CrossRef]
  15. M. Meier, A. Mekis, A. Dodabalapur, A. Timko, R. E. Slusher, J. D. Joannopoulos, and O. Nalamasu, "Laser action from two-dimensional distributed feedback in photonic crystals," Appl. Phys. Lett. 74, 7-9 (1999).
    [CrossRef]
  16. H. Y. Ryu, S. H. Kwon, Y. J. Lee, Y. H. Lee, and J. S. Kim, "Very-low-threshold photonic band-edge lasers from free-standing triangular photonic crystal slabs," Appl. Phys. Lett. 80, 3476-3478 (2002).
    [CrossRef]
  17. M. Bahriz, V. Moreau, R. Colombelli, O. Crisafulli, and O. Painter, "Design of mid-IR and THz quantum cascade laser cavities with complete TM photonic bandgap," Opt. Express 15, 5948-5965 (2007).
    [CrossRef] [PubMed]
  18. K. Inoue, M. Sasada, J. Kawamata, K. Sakoda, and J. W. Haus, "A two-dimensional photonic crystal laser," Jpn. J. Appl. Phys. 38, L157-L159 (1999).
    [CrossRef]
  19. M. Ibanescu, E. J. Reed, and J. D. Joannopoulos, "Enhanced photonic band-gap confinement via van hove saddle point singularities," Phys. Rev. Lett. 96, 033904 (2006).
    [CrossRef] [PubMed]
  20. S. Nojima, "Optical-gain enhancement in two-dimensional active photonic crystals," J. Appl. Phys. 90, 545-551 (2001).
    [CrossRef]
  21. L. A. Dunbar, V. Moreau, R. Ferrini, R. Houdre, L. Sirigu, G. Scalari, M. Giovannini, N. Hoyler, and J. Faist, "Design, fabrication and optical characterisation of quantum cascade lasers at terahertz frequencies using photonic crystal reflectors," Opt. Express 13, 8960-8968 (2005).
    [CrossRef] [PubMed]
  22. A. Benz, G. Fasching, C. Deutsch, A. M. Andrews, K. Unterrainer, P. Klang, W. Schrenk, and G. Strasser, "Terahertz photonic crystal resonators in double-metal waveguides," Opt. Express 15, 12418-12424 (2007).
    [CrossRef] [PubMed]
  23. B. S. Williams, S. Kumar, H. Callebaut, Q. Hu, and J. L. Reno, "Terahertz quantum-cascade laser at lambda approximate to 100 μm using metal waveguide for mode confinement," Appl. Phys. Lett. 83, 2124-2126 (2003).
    [CrossRef]
  24. S. Kohen, B. S. Williams, and Q. Hu, "Electromagnetic modeling of terahertz quantum cascade laser waveguides and resonators," J. Appl. Phys. 97, 053106 (2005).
    [CrossRef]
  25. G. Scalari, N. Hoyler, M. Giovannini, and J. Faist, "Terahertz bound-to-continuum quantum-cascade lasers based on optical-phonon scattering extraction," Appl. Phys. Lett. 86, 181101 (2005).
    [CrossRef]

2007 (5)

2006 (3)

M. Ibanescu, E. J. Reed, and J. D. Joannopoulos, "Enhanced photonic band-gap confinement via van hove saddle point singularities," Phys. Rev. Lett. 96, 033904 (2006).
[CrossRef] [PubMed]

D. W. Prather, S. Y. Shi, J. Murakowski, G. J. Schneider, A. Sharkawy, C. H. Chen, and B. L. Miao, "Photonic crystal structures and applications: Perspective, overview, and development," IEEE J. Sel. Top. Quantum Electron. 12, 1416-1437 (2006).
[CrossRef]

O. Demichel, L. Mahler, T. Losco, C. Mauro, R. Green, J. H. Xu, A. Tredicucci, F. Beltram, H. E. Beere, D. A. Ritchie, and V. Tamosiunas, "Surface plasmon photonic structures in terahertz quantum cascade lasers," Opt. Express 14, 5335-5345 (2006).
[CrossRef] [PubMed]

2005 (5)

L. Ajili, J. Faist, H. Beere, D. Ritchie, G. Davies, and E. Linfield, "Loss-coupled distributed feedback far-infrared quantum cascade lasers," Electron. Lett. 41, 419-421 (2005).
[CrossRef]

B. S. Williams, S. Kumar, Q. Hu, and J. L. Reno, "Operation of terahertz quantum-cascade lasers at 164 K in pulsed mode and at 117 K in continuous-wave mode," Opt. Express 13, 3331-3339 (2005).
[CrossRef] [PubMed]

S. Kohen, B. S. Williams, and Q. Hu, "Electromagnetic modeling of terahertz quantum cascade laser waveguides and resonators," J. Appl. Phys. 97, 053106 (2005).
[CrossRef]

G. Scalari, N. Hoyler, M. Giovannini, and J. Faist, "Terahertz bound-to-continuum quantum-cascade lasers based on optical-phonon scattering extraction," Appl. Phys. Lett. 86, 181101 (2005).
[CrossRef]

L. A. Dunbar, V. Moreau, R. Ferrini, R. Houdre, L. Sirigu, G. Scalari, M. Giovannini, N. Hoyler, and J. Faist, "Design, fabrication and optical characterisation of quantum cascade lasers at terahertz frequencies using photonic crystal reflectors," Opt. Express 13, 8960-8968 (2005).
[CrossRef] [PubMed]

2004 (2)

L. Mahler, R. Kohler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, D. A. Ritchie, and A. G. Davies, "Single-mode operation of terahertz quantum cascade lasers with distributed feedback resonators," Appl. Phys. Lett. 84, 5446-5448 (2004).
[CrossRef]

H. G. Park, S. H. Kim, S. H. Kwon, Y. G. Ju, J. K. Yang, J. H. Baek, S. B. Kim, and Y. H. Lee, "Electrically driven single-cell photonic crystal laser," Science 305, 1444-1447 (2004).
[CrossRef] [PubMed]

2003 (2)

