Abstract

We propose and analyze a technique of an optical carrier transmitting two RF signals using optical carrier suppression. A single optical Mach-Zehnder modulator is used for both optical carrier suppression and signal modulation, and optical carrier suppression modulation is also used for frequency conversion of RF signals. This work shows that in contrary to the case of an optical carrier transmitting a single RF signal with optical carrier suppression where stronger optical carrier suppression improves the upconverted RF signal, weaker optical carrier suppression is preferred for an optical carrier transmitting two RF signals due to nonlinear distortion because the nonlinear distortion is reduced by using weaker optical carrier suppression. We find that the usable range of optical carrier suppression ratio is from 10 to 18 dB for RF signal upconverted to 20 GHz and beyond, and the best optical carrier suppression ratio is around 10 dB. We verify the concept and analysis with experiment. In experiment, we used two RFs at 6 and 18 GHz transmitting two 750 Mb/s signals. The experiment for the first time demonstrated that an optical carrier can transmit two RF signals using optical carrier suppression and showed that upconverted RF signals are degraded by nonlinear distortion, particularly for upconverted RF signal at 12 GHz, i.e. the RF signal at the lower frequency.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Bakaul, A. Nirmalathas, C. Lim, D. Novak, R. Waterhouse, "Investigation of performance enhancement of WDM optical interfaces for millimeter-wave fiber-radio networks," IEEE Photon. Technol. Lett. 19, 843-845 (2007).
    [CrossRef]
  2. K. Wang, X. Zheng, H. Zhang, Y. Guo, "A radio-over-fiber downstream link employing carrier-suppressed modulation scheme to regenerate and transmit vector signals," IEEE Photon. Technol. Lett. 19, 1365-1367 (2007).
    [CrossRef]
  3. J. Yu, Z. Jia, T. Wang, G. Chang, "Centralized lightwave radio-over-fiber system with photonic frequency quadrupling for high-frequency millimeter-wave generation," IEEE Photon. Technol. Lett. 19, 1499-1501 (2007).
    [CrossRef]
  4. J. Yu, Z. Jia, T. Wang, and G. K. Chang, "A novel radio-over-fiber configuration using optical phase modulator to generate an optical mm-wave and centralized lightwave for uplink connection," IEEE Photon. Technol. Lett. 19, 140-142 (2007).
    [CrossRef]
  5. L. Chen, Y. Shao, X. Lei, H. Wen, and S. Wen, "A novel radio-over-fiber system with wavelength reuse for upstream data connection," IEEE Photon. Technol. Lett. 19, 387-389 (2007).
    [CrossRef]
  6. C. Lin, J. Chen, P. Peng, C. Peng, W. Peng, B. Chiou, and S. Chi, "Hybrid optical access network integrating fiber-to-the-home and radio-over-fiber systems," IEEE Photon. Technol. Lett. 19, 610-612 (2007).
    [CrossRef]
  7. M. Garcia Larrode, A. Koonen, J. Vegas Olmos, and E. Verdurmen, "Microwave signal generation and transmission based on optical frequency multiplication with a polarization interferometer," J. Lightwave Technol. 25, 1372-1378 (2007).
    [CrossRef]
  8. H. Lu, S. Tzeng, Y. Chuang, Y. Chi, and C. Liao, "Bidirectional radio-over-DWDM transport systems based on injection-locked VCSELs and optoelectronic feedback techniques," IEEE Photon. Technol. Lett. 19, 315-317 (2007).
    [CrossRef]
  9. G. Qi, J. Yao, J. Seregelyi, S. Paquet, C. Belisle, X. Zhang, K. Wu, and R. Kashyap, "Phase-noise analysis of optically generated millimeter-wave signals with external optical modulation techniques," J. Lightwave Technol. 24, 4861-4875 (2006).
    [CrossRef]
  10. T. Cho and K. Kim, "Effect of third-order intermodulation on radio-over-fiber systems by a dual-electrode Mach-Zehnder modulator with ODSB and OSSB signals," J. Lightwave Technol. 24, 2052-2058 (2006).
    [CrossRef]
  11. M. Bakaul, A. Nirmalathas, C. Lim, D. Novak, and R. Waterhouse, "Simultaneous multiplexing and demultiplexing of wavelength-interleaved channels in DWDM millimeter-wave fiber-radio networks," J. Lightwave Technol. 24, 3341-3352 (2006).
    [CrossRef]
  12. C. Lin, W. Peng, P. Peng, J. Chen, C. Peng, B. Chiou, and S. Chi, "Simultaneous generation of baseband and radio signals using only one single-electrode Mach-Zehnder modulator with enhanced linearity," IEEE Photon. Technol. Lett. 18, 2481-2483 (2006).
    [CrossRef]
  13. M. Bakaul, A. Nirmalathas, C. Lim, D. Novak, and R. Waterhouse, "Hybrid multiplexing of multiband optical access technologies towards an integrated DWDM network," IEEE Photon. Technol. Lett. 18, 2311-2313 (2006).
    [CrossRef]
  14. X. Zhang, B. Liu, J. Yao, K. Wu, and R. Kashyap, "A novel millimeter-wave-band radio-over-fiber system with dense wavelength-division multiplexing bus architecture," IEEE Trans. Microwave Theory Tech. 54, 929-937 (2006).
    [CrossRef]
  15. A. Kaszubowska, L. Hu, and L. Barry, "Remote downconversion with wavelength reuse for the radio/fiber uplink connection," IEEE Photon. Technol. Lett. 18, 562-564 (2006).
    [CrossRef]
  16. L. Chen, H. Wen, and S. Wen, "A radio-over-fiber system with a novel scheme for millimeter-wave generation and wavelength reuse for up-link connection," IEEE Photon. Technol. Lett. 18, 2056-2058 (2006).
    [CrossRef]
  17. C. Wu and X. Zhang, "Impact of nonlinear distortion in radio over fiber systems with single-sideband and tandem single-sideband subcarrier modulations," J. Lightwave Technol. 24, 2076-2090 (2006).
    [CrossRef]
  18. B. Masella and X. Zhang, "A novel single wavelength balanced system for radio over fiber links," IEEE Photon. Technol. Lett. 18, 301-303 (2006).
    [CrossRef]
  19. K. Wu, J. Yao, X. Zhang, and R. Kashyap, "Millimeter-wave photonic techniques for broadband communication and sensor applications," Proceedings of IEEE LEOS annual meeting 2006, Montreal, pp.270-271.
  20. K. Ikeda, T. Kuri, and K. Kitayama, " Simultaneous three-band modulation and fiber-optic transmission of 2.5-Gb/s baseband, microwave-, and 60-GHz-band signals on a single wavelength," J. Lightwave Technol. 21, 3194-3202 (2003).
    [CrossRef]
  21. M. Attygalle, C. Lim, and A. Nirmalathas, "Dispersion-tolerant multiple WDM channel millimeter-wave signal generation using a single monolithic mode-locked semiconductor laser," J. Lightwave Technol. 23, 295-303 (2005).
    [CrossRef]
  22. T. Nakasyotani, H. Toda, T. Kuri, and K. Kitayama, "Wavelength-division-multiplexed Millimeter-waveband radio-on-fiber system using a supercontinuum light source," J. Lightwave Technol. 24, 404-410 (2006).
    [CrossRef]
  23. M. Mohamed, B. Hraimel, X. Zhang, and K. Wu, "Efficient photonic generation of millimeter-waves using optical frequency multiplication in radio over fiber systems," Proceedings of IEEE Topic meeting on Microwave Photonics 2007, paper Th.-4.20, Victoria, Canada.

