Abstract

This work studies the polarization characteristics of diffracted beams from a liquid crystal polarization grating. The grating is fabricated by exploiting the photo-alignment effect on a substrate that is coated with an azo dye-doped polyvinyl alcohol (PVA) film. The mechanism is induced by the irradiation of this film with suitably polarized light, which reorients the dyes. The reoriented dyes then align the liquid crystals (LCs). An LC polarization grating is fabricated using this approach. The LC alignment of the grating on one substrate is uni-directionally parallel to the surface, while that on the other is rotated. The polarization and the intensity of the diffracted beams are measured. A simulation based on the finite-difference time-domain (FDTD) method is performed and is very consistent with the experimental results.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S.-T. Wu, T.-S. Mo, AndyY.-G. Fuh, S.-T. Wu, and L.-C. Chien, "Polymer-Dispersed Liquid-Crystal Holographic Gratings Doped with a High-Dielectric-Anisotropy Dopant," Jpn. J. Appl. Phys. 406441-6445 (2001).
    [CrossRef]
  2. S. T. Wu, Yi Shin Chen, Jian Hong Guo, and Andy Ying-Guey Fuh, "Fabrication of Twist Nematic Gratings Using Polarization Hologram Based on Azo-Dye-Doped Liquid Crystals," Jpn. J. Appl. Phys. 45, 9146-9151 (2006).
    [CrossRef]
  3. V. Presnyakov, K. Asatryan, T. Galstian, and V. Chigrinov, "Optical polarization grating induced liquid crystal micro-structure using azo-dye command layer," Opt. Express 14, 10558-10564 (2006).
    [CrossRef] [PubMed]
  4. M. J. Escuti and W. M. Jones, "Polarization-Independent Switching With High Contrast From A Liquid Crystal Polarization Grating," SID Int. Symp. Digest Tech. Papers 37,1443-1446 (2006).
    [CrossRef]
  5. C. Oh, R. Komanduri, and M. J. Escuti, "FDTD and Elastic Continuum Analysis of the Liquid Crystal Polarization Grating," SID Int. Symp. Digest Tech. Papers 37, 844-847 (2006).
    [CrossRef]
  6. C. Oh, R. Komanduri, and M. J. Escuti, "FDTD analysis of 100%-Efficient Polarization-Independent Liquid Crystal Polarization Gratings," Proc. of SPIE 6332, 633212 (2006).
    [CrossRef]
  7. G. R. Fowles, Introduction to Modern Optics, (Holt, Rinehart and Winston, New York, 1968).
  8. A. Taflove, Computational Electromagnetic: The Finite-Difference Time-Domain Method (Artech House, 1995).
  9. D. M. Sullivan, Electromagnetic Simulation Using the FDTD Method, (Wiley-IEEE Press, New York, 2000).
    [CrossRef]
  10. C.-L. Ting, Optical simulation of liquid crystal devices using finite-difference time-domain method (Institute of Electro-Optical Science and Engineering, National Cheng Kung University, 2005).
  11. W.-Y. Wu and AndyY.-G. Fuh, "Rewritable Liquid Crystal Gratings Fabricated using Photoalignment Effect in Dye-Doped Poly(vinyl alcohol) Film," Jpn. J. Appl. Phys. 466761-6766 (2007).
    [CrossRef]
  12. K. S. Yee, "Numerical solutions of initial boundary value problems involving Maxwell’s equations in isotropic media," IEEE Trans. Ant. Prop. AP-14, 302-307 (1966).
  13. P. Yeh and C. Gu, Optics of Liquid Crystal Displays, (Wiley Interscience, New York, 1999).
  14. J. P. Berenger, "A Perfectly Matched Layer for the Absorption of Electromagnetic Waves," J. Computational Physics 114, 185-200 (1994).
    [CrossRef]
  15. C. Provenzano, P. Pagliusi, and G. Cipparrone, "Highly efficient liquid crystals based diffraction grating induced by polarization holograms at the aligning surfaces," Appl. Phys. Lett. 89, 121105 (2006).
    [CrossRef]

2007 (1)

W.-Y. Wu and AndyY.-G. Fuh, "Rewritable Liquid Crystal Gratings Fabricated using Photoalignment Effect in Dye-Doped Poly(vinyl alcohol) Film," Jpn. J. Appl. Phys. 466761-6766 (2007).
[CrossRef]

W.-Y. Wu and AndyY.-G. Fuh, "Rewritable Liquid Crystal Gratings Fabricated using Photoalignment Effect in Dye-Doped Poly(vinyl alcohol) Film," Jpn. J. Appl. Phys. 466761-6766 (2007).
[CrossRef]

2006 (6)