R. Colombelli, K. Srinivasan, M. Troccoli, O. Painter, C. F. Gmachl, D. M. Tennant, A. M. Sergent, D. L. Sivco, A. Y. Cho, and F. Capasso, "Quantum cascade surface-emitting photonic crystal laser," Science 302, 1374-1377 (2003).
[CrossRef] [PubMed]

B. S. Williams, S. Kumar, H. Callebaut, Q. Hu, and J. L. Reno, "Terahertz quantum-cascade laser at lambda approximate to 100 μm using metal waveguide for mode confinement," Appl. Phys. Lett. 83, 2124-2126 (2003).
[CrossRef]

2002 (2)

H. Y. Ryu, S. H. Kwon, Y. J. Lee, Y. H. Lee, and J. S. Kim, "Very-low-threshold photonic band-edge lasers from free-standing triangular photonic crystal slabs," Appl. Phys. Lett. 80, 3476-3478 (2002).
[CrossRef]

R. Kohler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, "Terahertz semiconductor-heterostructure laser," Nature 417, 156-159 (2002).
[CrossRef] [PubMed]

2001 (1)

S. Nojima, "Optical-gain enhancement in two-dimensional active photonic crystals," J. Appl. Phys. 90, 545-551 (2001).
[CrossRef]

1999 (2)

M. Meier, A. Mekis, A. Dodabalapur, A. Timko, R. E. Slusher, J. D. Joannopoulos, and O. Nalamasu, "Laser action from two-dimensional distributed feedback in photonic crystals," Appl. Phys. Lett. 74, 7-9 (1999).
[CrossRef]

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O'Brien, P. D. Dapkus, and I. Kim, "Two-dimensional photonic band-gap defect mode laser," Science 284, 1819-1821 (1999).
[CrossRef] [PubMed]

1994 (2)

J. P. Dowling, M. Scalora, M. J. Bloemer, and C. M. Bowden, "The Photonic Band-Edge Laser - a New Approach to Gain Enhancement," J. Appl. Phys. 75, 1896-1899 (1994).
[CrossRef]

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, "Quantum cascade laser," Science 264, 553-556 (1994).
[CrossRef] [PubMed]

Ajili, L.

L. Ajili, J. Faist, H. Beere, D. Ritchie, G. Davies, and E. Linfield, "Loss-coupled distributed feedback far-infrared quantum cascade lasers," Electron. Lett. 41, 419-421 (2005).
[CrossRef]

Andrews, A. M.

Baek, J. H.

H. G. Park, S. H. Kim, S. H. Kwon, Y. G. Ju, J. K. Yang, J. H. Baek, S. B. Kim, and Y. H. Lee, "Electrically driven single-cell photonic crystal laser," Science 305, 1444-1447 (2004).
[CrossRef] [PubMed]

Bahriz, M.

Beere, H.

L. Ajili, J. Faist, H. Beere, D. Ritchie, G. Davies, and E. Linfield, "Loss-coupled distributed feedback far-infrared quantum cascade lasers," Electron. Lett. 41, 419-421 (2005).
[CrossRef]

Beere, H. E.

O. Demichel, L. Mahler, T. Losco, C. Mauro, R. Green, J. H. Xu, A. Tredicucci, F. Beltram, H. E. Beere, D. A. Ritchie, and V. Tamosiunas, "Surface plasmon photonic structures in terahertz quantum cascade lasers," Opt. Express 14, 5335-5345 (2006).
[CrossRef] [PubMed]

L. Mahler, R. Kohler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, D. A. Ritchie, and A. G. Davies, "Single-mode operation of terahertz quantum cascade lasers with distributed feedback resonators," Appl. Phys. Lett. 84, 5446-5448 (2004).
[CrossRef]

R. Kohler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, "Terahertz semiconductor-heterostructure laser," Nature 417, 156-159 (2002).
[CrossRef] [PubMed]

Beltram, F.

O. Demichel, L. Mahler, T. Losco, C. Mauro, R. Green, J. H. Xu, A. Tredicucci, F. Beltram, H. E. Beere, D. A. Ritchie, and V. Tamosiunas, "Surface plasmon photonic structures in terahertz quantum cascade lasers," Opt. Express 14, 5335-5345 (2006).
[CrossRef] [PubMed]

L. Mahler, R. Kohler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, D. A. Ritchie, and A. G. Davies, "Single-mode operation of terahertz quantum cascade lasers with distributed feedback resonators," Appl. Phys. Lett. 84, 5446-5448 (2004).
[CrossRef]

R. Kohler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, "Terahertz semiconductor-heterostructure laser," Nature 417, 156-159 (2002).
[CrossRef] [PubMed]

Benz, A.

Bloemer, M. J.

J. P. Dowling, M. Scalora, M. J. Bloemer, and C. M. Bowden, "The Photonic Band-Edge Laser - a New Approach to Gain Enhancement," J. Appl. Phys. 75, 1896-1899 (1994).
[CrossRef]

Bowden, C. M.

J. P. Dowling, M. Scalora, M. J. Bloemer, and C. M. Bowden, "The Photonic Band-Edge Laser - a New Approach to Gain Enhancement," J. Appl. Phys. 75, 1896-1899 (1994).
[CrossRef]

Callebaut, H.

B. S. Williams, S. Kumar, H. Callebaut, Q. Hu, and J. L. Reno, "Terahertz quantum-cascade laser at lambda approximate to 100 μm using metal waveguide for mode confinement," Appl. Phys. Lett. 83, 2124-2126 (2003).
[CrossRef]

Capasso, F.

R. Colombelli, K. Srinivasan, M. Troccoli, O. Painter, C. F. Gmachl, D. M. Tennant, A. M. Sergent, D. L. Sivco, A. Y. Cho, and F. Capasso, "Quantum cascade surface-emitting photonic crystal laser," Science 302, 1374-1377 (2003).
[CrossRef] [PubMed]

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, "Quantum cascade laser," Science 264, 553-556 (1994).
[CrossRef] [PubMed]

Chen, C. H.

D. W. Prather, S. Y. Shi, J. Murakowski, G. J. Schneider, A. Sharkawy, C. H. Chen, and B. L. Miao, "Photonic crystal structures and applications: Perspective, overview, and development," IEEE J. Sel. Top. Quantum Electron. 12, 1416-1437 (2006).
[CrossRef]

Cho, A. Y.