2007 (8)

M. Bakaul, A. Nirmalathas, C. Lim, D. Novak, R. Waterhouse, "Investigation of performance enhancement of WDM optical interfaces for millimeter-wave fiber-radio networks," IEEE Photon. Technol. Lett. 19, 843-845 (2007).
[CrossRef]

K. Wang, X. Zheng, H. Zhang, Y. Guo, "A radio-over-fiber downstream link employing carrier-suppressed modulation scheme to regenerate and transmit vector signals," IEEE Photon. Technol. Lett. 19, 1365-1367 (2007).
[CrossRef]

J. Yu, Z. Jia, T. Wang, G. Chang, "Centralized lightwave radio-over-fiber system with photonic frequency quadrupling for high-frequency millimeter-wave generation," IEEE Photon. Technol. Lett. 19, 1499-1501 (2007).
[CrossRef]

J. Yu, Z. Jia, T. Wang, and G. K. Chang, "A novel radio-over-fiber configuration using optical phase modulator to generate an optical mm-wave and centralized lightwave for uplink connection," IEEE Photon. Technol. Lett. 19, 140-142 (2007).
[CrossRef]

L. Chen, Y. Shao, X. Lei, H. Wen, and S. Wen, "A novel radio-over-fiber system with wavelength reuse for upstream data connection," IEEE Photon. Technol. Lett. 19, 387-389 (2007).
[CrossRef]

C. Lin, J. Chen, P. Peng, C. Peng, W. Peng, B. Chiou, and S. Chi, "Hybrid optical access network integrating fiber-to-the-home and radio-over-fiber systems," IEEE Photon. Technol. Lett. 19, 610-612 (2007).
[CrossRef]

H. Lu, S. Tzeng, Y. Chuang, Y. Chi, and C. Liao, "Bidirectional radio-over-DWDM transport systems based on injection-locked VCSELs and optoelectronic feedback techniques," IEEE Photon. Technol. Lett. 19, 315-317 (2007).
[CrossRef]

M. Garcia Larrode, A. Koonen, J. Vegas Olmos, and E. Verdurmen, "Microwave signal generation and transmission based on optical frequency multiplication with a polarization interferometer," J. Lightwave Technol. 25, 1372-1378 (2007).
[CrossRef]

2006 (11)

T. Nakasyotani, H. Toda, T. Kuri, and K. Kitayama, "Wavelength-division-multiplexed Millimeter-waveband radio-on-fiber system using a supercontinuum light source," J. Lightwave Technol. 24, 404-410 (2006).
[CrossRef]

T. Cho and K. Kim, "Effect of third-order intermodulation on radio-over-fiber systems by a dual-electrode Mach-Zehnder modulator with ODSB and OSSB signals," J. Lightwave Technol. 24, 2052-2058 (2006).
[CrossRef]

C. Wu and X. Zhang, "Impact of nonlinear distortion in radio over fiber systems with single-sideband and tandem single-sideband subcarrier modulations," J. Lightwave Technol. 24, 2076-2090 (2006).
[CrossRef]