M. J. Escuti and W. M. Jones, "Polarization-Independent Switching With High Contrast From A Liquid Crystal Polarization Grating," SID Int. Symp. Digest Tech. Papers 37,1443-1446 (2006).
[CrossRef]

C. Oh, R. Komanduri, and M. J. Escuti, "FDTD and Elastic Continuum Analysis of the Liquid Crystal Polarization Grating," SID Int. Symp. Digest Tech. Papers 37, 844-847 (2006).
[CrossRef]

C. Oh, R. Komanduri, and M. J. Escuti, "FDTD analysis of 100%-Efficient Polarization-Independent Liquid Crystal Polarization Gratings," Proc. of SPIE 6332, 633212 (2006).
[CrossRef]

C. Provenzano, P. Pagliusi, and G. Cipparrone, "Highly efficient liquid crystals based diffraction grating induced by polarization holograms at the aligning surfaces," Appl. Phys. Lett. 89, 121105 (2006).
[CrossRef]

S. T. Wu, Yi Shin Chen, Jian Hong Guo, and Andy Ying-Guey Fuh, "Fabrication of Twist Nematic Gratings Using Polarization Hologram Based on Azo-Dye-Doped Liquid Crystals," Jpn. J. Appl. Phys. 45, 9146-9151 (2006).
[CrossRef]

V. Presnyakov, K. Asatryan, T. Galstian, and V. Chigrinov, "Optical polarization grating induced liquid crystal micro-structure using azo-dye command layer," Opt. Express 14, 10558-10564 (2006).
[CrossRef] [PubMed]

2001 (1)

S.-T. Wu, T.-S. Mo, AndyY.-G. Fuh, S.-T. Wu, and L.-C. Chien, "Polymer-Dispersed Liquid-Crystal Holographic Gratings Doped with a High-Dielectric-Anisotropy Dopant," Jpn. J. Appl. Phys. 406441-6445 (2001).
[CrossRef]

1994 (1)

J. P. Berenger, "A Perfectly Matched Layer for the Absorption of Electromagnetic Waves," J. Computational Physics 114, 185-200 (1994).
[CrossRef]

1966 (1)

K. S. Yee, "Numerical solutions of initial boundary value problems involving Maxwell’s equations in isotropic media," IEEE Trans. Ant. Prop. AP-14, 302-307 (1966).

Andy, T.-S.

S.-T. Wu, T.-S. Mo, AndyY.-G. Fuh, S.-T. Wu, and L.-C. Chien, "Polymer-Dispersed Liquid-Crystal Holographic Gratings Doped with a High-Dielectric-Anisotropy Dopant," Jpn. J. Appl. Phys. 406441-6445 (2001).
[CrossRef]

Andy, W.-Y.

W.-Y. Wu and AndyY.-G. Fuh, "Rewritable Liquid Crystal Gratings Fabricated using Photoalignment Effect in Dye-Doped Poly(vinyl alcohol) Film," Jpn. J. Appl. Phys. 466761-6766 (2007).
[CrossRef]

Asatryan, K.

Berenger, J. P.

J. P. Berenger, "A Perfectly Matched Layer for the Absorption of Electromagnetic Waves," J. Computational Physics 114, 185-200 (1994).
[CrossRef]

Chigrinov, V.

Cipparrone, G.

C. Provenzano, P. Pagliusi, and G. Cipparrone, "Highly efficient liquid crystals based diffraction grating induced by polarization holograms at the aligning surfaces," Appl. Phys. Lett. 89, 121105 (2006).
[CrossRef]

Escuti, M. J.

C. Oh, R. Komanduri, and M. J. Escuti, "FDTD analysis of 100%-Efficient Polarization-Independent Liquid Crystal Polarization Gratings," Proc. of SPIE 6332, 633212 (2006).
[CrossRef]

M. J. Escuti and W. M. Jones, "Polarization-Independent Switching With High Contrast From A Liquid Crystal Polarization Grating," SID Int. Symp. Digest Tech. Papers 37,1443-1446 (2006).
[CrossRef]

C. Oh, R. Komanduri, and M. J. Escuti, "FDTD and Elastic Continuum Analysis of the Liquid Crystal Polarization Grating," SID Int. Symp. Digest Tech. Papers 37, 844-847 (2006).
[CrossRef]

Galstian, T.

Jones, W. M.

M. J. Escuti and W. M. Jones, "Polarization-Independent Switching With High Contrast From A Liquid Crystal Polarization Grating," SID Int. Symp. Digest Tech. Papers 37,1443-1446 (2006).
[CrossRef]

Komanduri, R.

C. Oh, R. Komanduri, and M. J. Escuti, "FDTD and Elastic Continuum Analysis of the Liquid Crystal Polarization Grating," SID Int. Symp. Digest Tech. Papers 37, 844-847 (2006).
[CrossRef]

C. Oh, R. Komanduri, and M. J. Escuti, "FDTD analysis of 100%-Efficient Polarization-Independent Liquid Crystal Polarization Gratings," Proc. of SPIE 6332, 633212 (2006).
[CrossRef]

Mo, T.-S.