R. Colombelli, K. Srinivasan, M. Troccoli, O. Painter, C. F. Gmachl, D. M. Tennant, A. M. Sergent, D. L. Sivco, A. Y. Cho, and F. Capasso, "Quantum cascade surface-emitting photonic crystal laser," Science 302, 1374-1377 (2003).
[CrossRef] [PubMed]

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, "Quantum cascade laser," Science 264, 553-556 (1994).
[CrossRef] [PubMed]

Colombelli, R.

M. Bahriz, V. Moreau, R. Colombelli, O. Crisafulli, and O. Painter, "Design of mid-IR and THz quantum cascade laser cavities with complete TM photonic bandgap," Opt. Express 15, 5948-5965 (2007).
[CrossRef] [PubMed]

R. Colombelli, K. Srinivasan, M. Troccoli, O. Painter, C. F. Gmachl, D. M. Tennant, A. M. Sergent, D. L. Sivco, A. Y. Cho, and F. Capasso, "Quantum cascade surface-emitting photonic crystal laser," Science 302, 1374-1377 (2003).
[CrossRef] [PubMed]

Crisafulli, O.

Dapkus, P. D.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O'Brien, P. D. Dapkus, and I. Kim, "Two-dimensional photonic band-gap defect mode laser," Science 284, 1819-1821 (1999).
[CrossRef] [PubMed]

Davies, A. G.

L. Mahler, R. Kohler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, D. A. Ritchie, and A. G. Davies, "Single-mode operation of terahertz quantum cascade lasers with distributed feedback resonators," Appl. Phys. Lett. 84, 5446-5448 (2004).
[CrossRef]

R. Kohler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, "Terahertz semiconductor-heterostructure laser," Nature 417, 156-159 (2002).
[CrossRef] [PubMed]

Davies, G.

L. Ajili, J. Faist, H. Beere, D. Ritchie, G. Davies, and E. Linfield, "Loss-coupled distributed feedback far-infrared quantum cascade lasers," Electron. Lett. 41, 419-421 (2005).
[CrossRef]

Demichel, O.

Deutsch, C.

Dodabalapur, A.

M. Meier, A. Mekis, A. Dodabalapur, A. Timko, R. E. Slusher, J. D. Joannopoulos, and O. Nalamasu, "Laser action from two-dimensional distributed feedback in photonic crystals," Appl. Phys. Lett. 74, 7-9 (1999).
[CrossRef]

Dowling, J. P.

J. P. Dowling, M. Scalora, M. J. Bloemer, and C. M. Bowden, "The Photonic Band-Edge Laser - a New Approach to Gain Enhancement," J. Appl. Phys. 75, 1896-1899 (1994).
[CrossRef]

Dunbar, L. A.

Faist, J.

L. A. Dunbar, R. Houdre, G. Scalari, L. Sirigu, M. Giovannini, and J. Faist, "Small optical volume terahertz emitting microdisk quantum cascade lasers," Appl. Phys. Lett. 90, 141114 (2007).
[CrossRef]

L. Ajili, J. Faist, H. Beere, D. Ritchie, G. Davies, and E. Linfield, "Loss-coupled distributed feedback far-infrared quantum cascade lasers," Electron. Lett. 41, 419-421 (2005).
[CrossRef]

G. Scalari, N. Hoyler, M. Giovannini, and J. Faist, "Terahertz bound-to-continuum quantum-cascade lasers based on optical-phonon scattering extraction," Appl. Phys. Lett. 86, 181101 (2005).
[CrossRef]

L. A. Dunbar, V. Moreau, R. Ferrini, R. Houdre, L. Sirigu, G. Scalari, M. Giovannini, N. Hoyler, and J. Faist, "Design, fabrication and optical characterisation of quantum cascade lasers at terahertz frequencies using photonic crystal reflectors," Opt. Express 13, 8960-8968 (2005).
[CrossRef] [PubMed]

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, "Quantum cascade laser," Science 264, 553-556 (1994).
[CrossRef] [PubMed]

Fasching, G.

Ferrini, R.

Giovannini, M.

L. A. Dunbar, R. Houdre, G. Scalari, L. Sirigu, M. Giovannini, and J. Faist, "Small optical volume terahertz emitting microdisk quantum cascade lasers," Appl. Phys. Lett. 90, 141114 (2007).
[CrossRef]

G. Scalari, N. Hoyler, M. Giovannini, and J. Faist, "Terahertz bound-to-continuum quantum-cascade lasers based on optical-phonon scattering extraction," Appl. Phys. Lett. 86, 181101 (2005).
[CrossRef]

L. A. Dunbar, V. Moreau, R. Ferrini, R. Houdre, L. Sirigu, G. Scalari, M. Giovannini, N. Hoyler, and J. Faist, "Design, fabrication and optical characterisation of quantum cascade lasers at terahertz frequencies using photonic crystal reflectors," Opt. Express 13, 8960-8968 (2005).
[CrossRef] [PubMed]

Gmachl, C. F.

R. Colombelli, K. Srinivasan, M. Troccoli, O. Painter, C. F. Gmachl, D. M. Tennant, A. M. Sergent, D. L. Sivco, A. Y. Cho, and F. Capasso, "Quantum cascade surface-emitting photonic crystal laser," Science 302, 1374-1377 (2003).
[CrossRef] [PubMed]

Green, R.

Houdre, R.

Hoyler, N.

Hu, Q.

S. Kumar, B. S. Williams, Q. Qin, A. W. M. Lee, Q. Hu, and J. L. Reno, "Surface-emitting distributed feedback terahertz quantum-cascade lasers in metal-metal waveguides," Opt. Express 15,113-128 (2007).
[CrossRef] [PubMed]

S. Kohen, B. S. Williams, and Q. Hu, "Electromagnetic modeling of terahertz quantum cascade laser waveguides and resonators," J. Appl. Phys. 97, 053106 (2005).
[CrossRef]

B. S. Williams, S. Kumar, Q. Hu, and J. L. Reno, "Operation of terahertz quantum-cascade lasers at 164 K in pulsed mode and at 117 K in continuous-wave mode," Opt. Express 13, 3331-3339 (2005).
[CrossRef] [PubMed]

B. S. Williams, S. Kumar, H. Callebaut, Q. Hu, and J. L. Reno, "Terahertz quantum-cascade laser at lambda approximate to 100 μm using metal waveguide for mode confinement," Appl. Phys. Lett. 83, 2124-2126 (2003).
[CrossRef]

Hutchinson, A. L.