M. Bakaul, A. Nirmalathas, C. Lim, D. Novak, and R. Waterhouse, "Simultaneous multiplexing and demultiplexing of wavelength-interleaved channels in DWDM millimeter-wave fiber-radio networks," J. Lightwave Technol. 24, 3341-3352 (2006).
[CrossRef]

G. Qi, J. Yao, J. Seregelyi, S. Paquet, C. Belisle, X. Zhang, K. Wu, and R. Kashyap, "Phase-noise analysis of optically generated millimeter-wave signals with external optical modulation techniques," J. Lightwave Technol. 24, 4861-4875 (2006).
[CrossRef]

C. Lin, W. Peng, P. Peng, J. Chen, C. Peng, B. Chiou, and S. Chi, "Simultaneous generation of baseband and radio signals using only one single-electrode Mach-Zehnder modulator with enhanced linearity," IEEE Photon. Technol. Lett. 18, 2481-2483 (2006).
[CrossRef]

M. Bakaul, A. Nirmalathas, C. Lim, D. Novak, and R. Waterhouse, "Hybrid multiplexing of multiband optical access technologies towards an integrated DWDM network," IEEE Photon. Technol. Lett. 18, 2311-2313 (2006).
[CrossRef]

X. Zhang, B. Liu, J. Yao, K. Wu, and R. Kashyap, "A novel millimeter-wave-band radio-over-fiber system with dense wavelength-division multiplexing bus architecture," IEEE Trans. Microwave Theory Tech. 54, 929-937 (2006).
[CrossRef]

A. Kaszubowska, L. Hu, and L. Barry, "Remote downconversion with wavelength reuse for the radio/fiber uplink connection," IEEE Photon. Technol. Lett. 18, 562-564 (2006).
[CrossRef]

L. Chen, H. Wen, and S. Wen, "A radio-over-fiber system with a novel scheme for millimeter-wave generation and wavelength reuse for up-link connection," IEEE Photon. Technol. Lett. 18, 2056-2058 (2006).
[CrossRef]

B. Masella and X. Zhang, "A novel single wavelength balanced system for radio over fiber links," IEEE Photon. Technol. Lett. 18, 301-303 (2006).
[CrossRef]

2005 (1)

2003 (1)

Attygalle, M.

Bakaul, M.

M. Bakaul, A. Nirmalathas, C. Lim, D. Novak, R. Waterhouse, "Investigation of performance enhancement of WDM optical interfaces for millimeter-wave fiber-radio networks," IEEE Photon. Technol. Lett. 19, 843-845 (2007).
[CrossRef]

M. Bakaul, A. Nirmalathas, C. Lim, D. Novak, and R. Waterhouse, "Simultaneous multiplexing and demultiplexing of wavelength-interleaved channels in DWDM millimeter-wave fiber-radio networks," J. Lightwave Technol. 24, 3341-3352 (2006).
[CrossRef]

M. Bakaul, A. Nirmalathas, C. Lim, D. Novak, and R. Waterhouse, "Hybrid multiplexing of multiband optical access technologies towards an integrated DWDM network," IEEE Photon. Technol. Lett. 18, 2311-2313 (2006).
[CrossRef]

Barry, L.

A. Kaszubowska, L. Hu, and L. Barry, "Remote downconversion with wavelength reuse for the radio/fiber uplink connection," IEEE Photon. Technol. Lett. 18, 562-564 (2006).
[CrossRef]

Belisle, C.

Chang, G.

J. Yu, Z. Jia, T. Wang, G. Chang, "Centralized lightwave radio-over-fiber system with photonic frequency quadrupling for high-frequency millimeter-wave generation," IEEE Photon. Technol. Lett. 19, 1499-1501 (2007).
[CrossRef]

Chang, G. K.

J. Yu, Z. Jia, T. Wang, and G. K. Chang, "A novel radio-over-fiber configuration using optical phase modulator to generate an optical mm-wave and centralized lightwave for uplink connection," IEEE Photon. Technol. Lett. 19, 140-142 (2007).
[CrossRef]

Chen, J.

C. Lin, J. Chen, P. Peng, C. Peng, W. Peng, B. Chiou, and S. Chi, "Hybrid optical access network integrating fiber-to-the-home and radio-over-fiber systems," IEEE Photon. Technol. Lett. 19, 610-612 (2007).
[CrossRef]

C. Lin, W. Peng, P. Peng, J. Chen, C. Peng, B. Chiou, and S. Chi, "Simultaneous generation of baseband and radio signals using only one single-electrode Mach-Zehnder modulator with enhanced linearity," IEEE Photon. Technol. Lett. 18, 2481-2483 (2006).
[CrossRef]

Chen, L.

L. Chen, Y. Shao, X. Lei, H. Wen, and S. Wen, "A novel radio-over-fiber system with wavelength reuse for upstream data connection," IEEE Photon. Technol. Lett. 19, 387-389 (2007).
[CrossRef]

L. Chen, H. Wen, and S. Wen, "A radio-over-fiber system with a novel scheme for millimeter-wave generation and wavelength reuse for up-link connection," IEEE Photon. Technol. Lett. 18, 2056-2058 (2006).
[CrossRef]

Chi, S.

