Abstract

Compact silicon-on-insulator (SOI) rib waveguide 90° splitters based on narrow, high-aspect ratio (~10:1) trenches are designed and experimentally demonstrated. The splitter area is only 11 µm×11 µm. Splitter optical performance is investigated as a function of both trench width and refractive index of the trench fill material. We examine three trench fill materials, air (n=1.0), SU8 (n=1.57), and index matching fluid (n=1.733), and find good agreement between experimental measurement and three dimensional (3D) finite difference time domain (FDTD) simulation. A splitting ratio of 49/51 (reflection/transmission) is measured for an index fluid-filled trench 82nm wide.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Jalali, S. Yegnanarayanan, T. Yoon, T. Yoshimoto, I. Rendina, and F. Coppinger, "Advances in Silicon-on-Insulator Optoelectronics," IEEE J. Sel. Top. Quantum Electron. 4, 938-947 (1998).
    [CrossRef]
  2. Y. A. Vlasov and S. J. McNab, "Losses in single-mode silicon-on-insulator strip waveguides and bends," Opt. Express 12, 1622-1631 (2004).
    [CrossRef] [PubMed]
  3. W. Bogaerts, R. Baets, P. Dumon, V. Wiaux, S. Beckx, D. Taillaert, B. Luyssaert, J. V. Campenhout, P. Bienstman, and D. V. Thourhout, "Nanophotonic Waveguides in Silicon-on-Insulator Fabricated With CMOS Technology," J. Lightwave Technol.  23, 401- (2005).
    [CrossRef]
  4. J. Liu, J. Yu, S. Chen, and Z. Li, "Integrated folding 4x4 optical matrix switch with total internal reflection mirrors on SOI by anisotropic chemical etching," Photon. Technol. Lett. 17, 1187-1189 (2005).
    [CrossRef]
  5. I. Kiyat, A. Aydinli, N. Dagli, "Low-power thermooptic tuning of SOI resonator switch," Photon. Technol. Lett. 18, 364-366 (2006).
    [CrossRef]
  6. G. P. Nordin, J. W. Noh, and S. Kim, "In-plane photonic transduction for microcantilever sensor arrays," in Nanoscale Imaging, Spectroscopy, Sensing, and Actuation for Biomedical Applications IV, Alexander N. Cartwright, Dav V. Nicolau, and Paul L. Gourley, Editors, Proceedings of SPIE Vol. 6447, pp. 64470J-1 to -8 (2007).
  7. Y. Z. Tang, W. H. Wang, T. Li, and Y. L. Wang, "Integrated waveguide turning mirror on silicon-on-insulator," Photon. Technol. Lett. 14, 68-70 (2002).
    [CrossRef]
  8. S. Lardenois, D. Paskcal, L. Vivien, E. Cassan, and S. Laval, "Low-loss submicrometer silicon-on-insulator rib waveguides and corner mirrors," Opt. Lett. 28, 1150-1152 (2003).
    [CrossRef] [PubMed]
  9. Y. Qian, S. Kim, J. Song, and G. P. Nordin, "Compact and low loss silicon-on-insulator rib waveguide 90° bend," Opt. Express 14, 6020-6028 (2006)
    [CrossRef] [PubMed]
  10. C. S. Hsiao and L. Wang, "Design for beam splitting components employing silicon-on-insulator rib waveguide structures," Opt. Lett. 30, 3153-3155 (2005).
    [CrossRef] [PubMed]
  11. A. Koster, E. Cassan, S. Laval, L. Vivien, and D. Pascal, "Ultracompact splitter for submicrometer silicon-on-insulator rib waveguides," J. Opt. Soc. Am. A 21, 2180-2185 (2004).
    [CrossRef]
  12. L. Li, G. P. Nordin, J. M. English, and J. Jiang, "Small-area bends and beamsplitters for low-index-contrast waveguides", Opt. Express 11(3), 282-290 (2003).
    [CrossRef]
  13. D. Goldring, E. Alperovich, U. Levy, and D. Mendlovic, "Analysis of waveguide-splitter-junction in high-index silicon-on-insulator waveguides," Opt. Express 13, 2931-2940 (2005).
    [CrossRef] [PubMed]
  14. S. Kim, J. Jiang, and G. P. Nordin, "Design of compact polymer Mach-Zender interferometer and ring resonator with air trench structures," Opt. Eng. 45, 054602 (2006).
    [CrossRef]
  15. A. Taflove, Computational Electrodynamics: The Finite-Difference Time-Domain Method, (Artech House, Boston, Mass., 1995).
  16. J. Cai, G. P. Nordin, S. Kim, and J. Jiang, "Three-dimensional analysis of a hybrid photonic crystal-conventional waveguide 90o bend," Appl. Opt. 43, 4244-4249 (2004).
    [CrossRef] [PubMed]
  17. J. P. Berenger, "A perfectly matched layer for the absorption of electromagnetic waves," J. Comput. Phys. 114, 185-200 (1994).
    [CrossRef]