S.-T. Wu, T.-S. Mo, AndyY.-G. Fuh, S.-T. Wu, and L.-C. Chien, "Polymer-Dispersed Liquid-Crystal Holographic Gratings Doped with a High-Dielectric-Anisotropy Dopant," Jpn. J. Appl. Phys. 406441-6445 (2001).
[CrossRef]

Oh, C.

C. Oh, R. Komanduri, and M. J. Escuti, "FDTD and Elastic Continuum Analysis of the Liquid Crystal Polarization Grating," SID Int. Symp. Digest Tech. Papers 37, 844-847 (2006).
[CrossRef]

C. Oh, R. Komanduri, and M. J. Escuti, "FDTD analysis of 100%-Efficient Polarization-Independent Liquid Crystal Polarization Gratings," Proc. of SPIE 6332, 633212 (2006).
[CrossRef]

Pagliusi, P.

C. Provenzano, P. Pagliusi, and G. Cipparrone, "Highly efficient liquid crystals based diffraction grating induced by polarization holograms at the aligning surfaces," Appl. Phys. Lett. 89, 121105 (2006).
[CrossRef]

Presnyakov, V.

Provenzano, C.

C. Provenzano, P. Pagliusi, and G. Cipparrone, "Highly efficient liquid crystals based diffraction grating induced by polarization holograms at the aligning surfaces," Appl. Phys. Lett. 89, 121105 (2006).
[CrossRef]

Wu, S. T.

S. T. Wu, Yi Shin Chen, Jian Hong Guo, and Andy Ying-Guey Fuh, "Fabrication of Twist Nematic Gratings Using Polarization Hologram Based on Azo-Dye-Doped Liquid Crystals," Jpn. J. Appl. Phys. 45, 9146-9151 (2006).
[CrossRef]

Wu, S.-T.

S.-T. Wu, T.-S. Mo, AndyY.-G. Fuh, S.-T. Wu, and L.-C. Chien, "Polymer-Dispersed Liquid-Crystal Holographic Gratings Doped with a High-Dielectric-Anisotropy Dopant," Jpn. J. Appl. Phys. 406441-6445 (2001).
[CrossRef]

Wu, W.-Y.

W.-Y. Wu and AndyY.-G. Fuh, "Rewritable Liquid Crystal Gratings Fabricated using Photoalignment Effect in Dye-Doped Poly(vinyl alcohol) Film," Jpn. J. Appl. Phys. 466761-6766 (2007).
[CrossRef]

Yee, K. S.

K. S. Yee, "Numerical solutions of initial boundary value problems involving Maxwell’s equations in isotropic media," IEEE Trans. Ant. Prop. AP-14, 302-307 (1966).

Appl. Phys. Lett. (1)

C. Provenzano, P. Pagliusi, and G. Cipparrone, "Highly efficient liquid crystals based diffraction grating induced by polarization holograms at the aligning surfaces," Appl. Phys. Lett. 89, 121105 (2006).
[CrossRef]

IEEE Trans. Ant. Prop. (1)

K. S. Yee, "Numerical solutions of initial boundary value problems involving Maxwell’s equations in isotropic media," IEEE Trans. Ant. Prop. AP-14, 302-307 (1966).

J. Computational Physics (1)

J. P. Berenger, "A Perfectly Matched Layer for the Absorption of Electromagnetic Waves," J. Computational Physics 114, 185-200 (1994).
[CrossRef]

Jpn. J. Appl. Phys. (3)

W.-Y. Wu and AndyY.-G. Fuh, "Rewritable Liquid Crystal Gratings Fabricated using Photoalignment Effect in Dye-Doped Poly(vinyl alcohol) Film," Jpn. J. Appl. Phys. 466761-6766 (2007).
[CrossRef]

S.-T. Wu, T.-S. Mo, AndyY.-G. Fuh, S.-T. Wu, and L.-C. Chien, "Polymer-Dispersed Liquid-Crystal Holographic Gratings Doped with a High-Dielectric-Anisotropy Dopant," Jpn. J. Appl. Phys. 406441-6445 (2001).
[CrossRef]

S. T. Wu, Yi Shin Chen, Jian Hong Guo, and Andy Ying-Guey Fuh, "Fabrication of Twist Nematic Gratings Using Polarization Hologram Based on Azo-Dye-Doped Liquid Crystals," Jpn. J. Appl. Phys. 45, 9146-9151 (2006).
[CrossRef]

Opt. Express (1)

Proc. of SPIE (1)