C. Lin, J. Chen, P. Peng, C. Peng, W. Peng, B. Chiou, and S. Chi, "Hybrid optical access network integrating fiber-to-the-home and radio-over-fiber systems," IEEE Photon. Technol. Lett. 19, 610-612 (2007).
[CrossRef]

C. Lin, W. Peng, P. Peng, J. Chen, C. Peng, B. Chiou, and S. Chi, "Simultaneous generation of baseband and radio signals using only one single-electrode Mach-Zehnder modulator with enhanced linearity," IEEE Photon. Technol. Lett. 18, 2481-2483 (2006).
[CrossRef]

Chi, Y.

H. Lu, S. Tzeng, Y. Chuang, Y. Chi, and C. Liao, "Bidirectional radio-over-DWDM transport systems based on injection-locked VCSELs and optoelectronic feedback techniques," IEEE Photon. Technol. Lett. 19, 315-317 (2007).
[CrossRef]

Chiou, B.

C. Lin, J. Chen, P. Peng, C. Peng, W. Peng, B. Chiou, and S. Chi, "Hybrid optical access network integrating fiber-to-the-home and radio-over-fiber systems," IEEE Photon. Technol. Lett. 19, 610-612 (2007).
[CrossRef]

C. Lin, W. Peng, P. Peng, J. Chen, C. Peng, B. Chiou, and S. Chi, "Simultaneous generation of baseband and radio signals using only one single-electrode Mach-Zehnder modulator with enhanced linearity," IEEE Photon. Technol. Lett. 18, 2481-2483 (2006).
[CrossRef]

Cho, T.

Chuang, Y.

H. Lu, S. Tzeng, Y. Chuang, Y. Chi, and C. Liao, "Bidirectional radio-over-DWDM transport systems based on injection-locked VCSELs and optoelectronic feedback techniques," IEEE Photon. Technol. Lett. 19, 315-317 (2007).
[CrossRef]

Garcia Larrode, M.

Guo, Y.

K. Wang, X. Zheng, H. Zhang, Y. Guo, "A radio-over-fiber downstream link employing carrier-suppressed modulation scheme to regenerate and transmit vector signals," IEEE Photon. Technol. Lett. 19, 1365-1367 (2007).
[CrossRef]

Hu, L.

A. Kaszubowska, L. Hu, and L. Barry, "Remote downconversion with wavelength reuse for the radio/fiber uplink connection," IEEE Photon. Technol. Lett. 18, 562-564 (2006).
[CrossRef]

Ikeda, K.

Jia, Z.

J. Yu, Z. Jia, T. Wang, G. Chang, "Centralized lightwave radio-over-fiber system with photonic frequency quadrupling for high-frequency millimeter-wave generation," IEEE Photon. Technol. Lett. 19, 1499-1501 (2007).
[CrossRef]

J. Yu, Z. Jia, T. Wang, and G. K. Chang, "A novel radio-over-fiber configuration using optical phase modulator to generate an optical mm-wave and centralized lightwave for uplink connection," IEEE Photon. Technol. Lett. 19, 140-142 (2007).
[CrossRef]

Kashyap, R.

G. Qi, J. Yao, J. Seregelyi, S. Paquet, C. Belisle, X. Zhang, K. Wu, and R. Kashyap, "Phase-noise analysis of optically generated millimeter-wave signals with external optical modulation techniques," J. Lightwave Technol. 24, 4861-4875 (2006).
[CrossRef]

X. Zhang, B. Liu, J. Yao, K. Wu, and R. Kashyap, "A novel millimeter-wave-band radio-over-fiber system with dense wavelength-division multiplexing bus architecture," IEEE Trans. Microwave Theory Tech. 54, 929-937 (2006).
[CrossRef]

Kaszubowska, A.

A. Kaszubowska, L. Hu, and L. Barry, "Remote downconversion with wavelength reuse for the radio/fiber uplink connection," IEEE Photon. Technol. Lett. 18, 562-564 (2006).
[CrossRef]

Kim, K.

Kitayama, K.

Koonen, A.

Kuri, T.

Lei, X.

L. Chen, Y. Shao, X. Lei, H. Wen, and S. Wen, "A novel radio-over-fiber system with wavelength reuse for upstream data connection," IEEE Photon. Technol. Lett. 19, 387-389 (2007).
[CrossRef]

Liao, C.

H. Lu, S. Tzeng, Y. Chuang, Y. Chi, and C. Liao, "Bidirectional radio-over-DWDM transport systems based on injection-locked VCSELs and optoelectronic feedback techniques," IEEE Photon. Technol. Lett. 19, 315-317 (2007).
[CrossRef]

Lim, C.

M. Bakaul, A. Nirmalathas, C. Lim, D. Novak, R. Waterhouse, "Investigation of performance enhancement of WDM optical interfaces for millimeter-wave fiber-radio networks," IEEE Photon. Technol. Lett. 19, 843-845 (2007).
[CrossRef]

M. Bakaul, A. Nirmalathas, C. Lim, D. Novak, and R. Waterhouse, "Simultaneous multiplexing and demultiplexing of wavelength-interleaved channels in DWDM millimeter-wave fiber-radio networks," J. Lightwave Technol. 24, 3341-3352 (2006).
[CrossRef]

M. Bakaul, A. Nirmalathas, C. Lim, D. Novak, and R. Waterhouse, "Hybrid multiplexing of multiband optical access technologies towards an integrated DWDM network," IEEE Photon. Technol. Lett. 18, 2311-2313 (2006).
[CrossRef]

M. Attygalle, C. Lim, and A. Nirmalathas, "Dispersion-tolerant multiple WDM channel millimeter-wave signal generation using a single monolithic mode-locked semiconductor laser," J. Lightwave Technol. 23, 295-303 (2005).
[CrossRef]

Lin, C.