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, "Quantum cascade laser," Science 264, 553-556 (1994).
[CrossRef] [PubMed]

Ibanescu, M.

M. Ibanescu, E. J. Reed, and J. D. Joannopoulos, "Enhanced photonic band-gap confinement via van hove saddle point singularities," Phys. Rev. Lett. 96, 033904 (2006).
[CrossRef] [PubMed]

Iotti, R. C.

R. Kohler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, "Terahertz semiconductor-heterostructure laser," Nature 417, 156-159 (2002).
[CrossRef] [PubMed]

Joannopoulos, J. D.

M. Ibanescu, E. J. Reed, and J. D. Joannopoulos, "Enhanced photonic band-gap confinement via van hove saddle point singularities," Phys. Rev. Lett. 96, 033904 (2006).
[CrossRef] [PubMed]

M. Meier, A. Mekis, A. Dodabalapur, A. Timko, R. E. Slusher, J. D. Joannopoulos, and O. Nalamasu, "Laser action from two-dimensional distributed feedback in photonic crystals," Appl. Phys. Lett. 74, 7-9 (1999).
[CrossRef]

Ju, Y. G.

H. G. Park, S. H. Kim, S. H. Kwon, Y. G. Ju, J. K. Yang, J. H. Baek, S. B. Kim, and Y. H. Lee, "Electrically driven single-cell photonic crystal laser," Science 305, 1444-1447 (2004).
[CrossRef] [PubMed]

Kim, I.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O'Brien, P. D. Dapkus, and I. Kim, "Two-dimensional photonic band-gap defect mode laser," Science 284, 1819-1821 (1999).
[CrossRef] [PubMed]

Kim, J. S.

H. Y. Ryu, S. H. Kwon, Y. J. Lee, Y. H. Lee, and J. S. Kim, "Very-low-threshold photonic band-edge lasers from free-standing triangular photonic crystal slabs," Appl. Phys. Lett. 80, 3476-3478 (2002).
[CrossRef]

Kim, S. B.

H. G. Park, S. H. Kim, S. H. Kwon, Y. G. Ju, J. K. Yang, J. H. Baek, S. B. Kim, and Y. H. Lee, "Electrically driven single-cell photonic crystal laser," Science 305, 1444-1447 (2004).
[CrossRef] [PubMed]

Kim, S. H.

H. G. Park, S. H. Kim, S. H. Kwon, Y. G. Ju, J. K. Yang, J. H. Baek, S. B. Kim, and Y. H. Lee, "Electrically driven single-cell photonic crystal laser," Science 305, 1444-1447 (2004).
[CrossRef] [PubMed]

Klang, P.

Kohen, S.

S. Kohen, B. S. Williams, and Q. Hu, "Electromagnetic modeling of terahertz quantum cascade laser waveguides and resonators," J. Appl. Phys. 97, 053106 (2005).
[CrossRef]

Kohler, R.

L. Mahler, R. Kohler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, D. A. Ritchie, and A. G. Davies, "Single-mode operation of terahertz quantum cascade lasers with distributed feedback resonators," Appl. Phys. Lett. 84, 5446-5448 (2004).
[CrossRef]

R. Kohler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, "Terahertz semiconductor-heterostructure laser," Nature 417, 156-159 (2002).
[CrossRef] [PubMed]

Kumar, S.

Kwon, S. H.

H. G. Park, S. H. Kim, S. H. Kwon, Y. G. Ju, J. K. Yang, J. H. Baek, S. B. Kim, and Y. H. Lee, "Electrically driven single-cell photonic crystal laser," Science 305, 1444-1447 (2004).
[CrossRef] [PubMed]

H. Y. Ryu, S. H. Kwon, Y. J. Lee, Y. H. Lee, and J. S. Kim, "Very-low-threshold photonic band-edge lasers from free-standing triangular photonic crystal slabs," Appl. Phys. Lett. 80, 3476-3478 (2002).
[CrossRef]

Lee, A. W. M.

Lee, R. K.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O'Brien, P. D. Dapkus, and I. Kim, "Two-dimensional photonic band-gap defect mode laser," Science 284, 1819-1821 (1999).
[CrossRef] [PubMed]

Lee, Y. H.

H. G. Park, S. H. Kim, S. H. Kwon, Y. G. Ju, J. K. Yang, J. H. Baek, S. B. Kim, and Y. H. Lee, "Electrically driven single-cell photonic crystal laser," Science 305, 1444-1447 (2004).
[CrossRef] [PubMed]

H. Y. Ryu, S. H. Kwon, Y. J. Lee, Y. H. Lee, and J. S. Kim, "Very-low-threshold photonic band-edge lasers from free-standing triangular photonic crystal slabs," Appl. Phys. Lett. 80, 3476-3478 (2002).
[CrossRef]

Lee, Y. J.

H. Y. Ryu, S. H. Kwon, Y. J. Lee, Y. H. Lee, and J. S. Kim, "Very-low-threshold photonic band-edge lasers from free-standing triangular photonic crystal slabs," Appl. Phys. Lett. 80, 3476-3478 (2002).
[CrossRef]

Linfield, E.

L. Ajili, J. Faist, H. Beere, D. Ritchie, G. Davies, and E. Linfield, "Loss-coupled distributed feedback far-infrared quantum cascade lasers," Electron. Lett. 41, 419-421 (2005).
[CrossRef]

Linfield, E. H.

L. Mahler, R. Kohler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, D. A. Ritchie, and A. G. Davies, "Single-mode operation of terahertz quantum cascade lasers with distributed feedback resonators," Appl. Phys. Lett. 84, 5446-5448 (2004).
[CrossRef]

R. Kohler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, "Terahertz semiconductor-heterostructure laser," Nature 417, 156-159 (2002).
[CrossRef] [PubMed]

Losco, T.