2006

I. Kiyat, A. Aydinli, N. Dagli, "Low-power thermooptic tuning of SOI resonator switch," Photon. Technol. Lett. 18, 364-366 (2006).
[CrossRef]

S. Kim, J. Jiang, and G. P. Nordin, "Design of compact polymer Mach-Zender interferometer and ring resonator with air trench structures," Opt. Eng. 45, 054602 (2006).
[CrossRef]

Y. Qian, S. Kim, J. Song, and G. P. Nordin, "Compact and low loss silicon-on-insulator rib waveguide 90° bend," Opt. Express 14, 6020-6028 (2006)
[CrossRef] [PubMed]

2005

2004

2003

2002

Y. Z. Tang, W. H. Wang, T. Li, and Y. L. Wang, "Integrated waveguide turning mirror on silicon-on-insulator," Photon. Technol. Lett. 14, 68-70 (2002).
[CrossRef]

1998

B. Jalali, S. Yegnanarayanan, T. Yoon, T. Yoshimoto, I. Rendina, and F. Coppinger, "Advances in Silicon-on-Insulator Optoelectronics," IEEE J. Sel. Top. Quantum Electron. 4, 938-947 (1998).
[CrossRef]

1994

J. P. Berenger, "A perfectly matched layer for the absorption of electromagnetic waves," J. Comput. Phys. 114, 185-200 (1994).
[CrossRef]

Alperovich, E.

Aydinli, A.

I. Kiyat, A. Aydinli, N. Dagli, "Low-power thermooptic tuning of SOI resonator switch," Photon. Technol. Lett. 18, 364-366 (2006).
[CrossRef]

Berenger, J. P.

J. P. Berenger, "A perfectly matched layer for the absorption of electromagnetic waves," J. Comput. Phys. 114, 185-200 (1994).
[CrossRef]

Cai, J.

Cassan, E.

Chen, S.

J. Liu, J. Yu, S. Chen, and Z. Li, "Integrated folding 4x4 optical matrix switch with total internal reflection mirrors on SOI by anisotropic chemical etching," Photon. Technol. Lett. 17, 1187-1189 (2005).
[CrossRef]

Coppinger, F.

B. Jalali, S. Yegnanarayanan, T. Yoon, T. Yoshimoto, I. Rendina, and F. Coppinger, "Advances in Silicon-on-Insulator Optoelectronics," IEEE J. Sel. Top. Quantum Electron. 4, 938-947 (1998).
[CrossRef]

Dagli, N.

I. Kiyat, A. Aydinli, N. Dagli, "Low-power thermooptic tuning of SOI resonator switch," Photon. Technol. Lett. 18, 364-366 (2006).
[CrossRef]

English, J. M.

Goldring, D.

Hsiao, C. S.

Jalali, B.

B. Jalali, S. Yegnanarayanan, T. Yoon, T. Yoshimoto, I. Rendina, and F. Coppinger, "Advances in Silicon-on-Insulator Optoelectronics," IEEE J. Sel. Top. Quantum Electron. 4, 938-947 (1998).
[CrossRef]

Jiang, J.