C. Lin, J. Chen, P. Peng, C. Peng, W. Peng, B. Chiou, and S. Chi, "Hybrid optical access network integrating fiber-to-the-home and radio-over-fiber systems," IEEE Photon. Technol. Lett. 19, 610-612 (2007).
[CrossRef]

C. Lin, W. Peng, P. Peng, J. Chen, C. Peng, B. Chiou, and S. Chi, "Simultaneous generation of baseband and radio signals using only one single-electrode Mach-Zehnder modulator with enhanced linearity," IEEE Photon. Technol. Lett. 18, 2481-2483 (2006).
[CrossRef]

Liu, B.

X. Zhang, B. Liu, J. Yao, K. Wu, and R. Kashyap, "A novel millimeter-wave-band radio-over-fiber system with dense wavelength-division multiplexing bus architecture," IEEE Trans. Microwave Theory Tech. 54, 929-937 (2006).
[CrossRef]

Lu, H.

H. Lu, S. Tzeng, Y. Chuang, Y. Chi, and C. Liao, "Bidirectional radio-over-DWDM transport systems based on injection-locked VCSELs and optoelectronic feedback techniques," IEEE Photon. Technol. Lett. 19, 315-317 (2007).
[CrossRef]

Masella, B.

B. Masella and X. Zhang, "A novel single wavelength balanced system for radio over fiber links," IEEE Photon. Technol. Lett. 18, 301-303 (2006).
[CrossRef]

Nakasyotani, T.

Nirmalathas, A.

M. Bakaul, A. Nirmalathas, C. Lim, D. Novak, R. Waterhouse, "Investigation of performance enhancement of WDM optical interfaces for millimeter-wave fiber-radio networks," IEEE Photon. Technol. Lett. 19, 843-845 (2007).
[CrossRef]

M. Bakaul, A. Nirmalathas, C. Lim, D. Novak, and R. Waterhouse, "Simultaneous multiplexing and demultiplexing of wavelength-interleaved channels in DWDM millimeter-wave fiber-radio networks," J. Lightwave Technol. 24, 3341-3352 (2006).
[CrossRef]

M. Bakaul, A. Nirmalathas, C. Lim, D. Novak, and R. Waterhouse, "Hybrid multiplexing of multiband optical access technologies towards an integrated DWDM network," IEEE Photon. Technol. Lett. 18, 2311-2313 (2006).
[CrossRef]

M. Attygalle, C. Lim, and A. Nirmalathas, "Dispersion-tolerant multiple WDM channel millimeter-wave signal generation using a single monolithic mode-locked semiconductor laser," J. Lightwave Technol. 23, 295-303 (2005).
[CrossRef]

Novak, D.

M. Bakaul, A. Nirmalathas, C. Lim, D. Novak, R. Waterhouse, "Investigation of performance enhancement of WDM optical interfaces for millimeter-wave fiber-radio networks," IEEE Photon. Technol. Lett. 19, 843-845 (2007).
[CrossRef]

M. Bakaul, A. Nirmalathas, C. Lim, D. Novak, and R. Waterhouse, "Simultaneous multiplexing and demultiplexing of wavelength-interleaved channels in DWDM millimeter-wave fiber-radio networks," J. Lightwave Technol. 24, 3341-3352 (2006).
[CrossRef]

M. Bakaul, A. Nirmalathas, C. Lim, D. Novak, and R. Waterhouse, "Hybrid multiplexing of multiband optical access technologies towards an integrated DWDM network," IEEE Photon. Technol. Lett. 18, 2311-2313 (2006).
[CrossRef]

Paquet, S.

Peng, C.

C. Lin, J. Chen, P. Peng, C. Peng, W. Peng, B. Chiou, and S. Chi, "Hybrid optical access network integrating fiber-to-the-home and radio-over-fiber systems," IEEE Photon. Technol. Lett. 19, 610-612 (2007).
[CrossRef]

C. Lin, W. Peng, P. Peng, J. Chen, C. Peng, B. Chiou, and S. Chi, "Simultaneous generation of baseband and radio signals using only one single-electrode Mach-Zehnder modulator with enhanced linearity," IEEE Photon. Technol. Lett. 18, 2481-2483 (2006).
[CrossRef]

Peng, P.

C. Lin, J. Chen, P. Peng, C. Peng, W. Peng, B. Chiou, and S. Chi, "Hybrid optical access network integrating fiber-to-the-home and radio-over-fiber systems," IEEE Photon. Technol. Lett. 19, 610-612 (2007).
[CrossRef]

C. Lin, W. Peng, P. Peng, J. Chen, C. Peng, B. Chiou, and S. Chi, "Simultaneous generation of baseband and radio signals using only one single-electrode Mach-Zehnder modulator with enhanced linearity," IEEE Photon. Technol. Lett. 18, 2481-2483 (2006).
[CrossRef]

Peng, W.

C. Lin, J. Chen, P. Peng, C. Peng, W. Peng, B. Chiou, and S. Chi, "Hybrid optical access network integrating fiber-to-the-home and radio-over-fiber systems," IEEE Photon. Technol. Lett. 19, 610-612 (2007).
[CrossRef]

C. Lin, W. Peng, P. Peng, J. Chen, C. Peng, B. Chiou, and S. Chi, "Simultaneous generation of baseband and radio signals using only one single-electrode Mach-Zehnder modulator with enhanced linearity," IEEE Photon. Technol. Lett. 18, 2481-2483 (2006).
[CrossRef]

Qi, G.