Mahler, L.

O. Demichel, L. Mahler, T. Losco, C. Mauro, R. Green, J. H. Xu, A. Tredicucci, F. Beltram, H. E. Beere, D. A. Ritchie, and V. Tamosiunas, "Surface plasmon photonic structures in terahertz quantum cascade lasers," Opt. Express 14, 5335-5345 (2006).
[CrossRef] [PubMed]

L. Mahler, R. Kohler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, D. A. Ritchie, and A. G. Davies, "Single-mode operation of terahertz quantum cascade lasers with distributed feedback resonators," Appl. Phys. Lett. 84, 5446-5448 (2004).
[CrossRef]

Mauro, C.

Meier, M.

M. Meier, A. Mekis, A. Dodabalapur, A. Timko, R. E. Slusher, J. D. Joannopoulos, and O. Nalamasu, "Laser action from two-dimensional distributed feedback in photonic crystals," Appl. Phys. Lett. 74, 7-9 (1999).
[CrossRef]

Mekis, A.

M. Meier, A. Mekis, A. Dodabalapur, A. Timko, R. E. Slusher, J. D. Joannopoulos, and O. Nalamasu, "Laser action from two-dimensional distributed feedback in photonic crystals," Appl. Phys. Lett. 74, 7-9 (1999).
[CrossRef]

Miao, B. L.

D. W. Prather, S. Y. Shi, J. Murakowski, G. J. Schneider, A. Sharkawy, C. H. Chen, and B. L. Miao, "Photonic crystal structures and applications: Perspective, overview, and development," IEEE J. Sel. Top. Quantum Electron. 12, 1416-1437 (2006).
[CrossRef]

Moreau, V.

Murakowski, J.

D. W. Prather, S. Y. Shi, J. Murakowski, G. J. Schneider, A. Sharkawy, C. H. Chen, and B. L. Miao, "Photonic crystal structures and applications: Perspective, overview, and development," IEEE J. Sel. Top. Quantum Electron. 12, 1416-1437 (2006).
[CrossRef]

Nalamasu, O.

M. Meier, A. Mekis, A. Dodabalapur, A. Timko, R. E. Slusher, J. D. Joannopoulos, and O. Nalamasu, "Laser action from two-dimensional distributed feedback in photonic crystals," Appl. Phys. Lett. 74, 7-9 (1999).
[CrossRef]

Nojima, S.

S. Nojima, "Optical-gain enhancement in two-dimensional active photonic crystals," J. Appl. Phys. 90, 545-551 (2001).
[CrossRef]

O'Brien, J. D.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O'Brien, P. D. Dapkus, and I. Kim, "Two-dimensional photonic band-gap defect mode laser," Science 284, 1819-1821 (1999).
[CrossRef] [PubMed]

Painter, O.

M. Bahriz, V. Moreau, R. Colombelli, O. Crisafulli, and O. Painter, "Design of mid-IR and THz quantum cascade laser cavities with complete TM photonic bandgap," Opt. Express 15, 5948-5965 (2007).
[CrossRef] [PubMed]

R. Colombelli, K. Srinivasan, M. Troccoli, O. Painter, C. F. Gmachl, D. M. Tennant, A. M. Sergent, D. L. Sivco, A. Y. Cho, and F. Capasso, "Quantum cascade surface-emitting photonic crystal laser," Science 302, 1374-1377 (2003).
[CrossRef] [PubMed]

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O'Brien, P. D. Dapkus, and I. Kim, "Two-dimensional photonic band-gap defect mode laser," Science 284, 1819-1821 (1999).
[CrossRef] [PubMed]

Park, H. G.

H. G. Park, S. H. Kim, S. H. Kwon, Y. G. Ju, J. K. Yang, J. H. Baek, S. B. Kim, and Y. H. Lee, "Electrically driven single-cell photonic crystal laser," Science 305, 1444-1447 (2004).
[CrossRef] [PubMed]

Prather, D. W.

D. W. Prather, S. Y. Shi, J. Murakowski, G. J. Schneider, A. Sharkawy, C. H. Chen, and B. L. Miao, "Photonic crystal structures and applications: Perspective, overview, and development," IEEE J. Sel. Top. Quantum Electron. 12, 1416-1437 (2006).
[CrossRef]

Qin, Q.

Reed, E. J.

M. Ibanescu, E. J. Reed, and J. D. Joannopoulos, "Enhanced photonic band-gap confinement via van hove saddle point singularities," Phys. Rev. Lett. 96, 033904 (2006).
[CrossRef] [PubMed]

Reno, J. L.

Ritchie, D.

L. Ajili, J. Faist, H. Beere, D. Ritchie, G. Davies, and E. Linfield, "Loss-coupled distributed feedback far-infrared quantum cascade lasers," Electron. Lett. 41, 419-421 (2005).
[CrossRef]

Ritchie, D. A.

O. Demichel, L. Mahler, T. Losco, C. Mauro, R. Green, J. H. Xu, A. Tredicucci, F. Beltram, H. E. Beere, D. A. Ritchie, and V. Tamosiunas, "Surface plasmon photonic structures in terahertz quantum cascade lasers," Opt. Express 14, 5335-5345 (2006).
[CrossRef] [PubMed]

L. Mahler, R. Kohler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, D. A. Ritchie, and A. G. Davies, "Single-mode operation of terahertz quantum cascade lasers with distributed feedback resonators," Appl. Phys. Lett. 84, 5446-5448 (2004).
[CrossRef]

R. Kohler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, "Terahertz semiconductor-heterostructure laser," Nature 417, 156-159 (2002).
[CrossRef] [PubMed]

Rossi, F.

R. Kohler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, "Terahertz semiconductor-heterostructure laser," Nature 417, 156-159 (2002).
[CrossRef] [PubMed]

Ryu, H. Y.

H. Y. Ryu, S. H. Kwon, Y. J. Lee, Y. H. Lee, and J. S. Kim, "Very-low-threshold photonic band-edge lasers from free-standing triangular photonic crystal slabs," Appl. Phys. Lett. 80, 3476-3478 (2002).
[CrossRef]

Scalari, G.