C. Oh, R. Komanduri, and M. J. Escuti, "FDTD analysis of 100%-Efficient Polarization-Independent Liquid Crystal Polarization Gratings," Proc. of SPIE 6332, 633212 (2006).
[CrossRef]

SID Int. Symp. Digest Tech. Papers (2)

M. J. Escuti and W. M. Jones, "Polarization-Independent Switching With High Contrast From A Liquid Crystal Polarization Grating," SID Int. Symp. Digest Tech. Papers 37,1443-1446 (2006).
[CrossRef]

C. Oh, R. Komanduri, and M. J. Escuti, "FDTD and Elastic Continuum Analysis of the Liquid Crystal Polarization Grating," SID Int. Symp. Digest Tech. Papers 37, 844-847 (2006).
[CrossRef]

Other (5)

P. Yeh and C. Gu, Optics of Liquid Crystal Displays, (Wiley Interscience, New York, 1999).

G. R. Fowles, Introduction to Modern Optics, (Holt, Rinehart and Winston, New York, 1968).

A. Taflove, Computational Electromagnetic: The Finite-Difference Time-Domain Method (Artech House, 1995).

D. M. Sullivan, Electromagnetic Simulation Using the FDTD Method, (Wiley-IEEE Press, New York, 2000).
[CrossRef]

C.-L. Ting, Optical simulation of liquid crystal devices using finite-difference time-domain method (Institute of Electro-Optical Science and Engineering, National Cheng Kung University, 2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

Absorption spectrum of MO/PVA solution. The two arrows indicate the pumping and probing wavelengths of the Ar+ and He-Ne lasers, respectively.

Fig. 2.
Fig. 2.

Interference pattern of a PG on the command surface, where the LCs are aligned perpendicular to the interference polarizations. LCP and RCP represent left circular polarization and right circular polarization, respectively.

Fig. 3.
Fig. 3.

Images of PG observed using a POM with (a) crossed, (b) parallel polarizers.

Fig. 4.
Fig. 4.

(a) Magnified image of PG observed under a POM with crossed polarizers (Fig. 3(a)), showing a sharp boundary in each grating period, (b) inferred LC directors profile on the command surface, corresponding to (a).

Fig. 5.
Fig. 5.

(a) Cause of disclination lines, and (b) formed LC profile of disclination line between two periods.

Fig. 6.
Fig. 6.

Schematic experimental setup for measuring the diffraction characteristics of a PG using an He-Ne laser.

Fig. 7.
Fig. 7.

Diffraction pattern of PG (a) with no polarizer and analyzer being placed before and after the cell, (b) with P‖ A, and (c) with P⊥ A using the setup in Fig. 6.

Fig. 8.
Fig. 8.

Simulated results for liquid crystal PG; (a) pattern of wave propagation in LC, where stripes represent wave-fronts, (b) simulated image of PG under crossed POM, (c) diffraction efficiency, and (d) polarization states of zeroth to fifth diffracted beams. Δ in (a) is Yee cubic grid size. PML means perfect matching layer.

Fig. 9.
Fig. 9.

Comparisons of experimental and simulated results; (a) zeroth-, and (b) first-order diffractions.

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

E t = J ε + 1 ε × H ,
H t = 1 μ × E ,
E t t = ( n 1 2 ) Δ t = E n E n 1 Δ t = σ ε E n 1 2 + 1 ε × H n 1 2 ,
H t t = n Δ t = H n + 1 2 H n 1 2 Δ t = 1 μ × E n .
E n = 1 σ Δ t 2 ε 1 + σ Δ t 2 ε E n 1 + Δ t ε 1 + σ Δ t 2 ε × H n 1 2 ,
H n + 1 2 = H n 1 2 Δ t μ × E n .
ε = ( ε 11 ε 12 ε 13 ε 21 ε 22 ε 23 ε 31 ε 32 ε 33 ) ,
ε 11 = ε 0 ( n 0 2 + ( n e 2 n o 2 ) sin 2 θ c cos 2 ϕ c ) ,
ε 12 = ε 21 = ε o ( ( n e 2 n o 2 ) sin 2 θ c sin ϕ c cos ϕ c ) ,
ε 13 = ε 31 = ε o ( ( n e 2 n o 2 ) sin θ c cos ϕ c cos ϕ c ) ,
ε 22 = ε o ( n o 2 + ( n e 2 n o 2 ) sin 2 θ c sin 2 ϕ c ) ,
ε 23 = ε 32 = ε o ( ( n e 2 n o 2 ) sin θ c cos θ c sin ϕ c ) ,
ε 33 = ε o ( n o 2 + ( n e 2 n o 2 ) cos 2 θ c ) ,
E diffraction , m ( ω ) = 1 y p 0 y p E ( ω , y ) exp [ j 2 π my y p ] dy

Metrics