Seregelyi, J.

Shao, Y.

L. Chen, Y. Shao, X. Lei, H. Wen, and S. Wen, "A novel radio-over-fiber system with wavelength reuse for upstream data connection," IEEE Photon. Technol. Lett. 19, 387-389 (2007).
[CrossRef]

Toda, H.

Tzeng, S.

H. Lu, S. Tzeng, Y. Chuang, Y. Chi, and C. Liao, "Bidirectional radio-over-DWDM transport systems based on injection-locked VCSELs and optoelectronic feedback techniques," IEEE Photon. Technol. Lett. 19, 315-317 (2007).
[CrossRef]

Vegas Olmos, J.

Verdurmen, E.

Wang, K.

K. Wang, X. Zheng, H. Zhang, Y. Guo, "A radio-over-fiber downstream link employing carrier-suppressed modulation scheme to regenerate and transmit vector signals," IEEE Photon. Technol. Lett. 19, 1365-1367 (2007).
[CrossRef]

Wang, T.

J. Yu, Z. Jia, T. Wang, G. Chang, "Centralized lightwave radio-over-fiber system with photonic frequency quadrupling for high-frequency millimeter-wave generation," IEEE Photon. Technol. Lett. 19, 1499-1501 (2007).
[CrossRef]

J. Yu, Z. Jia, T. Wang, and G. K. Chang, "A novel radio-over-fiber configuration using optical phase modulator to generate an optical mm-wave and centralized lightwave for uplink connection," IEEE Photon. Technol. Lett. 19, 140-142 (2007).
[CrossRef]

Waterhouse, R.

M. Bakaul, A. Nirmalathas, C. Lim, D. Novak, R. Waterhouse, "Investigation of performance enhancement of WDM optical interfaces for millimeter-wave fiber-radio networks," IEEE Photon. Technol. Lett. 19, 843-845 (2007).
[CrossRef]

M. Bakaul, A. Nirmalathas, C. Lim, D. Novak, and R. Waterhouse, "Simultaneous multiplexing and demultiplexing of wavelength-interleaved channels in DWDM millimeter-wave fiber-radio networks," J. Lightwave Technol. 24, 3341-3352 (2006).
[CrossRef]

M. Bakaul, A. Nirmalathas, C. Lim, D. Novak, and R. Waterhouse, "Hybrid multiplexing of multiband optical access technologies towards an integrated DWDM network," IEEE Photon. Technol. Lett. 18, 2311-2313 (2006).
[CrossRef]

Wen, H.

L. Chen, Y. Shao, X. Lei, H. Wen, and S. Wen, "A novel radio-over-fiber system with wavelength reuse for upstream data connection," IEEE Photon. Technol. Lett. 19, 387-389 (2007).
[CrossRef]

L. Chen, H. Wen, and S. Wen, "A radio-over-fiber system with a novel scheme for millimeter-wave generation and wavelength reuse for up-link connection," IEEE Photon. Technol. Lett. 18, 2056-2058 (2006).
[CrossRef]

Wen, S.

L. Chen, Y. Shao, X. Lei, H. Wen, and S. Wen, "A novel radio-over-fiber system with wavelength reuse for upstream data connection," IEEE Photon. Technol. Lett. 19, 387-389 (2007).
[CrossRef]

L. Chen, H. Wen, and S. Wen, "A radio-over-fiber system with a novel scheme for millimeter-wave generation and wavelength reuse for up-link connection," IEEE Photon. Technol. Lett. 18, 2056-2058 (2006).
[CrossRef]

Wu, C.

Wu, K.

X. Zhang, B. Liu, J. Yao, K. Wu, and R. Kashyap, "A novel millimeter-wave-band radio-over-fiber system with dense wavelength-division multiplexing bus architecture," IEEE Trans. Microwave Theory Tech. 54, 929-937 (2006).
[CrossRef]

G. Qi, J. Yao, J. Seregelyi, S. Paquet, C. Belisle, X. Zhang, K. Wu, and R. Kashyap, "Phase-noise analysis of optically generated millimeter-wave signals with external optical modulation techniques," J. Lightwave Technol. 24, 4861-4875 (2006).
[CrossRef]

Yao, J.

G. Qi, J. Yao, J. Seregelyi, S. Paquet, C. Belisle, X. Zhang, K. Wu, and R. Kashyap, "Phase-noise analysis of optically generated millimeter-wave signals with external optical modulation techniques," J. Lightwave Technol. 24, 4861-4875 (2006).
[CrossRef]

X. Zhang, B. Liu, J. Yao, K. Wu, and R. Kashyap, "A novel millimeter-wave-band radio-over-fiber system with dense wavelength-division multiplexing bus architecture," IEEE Trans. Microwave Theory Tech. 54, 929-937 (2006).
[CrossRef]

Yu, J.

J. Yu, Z. Jia, T. Wang, G. Chang, "Centralized lightwave radio-over-fiber system with photonic frequency quadrupling for high-frequency millimeter-wave generation," IEEE Photon. Technol. Lett. 19, 1499-1501 (2007).
[CrossRef]

J. Yu, Z. Jia, T. Wang, and G. K. Chang, "A novel radio-over-fiber configuration using optical phase modulator to generate an optical mm-wave and centralized lightwave for uplink connection," IEEE Photon. Technol. Lett. 19, 140-142 (2007).
[CrossRef]

Zhang, H.