L. A. Dunbar, R. Houdre, G. Scalari, L. Sirigu, M. Giovannini, and J. Faist, "Small optical volume terahertz emitting microdisk quantum cascade lasers," Appl. Phys. Lett. 90, 141114 (2007).
[CrossRef]

G. Scalari, N. Hoyler, M. Giovannini, and J. Faist, "Terahertz bound-to-continuum quantum-cascade lasers based on optical-phonon scattering extraction," Appl. Phys. Lett. 86, 181101 (2005).
[CrossRef]

L. A. Dunbar, V. Moreau, R. Ferrini, R. Houdre, L. Sirigu, G. Scalari, M. Giovannini, N. Hoyler, and J. Faist, "Design, fabrication and optical characterisation of quantum cascade lasers at terahertz frequencies using photonic crystal reflectors," Opt. Express 13, 8960-8968 (2005).
[CrossRef] [PubMed]

Scalora, M.

J. P. Dowling, M. Scalora, M. J. Bloemer, and C. M. Bowden, "The Photonic Band-Edge Laser - a New Approach to Gain Enhancement," J. Appl. Phys. 75, 1896-1899 (1994).
[CrossRef]

Scherer, A.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O'Brien, P. D. Dapkus, and I. Kim, "Two-dimensional photonic band-gap defect mode laser," Science 284, 1819-1821 (1999).
[CrossRef] [PubMed]

Schneider, G. J.

D. W. Prather, S. Y. Shi, J. Murakowski, G. J. Schneider, A. Sharkawy, C. H. Chen, and B. L. Miao, "Photonic crystal structures and applications: Perspective, overview, and development," IEEE J. Sel. Top. Quantum Electron. 12, 1416-1437 (2006).
[CrossRef]

Schrenk, W.

Sergent, A. M.

R. Colombelli, K. Srinivasan, M. Troccoli, O. Painter, C. F. Gmachl, D. M. Tennant, A. M. Sergent, D. L. Sivco, A. Y. Cho, and F. Capasso, "Quantum cascade surface-emitting photonic crystal laser," Science 302, 1374-1377 (2003).
[CrossRef] [PubMed]

Sharkawy, A.

D. W. Prather, S. Y. Shi, J. Murakowski, G. J. Schneider, A. Sharkawy, C. H. Chen, and B. L. Miao, "Photonic crystal structures and applications: Perspective, overview, and development," IEEE J. Sel. Top. Quantum Electron. 12, 1416-1437 (2006).
[CrossRef]

Shi, S. Y.

D. W. Prather, S. Y. Shi, J. Murakowski, G. J. Schneider, A. Sharkawy, C. H. Chen, and B. L. Miao, "Photonic crystal structures and applications: Perspective, overview, and development," IEEE J. Sel. Top. Quantum Electron. 12, 1416-1437 (2006).
[CrossRef]

Sirigu, L.

Sirtori, C.

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, "Quantum cascade laser," Science 264, 553-556 (1994).
[CrossRef] [PubMed]

Sivco, D. L.

R. Colombelli, K. Srinivasan, M. Troccoli, O. Painter, C. F. Gmachl, D. M. Tennant, A. M. Sergent, D. L. Sivco, A. Y. Cho, and F. Capasso, "Quantum cascade surface-emitting photonic crystal laser," Science 302, 1374-1377 (2003).
[CrossRef] [PubMed]

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, "Quantum cascade laser," Science 264, 553-556 (1994).
[CrossRef] [PubMed]

Slusher, R. E.

M. Meier, A. Mekis, A. Dodabalapur, A. Timko, R. E. Slusher, J. D. Joannopoulos, and O. Nalamasu, "Laser action from two-dimensional distributed feedback in photonic crystals," Appl. Phys. Lett. 74, 7-9 (1999).
[CrossRef]

Srinivasan, K.

R. Colombelli, K. Srinivasan, M. Troccoli, O. Painter, C. F. Gmachl, D. M. Tennant, A. M. Sergent, D. L. Sivco, A. Y. Cho, and F. Capasso, "Quantum cascade surface-emitting photonic crystal laser," Science 302, 1374-1377 (2003).
[CrossRef] [PubMed]

Strasser, G.

Tamosiunas, V.

Tennant, D. M.

R. Colombelli, K. Srinivasan, M. Troccoli, O. Painter, C. F. Gmachl, D. M. Tennant, A. M. Sergent, D. L. Sivco, A. Y. Cho, and F. Capasso, "Quantum cascade surface-emitting photonic crystal laser," Science 302, 1374-1377 (2003).
[CrossRef] [PubMed]

Timko, A.

M. Meier, A. Mekis, A. Dodabalapur, A. Timko, R. E. Slusher, J. D. Joannopoulos, and O. Nalamasu, "Laser action from two-dimensional distributed feedback in photonic crystals," Appl. Phys. Lett. 74, 7-9 (1999).
[CrossRef]

Tredicucci, A.

O. Demichel, L. Mahler, T. Losco, C. Mauro, R. Green, J. H. Xu, A. Tredicucci, F. Beltram, H. E. Beere, D. A. Ritchie, and V. Tamosiunas, "Surface plasmon photonic structures in terahertz quantum cascade lasers," Opt. Express 14, 5335-5345 (2006).
[CrossRef] [PubMed]

L. Mahler, R. Kohler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, D. A. Ritchie, and A. G. Davies, "Single-mode operation of terahertz quantum cascade lasers with distributed feedback resonators," Appl. Phys. Lett. 84, 5446-5448 (2004).
[CrossRef]

R. Kohler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, "Terahertz semiconductor-heterostructure laser," Nature 417, 156-159 (2002).
[CrossRef] [PubMed]

Troccoli, M.

R. Colombelli, K. Srinivasan, M. Troccoli, O. Painter, C. F. Gmachl, D. M. Tennant, A. M. Sergent, D. L. Sivco, A. Y. Cho, and F. Capasso, "Quantum cascade surface-emitting photonic crystal laser," Science 302, 1374-1377 (2003).
[CrossRef] [PubMed]

Unterrainer, K.