Kim, S.

Kiyat, I.

I. Kiyat, A. Aydinli, N. Dagli, "Low-power thermooptic tuning of SOI resonator switch," Photon. Technol. Lett. 18, 364-366 (2006).
[CrossRef]

Koster, A.

Lardenois, S.

Laval, S.

Levy, U.

Li, L.

Li, T.

Y. Z. Tang, W. H. Wang, T. Li, and Y. L. Wang, "Integrated waveguide turning mirror on silicon-on-insulator," Photon. Technol. Lett. 14, 68-70 (2002).
[CrossRef]

Li, Z.

J. Liu, J. Yu, S. Chen, and Z. Li, "Integrated folding 4x4 optical matrix switch with total internal reflection mirrors on SOI by anisotropic chemical etching," Photon. Technol. Lett. 17, 1187-1189 (2005).
[CrossRef]

Liu, J.

J. Liu, J. Yu, S. Chen, and Z. Li, "Integrated folding 4x4 optical matrix switch with total internal reflection mirrors on SOI by anisotropic chemical etching," Photon. Technol. Lett. 17, 1187-1189 (2005).
[CrossRef]

McNab, S. J.

Mendlovic, D.

Nordin, G. P.

Pascal, D.

Paskcal, D.

Qian, Y.

Rendina, I.

B. Jalali, S. Yegnanarayanan, T. Yoon, T. Yoshimoto, I. Rendina, and F. Coppinger, "Advances in Silicon-on-Insulator Optoelectronics," IEEE J. Sel. Top. Quantum Electron. 4, 938-947 (1998).
[CrossRef]

Song, J.

Tang, Y. Z.

Y. Z. Tang, W. H. Wang, T. Li, and Y. L. Wang, "Integrated waveguide turning mirror on silicon-on-insulator," Photon. Technol. Lett. 14, 68-70 (2002).
[CrossRef]

Vivien, L.

Vlasov, Y. A.

Wang, L.

Wang, W. H.

Y. Z. Tang, W. H. Wang, T. Li, and Y. L. Wang, "Integrated waveguide turning mirror on silicon-on-insulator," Photon. Technol. Lett. 14, 68-70 (2002).
[CrossRef]

Wang, Y. L.

Y. Z. Tang, W. H. Wang, T. Li, and Y. L. Wang, "Integrated waveguide turning mirror on silicon-on-insulator," Photon. Technol. Lett. 14, 68-70 (2002).
[CrossRef]

Yegnanarayanan, S.

B. Jalali, S. Yegnanarayanan, T. Yoon, T. Yoshimoto, I. Rendina, and F. Coppinger, "Advances in Silicon-on-Insulator Optoelectronics," IEEE J. Sel. Top. Quantum Electron. 4, 938-947 (1998).
[CrossRef]

Yoon, T.

B. Jalali, S. Yegnanarayanan, T. Yoon, T. Yoshimoto, I. Rendina, and F. Coppinger, "Advances in Silicon-on-Insulator Optoelectronics," IEEE J. Sel. Top. Quantum Electron. 4, 938-947 (1998).
[CrossRef]

Yoshimoto, T.

B. Jalali, S. Yegnanarayanan, T. Yoon, T. Yoshimoto, I. Rendina, and F. Coppinger, "Advances in Silicon-on-Insulator Optoelectronics," IEEE J. Sel. Top. Quantum Electron. 4, 938-947 (1998).
[CrossRef]

Yu, J.

J. Liu, J. Yu, S. Chen, and Z. Li, "Integrated folding 4x4 optical matrix switch with total internal reflection mirrors on SOI by anisotropic chemical etching," Photon. Technol. Lett. 17, 1187-1189 (2005).
[CrossRef]

Appl. Opt.

IEEE J. Sel. Top. Quantum Electron.