K. Wang, X. Zheng, H. Zhang, Y. Guo, "A radio-over-fiber downstream link employing carrier-suppressed modulation scheme to regenerate and transmit vector signals," IEEE Photon. Technol. Lett. 19, 1365-1367 (2007).
[CrossRef]

Zhang, X.

C. Wu and X. Zhang, "Impact of nonlinear distortion in radio over fiber systems with single-sideband and tandem single-sideband subcarrier modulations," J. Lightwave Technol. 24, 2076-2090 (2006).
[CrossRef]

X. Zhang, B. Liu, J. Yao, K. Wu, and R. Kashyap, "A novel millimeter-wave-band radio-over-fiber system with dense wavelength-division multiplexing bus architecture," IEEE Trans. Microwave Theory Tech. 54, 929-937 (2006).
[CrossRef]

B. Masella and X. Zhang, "A novel single wavelength balanced system for radio over fiber links," IEEE Photon. Technol. Lett. 18, 301-303 (2006).
[CrossRef]

G. Qi, J. Yao, J. Seregelyi, S. Paquet, C. Belisle, X. Zhang, K. Wu, and R. Kashyap, "Phase-noise analysis of optically generated millimeter-wave signals with external optical modulation techniques," J. Lightwave Technol. 24, 4861-4875 (2006).
[CrossRef]

Zheng, X.

K. Wang, X. Zheng, H. Zhang, Y. Guo, "A radio-over-fiber downstream link employing carrier-suppressed modulation scheme to regenerate and transmit vector signals," IEEE Photon. Technol. Lett. 19, 1365-1367 (2007).
[CrossRef]

IEEE Photon. Technol. Lett. (12)

M. Bakaul, A. Nirmalathas, C. Lim, D. Novak, R. Waterhouse, "Investigation of performance enhancement of WDM optical interfaces for millimeter-wave fiber-radio networks," IEEE Photon. Technol. Lett. 19, 843-845 (2007).
[CrossRef]

K. Wang, X. Zheng, H. Zhang, Y. Guo, "A radio-over-fiber downstream link employing carrier-suppressed modulation scheme to regenerate and transmit vector signals," IEEE Photon. Technol. Lett. 19, 1365-1367 (2007).
[CrossRef]

J. Yu, Z. Jia, T. Wang, G. Chang, "Centralized lightwave radio-over-fiber system with photonic frequency quadrupling for high-frequency millimeter-wave generation," IEEE Photon. Technol. Lett. 19, 1499-1501 (2007).
[CrossRef]

J. Yu, Z. Jia, T. Wang, and G. K. Chang, "A novel radio-over-fiber configuration using optical phase modulator to generate an optical mm-wave and centralized lightwave for uplink connection," IEEE Photon. Technol. Lett. 19, 140-142 (2007).
[CrossRef]

L. Chen, Y. Shao, X. Lei, H. Wen, and S. Wen, "A novel radio-over-fiber system with wavelength reuse for upstream data connection," IEEE Photon. Technol. Lett. 19, 387-389 (2007).
[CrossRef]

C. Lin, J. Chen, P. Peng, C. Peng, W. Peng, B. Chiou, and S. Chi, "Hybrid optical access network integrating fiber-to-the-home and radio-over-fiber systems," IEEE Photon. Technol. Lett. 19, 610-612 (2007).
[CrossRef]

H. Lu, S. Tzeng, Y. Chuang, Y. Chi, and C. Liao, "Bidirectional radio-over-DWDM transport systems based on injection-locked VCSELs and optoelectronic feedback techniques," IEEE Photon. Technol. Lett. 19, 315-317 (2007).
[CrossRef]

C. Lin, W. Peng, P. Peng, J. Chen, C. Peng, B. Chiou, and S. Chi, "Simultaneous generation of baseband and radio signals using only one single-electrode Mach-Zehnder modulator with enhanced linearity," IEEE Photon. Technol. Lett. 18, 2481-2483 (2006).
[CrossRef]

M. Bakaul, A. Nirmalathas, C. Lim, D. Novak, and R. Waterhouse, "Hybrid multiplexing of multiband optical access technologies towards an integrated DWDM network," IEEE Photon. Technol. Lett. 18, 2311-2313 (2006).
[CrossRef]

A. Kaszubowska, L. Hu, and L. Barry, "Remote downconversion with wavelength reuse for the radio/fiber uplink connection," IEEE Photon. Technol. Lett. 18, 562-564 (2006).
[CrossRef]

L. Chen, H. Wen, and S. Wen, "A radio-over-fiber system with a novel scheme for millimeter-wave generation and wavelength reuse for up-link connection," IEEE Photon. Technol. Lett. 18, 2056-2058 (2006).
[CrossRef]

B. Masella and X. Zhang, "A novel single wavelength balanced system for radio over fiber links," IEEE Photon. Technol. Lett. 18, 301-303 (2006).
[CrossRef]

IEEE Trans. Microwave Theory Tech. (1)

X. Zhang, B. Liu, J. Yao, K. Wu, and R. Kashyap, "A novel millimeter-wave-band radio-over-fiber system with dense wavelength-division multiplexing bus architecture," IEEE Trans. Microwave Theory Tech. 54, 929-937 (2006).
[CrossRef]