Williams, B. S.

S. Kumar, B. S. Williams, Q. Qin, A. W. M. Lee, Q. Hu, and J. L. Reno, "Surface-emitting distributed feedback terahertz quantum-cascade lasers in metal-metal waveguides," Opt. Express 15,113-128 (2007).
[CrossRef] [PubMed]

B. S. Williams, "Terahertz quantum-cascade lasers," Nat. Photonics 1, 517-525 (2007).
[CrossRef]

S. Kohen, B. S. Williams, and Q. Hu, "Electromagnetic modeling of terahertz quantum cascade laser waveguides and resonators," J. Appl. Phys. 97, 053106 (2005).
[CrossRef]

B. S. Williams, S. Kumar, Q. Hu, and J. L. Reno, "Operation of terahertz quantum-cascade lasers at 164 K in pulsed mode and at 117 K in continuous-wave mode," Opt. Express 13, 3331-3339 (2005).
[CrossRef] [PubMed]

B. S. Williams, S. Kumar, H. Callebaut, Q. Hu, and J. L. Reno, "Terahertz quantum-cascade laser at lambda approximate to 100 μm using metal waveguide for mode confinement," Appl. Phys. Lett. 83, 2124-2126 (2003).
[CrossRef]

Xu, J. H.

Yang, J. K.

H. G. Park, S. H. Kim, S. H. Kwon, Y. G. Ju, J. K. Yang, J. H. Baek, S. B. Kim, and Y. H. Lee, "Electrically driven single-cell photonic crystal laser," Science 305, 1444-1447 (2004).
[CrossRef] [PubMed]

Yariv, A.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O'Brien, P. D. Dapkus, and I. Kim, "Two-dimensional photonic band-gap defect mode laser," Science 284, 1819-1821 (1999).
[CrossRef] [PubMed]

Appl. Phys. Lett. (6)

L. Mahler, R. Kohler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, D. A. Ritchie, and A. G. Davies, "Single-mode operation of terahertz quantum cascade lasers with distributed feedback resonators," Appl. Phys. Lett. 84, 5446-5448 (2004).
[CrossRef]

L. A. Dunbar, R. Houdre, G. Scalari, L. Sirigu, M. Giovannini, and J. Faist, "Small optical volume terahertz emitting microdisk quantum cascade lasers," Appl. Phys. Lett. 90, 141114 (2007).
[CrossRef]

M. Meier, A. Mekis, A. Dodabalapur, A. Timko, R. E. Slusher, J. D. Joannopoulos, and O. Nalamasu, "Laser action from two-dimensional distributed feedback in photonic crystals," Appl. Phys. Lett. 74, 7-9 (1999).
[CrossRef]

H. Y. Ryu, S. H. Kwon, Y. J. Lee, Y. H. Lee, and J. S. Kim, "Very-low-threshold photonic band-edge lasers from free-standing triangular photonic crystal slabs," Appl. Phys. Lett. 80, 3476-3478 (2002).
[CrossRef]

B. S. Williams, S. Kumar, H. Callebaut, Q. Hu, and J. L. Reno, "Terahertz quantum-cascade laser at lambda approximate to 100 μm using metal waveguide for mode confinement," Appl. Phys. Lett. 83, 2124-2126 (2003).
[CrossRef]

G. Scalari, N. Hoyler, M. Giovannini, and J. Faist, "Terahertz bound-to-continuum quantum-cascade lasers based on optical-phonon scattering extraction," Appl. Phys. Lett. 86, 181101 (2005).
[CrossRef]

Electron. Lett. (1)

L. Ajili, J. Faist, H. Beere, D. Ritchie, G. Davies, and E. Linfield, "Loss-coupled distributed feedback far-infrared quantum cascade lasers," Electron. Lett. 41, 419-421 (2005).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

D. W. Prather, S. Y. Shi, J. Murakowski, G. J. Schneider, A. Sharkawy, C. H. Chen, and B. L. Miao, "Photonic crystal structures and applications: Perspective, overview, and development," IEEE J. Sel. Top. Quantum Electron. 12, 1416-1437 (2006).
[CrossRef]

J. Appl. Phys. (3)

J. P. Dowling, M. Scalora, M. J. Bloemer, and C. M. Bowden, "The Photonic Band-Edge Laser - a New Approach to Gain Enhancement," J. Appl. Phys. 75, 1896-1899 (1994).
[CrossRef]

S. Kohen, B. S. Williams, and Q. Hu, "Electromagnetic modeling of terahertz quantum cascade laser waveguides and resonators," J. Appl. Phys. 97, 053106 (2005).
[CrossRef]

S. Nojima, "Optical-gain enhancement in two-dimensional active photonic crystals," J. Appl. Phys. 90, 545-551 (2001).
[CrossRef]

Nat. Photonics (1)

B. S. Williams, "Terahertz quantum-cascade lasers," Nat. Photonics 1, 517-525 (2007).
[CrossRef]

Nature (1)

R. Kohler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, "Terahertz semiconductor-heterostructure laser," Nature 417, 156-159 (2002).
[CrossRef] [PubMed]

Opt. Express (6)

B. S. Williams, S. Kumar, Q. Hu, and J. L. Reno, "Operation of terahertz quantum-cascade lasers at 164 K in pulsed mode and at 117 K in continuous-wave mode," Opt. Express 13, 3331-3339 (2005).
[CrossRef] [PubMed]

M. Bahriz, V. Moreau, R. Colombelli, O. Crisafulli, and O. Painter, "Design of mid-IR and THz quantum cascade laser cavities with complete TM photonic bandgap," Opt. Express 15, 5948-5965 (2007).
[CrossRef] [PubMed]

S. Kumar, B. S. Williams, Q. Qin, A. W. M. Lee, Q. Hu, and J. L. Reno, "Surface-emitting distributed feedback terahertz quantum-cascade lasers in metal-metal waveguides," Opt. Express 15,113-128 (2007).
[CrossRef] [PubMed]