B. Jalali, S. Yegnanarayanan, T. Yoon, T. Yoshimoto, I. Rendina, and F. Coppinger, "Advances in Silicon-on-Insulator Optoelectronics," IEEE J. Sel. Top. Quantum Electron. 4, 938-947 (1998).
[CrossRef]

J. Comput. Phys.

J. P. Berenger, "A perfectly matched layer for the absorption of electromagnetic waves," J. Comput. Phys. 114, 185-200 (1994).
[CrossRef]

J. Opt. Soc. Am. A

Opt. Eng.

S. Kim, J. Jiang, and G. P. Nordin, "Design of compact polymer Mach-Zender interferometer and ring resonator with air trench structures," Opt. Eng. 45, 054602 (2006).
[CrossRef]

Opt. Express

Opt. Lett.

Photon. Technol. Lett.

J. Liu, J. Yu, S. Chen, and Z. Li, "Integrated folding 4x4 optical matrix switch with total internal reflection mirrors on SOI by anisotropic chemical etching," Photon. Technol. Lett. 17, 1187-1189 (2005).
[CrossRef]

I. Kiyat, A. Aydinli, N. Dagli, "Low-power thermooptic tuning of SOI resonator switch," Photon. Technol. Lett. 18, 364-366 (2006).
[CrossRef]

Y. Z. Tang, W. H. Wang, T. Li, and Y. L. Wang, "Integrated waveguide turning mirror on silicon-on-insulator," Photon. Technol. Lett. 14, 68-70 (2002).
[CrossRef]

Other

W. Bogaerts, R. Baets, P. Dumon, V. Wiaux, S. Beckx, D. Taillaert, B. Luyssaert, J. V. Campenhout, P. Bienstman, and D. V. Thourhout, "Nanophotonic Waveguides in Silicon-on-Insulator Fabricated With CMOS Technology," J. Lightwave Technol.  23, 401- (2005).
[CrossRef]

G. P. Nordin, J. W. Noh, and S. Kim, "In-plane photonic transduction for microcantilever sensor arrays," in Nanoscale Imaging, Spectroscopy, Sensing, and Actuation for Biomedical Applications IV, Alexander N. Cartwright, Dav V. Nicolau, and Paul L. Gourley, Editors, Proceedings of SPIE Vol. 6447, pp. 64470J-1 to -8 (2007).

A. Taflove, Computational Electrodynamics: The Finite-Difference Time-Domain Method, (Artech House, Boston, Mass., 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

(a) Cross section of single mode SOI rib waveguide. (b) Splitter geometry.

Fig. 2.
Fig. 2.

Total splitter efficiency (i.e., sum of transmitted and reflected power in waveguide modes divided by power in mode launched in 3D FDTD simulation) as a function of D [see Fig. 1(b) for definition of D] for SU8 trench fill and overclad.

Fig. 3.
Fig. 3.

(a) Magnitude squared time-averaged magnetic field and (b) splitter efficiency as a function of trench width without Goos-Hanchen shift compensation for index matching fluid-filled case. The power in the incident waveguide mode for the simulations is normalized to unity such that the peak value of the magnitude squared time averaged magnetic field of the incident mode in (a) is 0.013. The fringes are due to interference between the incident and reflected modes.

Fig. 4.
Fig. 4.

SEM images of (a) splitter, (b) roughness and verticality of etched sidewall, and (c) splitter/bend set after trench etch and before polymer coating.

Fig. 5.
Fig. 5.

(a) Measured and 3D FDTD simulation results for reflection and transmission splitting ratio as a function of trench width for trench fills of air (n=1.0), SU8 (n=1.57), and index matching fluid (n=1.733) at λ=1550 nm. (b) 2D scan of output fiber at exit face of chip for a splitter with 82 nm trench width filled with index matching fluid.

Tables (1)

Tables Icon

Table 1. Splitter 3D FDTD simulation results

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

η = P splitter _ reflection η Bend + P splitter _ transmission P Straight _ waveguide

Metrics