J. Lightwave Technol. (8)

C. Wu and X. Zhang, "Impact of nonlinear distortion in radio over fiber systems with single-sideband and tandem single-sideband subcarrier modulations," J. Lightwave Technol. 24, 2076-2090 (2006).
[CrossRef]

K. Ikeda, T. Kuri, and K. Kitayama, " Simultaneous three-band modulation and fiber-optic transmission of 2.5-Gb/s baseband, microwave-, and 60-GHz-band signals on a single wavelength," J. Lightwave Technol. 21, 3194-3202 (2003).
[CrossRef]

M. Attygalle, C. Lim, and A. Nirmalathas, "Dispersion-tolerant multiple WDM channel millimeter-wave signal generation using a single monolithic mode-locked semiconductor laser," J. Lightwave Technol. 23, 295-303 (2005).
[CrossRef]

T. Nakasyotani, H. Toda, T. Kuri, and K. Kitayama, "Wavelength-division-multiplexed Millimeter-waveband radio-on-fiber system using a supercontinuum light source," J. Lightwave Technol. 24, 404-410 (2006).
[CrossRef]

G. Qi, J. Yao, J. Seregelyi, S. Paquet, C. Belisle, X. Zhang, K. Wu, and R. Kashyap, "Phase-noise analysis of optically generated millimeter-wave signals with external optical modulation techniques," J. Lightwave Technol. 24, 4861-4875 (2006).
[CrossRef]

T. Cho and K. Kim, "Effect of third-order intermodulation on radio-over-fiber systems by a dual-electrode Mach-Zehnder modulator with ODSB and OSSB signals," J. Lightwave Technol. 24, 2052-2058 (2006).
[CrossRef]

M. Bakaul, A. Nirmalathas, C. Lim, D. Novak, and R. Waterhouse, "Simultaneous multiplexing and demultiplexing of wavelength-interleaved channels in DWDM millimeter-wave fiber-radio networks," J. Lightwave Technol. 24, 3341-3352 (2006).
[CrossRef]

M. Garcia Larrode, A. Koonen, J. Vegas Olmos, and E. Verdurmen, "Microwave signal generation and transmission based on optical frequency multiplication with a polarization interferometer," J. Lightwave Technol. 25, 1372-1378 (2007).
[CrossRef]

Other (2)

M. Mohamed, B. Hraimel, X. Zhang, and K. Wu, "Efficient photonic generation of millimeter-waves using optical frequency multiplication in radio over fiber systems," Proceedings of IEEE Topic meeting on Microwave Photonics 2007, paper Th.-4.20, Victoria, Canada.

K. Wu, J. Yao, X. Zhang, and R. Kashyap, "Millimeter-wave photonic techniques for broadband communication and sensor applications," Proceedings of IEEE LEOS annual meeting 2006, Montreal, pp.270-271.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

Schematic of simultaneous up-conversion of two RF signals in a single MZM using optical carrier suppression modulation on a single optical carrier for RoF downlinks. Two frequency upconversion approaches are shown: optical (upper part) and electrical approach (lower part). PD: photodiode.

Fig. 2.
Fig. 2.

(a). Input optical spectrum to the optical filter, (b) transmitted the optical carrier and two optical subcarriers at ±10 GHz and (c) reflected optical subcarriers at ±15 GHz at the outputs of the optical filter for the optical approach as shown in Fig. 1.

Fig. 3.
Fig. 3.

Eye diagram of electrically down-converted 2.5 Gb/s signal from photonically frequency upconverted RF signal in a back-to-back RoF downlink with an optical carrier carrying: (a) a single RF signal at 10 GHz, and two RF signals at (b) 10 GHz and (c) 15 GHz simultaneously. Electrical approach is used.

Fig. 4.
Fig. 4.

The same as in Fig. 2, but optical approach is used.

Fig. 5.
Fig. 5.

Q-factor versus fiber length for RF signal at 20 GHz in a downlink system. Optical carrier suppression (OCS) modulation is obtained with (a) one RF signal at 10 GHz, and (b) two RF signals at 10 and 15 GHz in an MZM. Electrical approach is used.

Fig. 6.
Fig. 6.

Optimum optical carrier suppression (OCS) ratio range versus the lower RF f 1 based on 20% reduction of maximum fiber reach. The frequency difference of the two RFs is kept 5 GHz.

Fig. 7.
Fig. 7.

Eye opening penalty as a function of the lower RF f 1 with the frequency difference f 2-f 1 of 5 and 10 GHz between two RFs using (a) electrical approach and (b) optical approach.

Fig. 8.
Fig. 8.

Experimental setup using optical approach. IL: optical interleaver, LN-MOD: LiNbO3 (LN)-MZM, O/E: optical to electrical converter, i.e. PIN photodiode, TOF: tunable optical filter, and EA: electrical amplifier.

Fig. 9.
Fig. 9.

Eye diagrams after transmission over 20-km single-mode fiber from (a) 12 GHz RF signal before electrical down-conversion, (b) 12 GHz RF signal after electrical downconversion, (c) 36 GHz RF signal before electrical down-conversion, and (d) 36 GHz RF signal after electrical down-conversion.

Fig. 10.
Fig. 10.

Measured BER versus optical receiver power for an optical carrier transmitting two RF signals at 6 and 18 GHz over a back-to-back and a transmission over 20 fiber, respectively.

Metrics