O. Demichel, L. Mahler, T. Losco, C. Mauro, R. Green, J. H. Xu, A. Tredicucci, F. Beltram, H. E. Beere, D. A. Ritchie, and V. Tamosiunas, "Surface plasmon photonic structures in terahertz quantum cascade lasers," Opt. Express 14, 5335-5345 (2006).
[CrossRef] [PubMed]

L. A. Dunbar, V. Moreau, R. Ferrini, R. Houdre, L. Sirigu, G. Scalari, M. Giovannini, N. Hoyler, and J. Faist, "Design, fabrication and optical characterisation of quantum cascade lasers at terahertz frequencies using photonic crystal reflectors," Opt. Express 13, 8960-8968 (2005).
[CrossRef] [PubMed]

A. Benz, G. Fasching, C. Deutsch, A. M. Andrews, K. Unterrainer, P. Klang, W. Schrenk, and G. Strasser, "Terahertz photonic crystal resonators in double-metal waveguides," Opt. Express 15, 12418-12424 (2007).
[CrossRef] [PubMed]

Phys. Rev. Lett. (1)

M. Ibanescu, E. J. Reed, and J. D. Joannopoulos, "Enhanced photonic band-gap confinement via van hove saddle point singularities," Phys. Rev. Lett. 96, 033904 (2006).
[CrossRef] [PubMed]

Science (4)

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O'Brien, P. D. Dapkus, and I. Kim, "Two-dimensional photonic band-gap defect mode laser," Science 284, 1819-1821 (1999).
[CrossRef] [PubMed]

H. G. Park, S. H. Kim, S. H. Kwon, Y. G. Ju, J. K. Yang, J. H. Baek, S. B. Kim, and Y. H. Lee, "Electrically driven single-cell photonic crystal laser," Science 305, 1444-1447 (2004).
[CrossRef] [PubMed]

R. Colombelli, K. Srinivasan, M. Troccoli, O. Painter, C. F. Gmachl, D. M. Tennant, A. M. Sergent, D. L. Sivco, A. Y. Cho, and F. Capasso, "Quantum cascade surface-emitting photonic crystal laser," Science 302, 1374-1377 (2003).
[CrossRef] [PubMed]

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, "Quantum cascade laser," Science 264, 553-556 (1994).
[CrossRef] [PubMed]

Other (1)

K. Inoue, M. Sasada, J. Kawamata, K. Sakoda, and J. W. Haus, "A two-dimensional photonic crystal laser," Jpn. J. Appl. Phys. 38, L157-L159 (1999).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Scanning Electron Microscope (SEM) images of THz PhC lasers. a, Cross-section SEM image of PhC pillars after dry etch, showing their high verticality and side-wall smoothness (~15.5 µm). b, Side view SEM image of double metal configuration bounding the PhC pillars which are surrounded by BCB. c, Top view SEM image of PhC tile lasers (lengths of square top contacts are 600 µm, 200 µm and 100 µm) with 25 µm diameter bonded gold wire.

Fig. 2.
Fig. 2.

Superimposition of material gain and experimentally measured spontaneous and lasing spectra emission ranges onto PhC dispersion curve and lasing emission spectra. a, Left panel shows the material gain range and measured emission spectra range superimposed onto PhC dispersion curve. Right panel shows the material gain and experimentally measured emission spectra range in reduced energy scale. Solid curves represent the PhC dispersion band diagram; wide patterned blocks represent the ranges of the observed lasers at a=16, 17 and 18 µm, or spontaneous emission at a=19, 21, 22 and 23 µm. Narrow rectangular blocks represent material gain. b, Left hand axis: black and red dashed lines represent the simulated PhC first bands for f=50% and 40% between M and K points respectively. Right hand axis: lasing spectra (solid curves) of same lattice constant a=18 µm at different ‘f’ 50% (black) and 40% (red). A 0.81% (30GHz) continuously dynamic single mode tuning is observed from f=40% curves. c, Left hand axis: Red dashed curve represents the simulated PhC first band of f=40% between M and K points. Right hand axis: Lasing spectra (solid curves) of f=40% at a=16(blue), 17(green) and 18 µm (red). A coarse lithographic tuning range of 14.6% (450GHz) is clearly shown.

Fig. 3.
Fig. 3.

Comparison of L/I curves of PhC tile lasers at different lattice constants and differential resistances. a, L/I characterization of PhC tile lasers at different lattice constants a=16(blue), 17(green) and 18(red) µm under pulsed condition (pulse=200 ns, duty cycle=1.3%). Solid lines represent the 600×600 µm2 tile lasers, and dashed curves represent the 200×200 µm2 tile lasers. b, Differential resistance versus current density under CW measurement for PhC tile laser (a=17 µm, red, bottom and top axis), double plasmon FP laser (1400×80 µm2, green, bottom axis) and micro-disk laser (radius=50 µm, black, bottom axis), the PhC laser has the lowest threshold current density among the others.

Fig. 4.
Fig. 4.

L/I/V characterization of THz QCL PhC lasers as a function of temperature and the comparison of maximum operation temperature between different material systems. a, L/I/V characterization of peak intensity of the PhC tile laser at lattice parameter a=17 µm as a function of temperature under pulsed condition (pulse=200 ns, duty cycle=1.3%). The lowest threshold current density of this laser is 128 A/cm2 and the maximum operation temperature is 105 K (intensities at 90 K and 105 K have been scaled by a factor of 2 and 100, respectively). Note that the value of the y scale does not describe the actual emitted power intensity, as the collection efficiency of the setup does not exceed 20%. b, Comparison of maximum operation temperature between PhC tile laser (600×600 µm2, red circles), double plasmon FP ridge laser (1170×100 µm2, green squares), surface plasmon FP ridge lasers (2000×200 µm2, blue triangles) and micro-disk laser (50 µm radius, black circles). Continuous curves are guide for eye. All devices are processed from the same epilayer.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

B = ( B x ( z ) e i ( β y ω τ ) , 0 , 0 )
× B = ε μ 0 t E
E z ( z ) = β ω ε μ 0 B x ( z ) e i ( β y ω t )
E y ( z ) = i ω ε μ 0 z B x ( z ) e i ( β y ω t )

Metrics