Abstract

This letter reports a straightforward means of collecting two-dimensional electronic (2D-E) spectra using optical tools common to many research groups involved in ultrafast spectroscopy and quantum control. In our method a femtosecond pulse shaper is used to generate a pair of phase stable collinear laser pulses which are then incident on a gas or liquid sample. The pulse pair is followed by an ultrashort probe pulse that is spectrally resolved. The delay between the collinear pulses is incremented using phase and amplitude shaping and a 2D-E spectrum is generated following Fourier transformation. The partially collinear beam geometry results in perfectly phased absorptive spectra without phase twist. Our approach is much simpler to implement than standard non-collinear beam geometries, which are challenging to phase stabilize and require complicated calibrations. Using pulse shaping, many new experiments are now also possible in both 2D-E spectroscopy and coherent control.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. “Special Issue on Multidimensional Spectroscopies,” Chem. Phys.266, 135–352 (2001).
  2. “Multidimensional Ultrafast Spectroscopy Special Feature,” Proc. Natl. Acad. Sci. USA104, 14189–14544 (2007).
    [PubMed]
  3. F. Ding, P. Mukherjee, and M. T. Zanni, “Passively correcting phase drift in two-dimensional infrared spectroscopy,” Opt. Lett. 31, 2918–2920 (2006).
    [CrossRef] [PubMed]
  4. G. D. Goodno, G. Dadusc, and R. J. D. Miller, “Ultrafast heterodyne-detected transient-grating spectroscopy using diffractive optics,” J. Opt. Soc. Am. B 15, 1791–1794 (1998).
    [CrossRef]
  5. T. Brixner, T. Mancal, I. V. Stiopkin, and G. R. Fleming, “Phase-stabilized two-dimensional electronic spectroscopy,” J. Chem. Phys. 121, 4221–4236 (2004).
    [CrossRef] [PubMed]
  6. V. Volkov, R. Schanz, and P. Hamm, “Active phase stabilization in Fourier-transform two-dimensional infrared spectroscopy,” Opt. Lett. 30, 2010–2012 (2005).
    [CrossRef] [PubMed]
  7. T. H. Zhang, C. N. Borca, X. Q. Li, and S. T. Cundiff, “Optical two-dimensional Fourier transform spectroscopy with active interferometric stabilization,” Opt. Express 13, 7432–7441 (2005).
    [CrossRef] [PubMed]
  8. H. Kawashima, M. M. Wefers, and K. A. Nelson, “Femtosecond Pulse Shaping, Multiple-Pulse Spectroscopy, and Optical Control,” Annu. Rev. Phys. Chem. 46, 627–656 (1995).
    [CrossRef]
  9. M. A. Dugan, J. X. Tull, and W. S. Warren, “High-resolution acousto-optic shaping of unamplified and amplified femtosecond laser pulses,” J. Opt. Soc. Am. B 14, 2348–2358 (1997).
    [CrossRef]
  10. T. Weinacht, J. Ahn, and P. Bucksbaum, “Controlling the shape of a quantum wavefunction,” Nature 397, 233–235 (1999).
    [CrossRef]
  11. T. C. Weinacht, J. Ahn, and P. H. Bucksbaum, “Measurement of the amplitude and phase of a sculpted Rydberg wave packet,” Phys. Rev. Lett. 80, 5508–5511 (1998).
    [CrossRef]
  12. J. B. Asbury, T. Steinel, and M. D. Fayer, “Vibrational echo correlation spectroscopy probes of hydrogen bond dynamics in water and methanol,” J. Lumin. 107, 271–286 (2004).
    [CrossRef] [PubMed]
  13. E. B. W. Lerch, X. C. Dai, S. Gilb, E. A. Torres, and S. R. Leone, “Control of Li2 wave packet dynamics by modification of the quantum mechanical amplitude of a single state,” J. Chem. Phys.124 (2006).
    [CrossRef] [PubMed]
  14. P. F. Tian, D. Keusters, Y. Suzaki, and W. S. Warren, “Femtosecond phase-coherent two-dimensional spectroscopy,” Science 300, 1553–1555 (2003).
    [CrossRef] [PubMed]
  15. J. C. Vaughan, T. Hornung, K. W. Stone, and K. A. Nelson, “Coherently controlled ultrafast four-wave mixing spectroscopy,” J. Phys. Chem. A 111, 4873–4883 (2007).
    [CrossRef] [PubMed]
  16. S.-H. Shim, D. B. Strasfeld, Y. L. Ling, and M. T. Zanni, “Automated 2D IR spectroscopy using a mid-IR pulse shaper and application of this technology to the human islet amyloid polypeptide,” Proc. Natl. Acad. Sci. USA 104, 14197–14202 (2007).
    [CrossRef] [PubMed]
  17. S. M. G. Faeder and D. M. Jonas, “Two-dimensional electronic correlation and relaxation spectra: Theory and model calculations,” J. Phys. Chem. A 103, 10489–10505 (1999).
    [CrossRef]
  18. M. Khalil and A. Tokmakoff, “Signatures of vibrational interactions in coherent two-dimensional infrared spectroscopy,” Chem. Phys. 266, 213–230 (2001).
    [CrossRef]
  19. C. Scheurer and S. Mukamel, “Design strategies for pulse sequences in multidimensional optical spectroscopies,” J. Chem. Phys. 115, 4989–5004 (2001).
    [CrossRef]
  20. M. A. Montgomery, R. R. Meglen, and N. H. Damrauer, “General method for the dimension reduction of adaptive control experiments,” J. Phys. Chem. A 110, 6391–6394 (2006).
    [CrossRef] [PubMed]
  21. P. F. Tekavec, G. A. Lott, and A. H. Marcus, “Flourescence-Detected Two-Dimensional Electronic Coherence Spectroscopy by Acousto-Optic Phase Modulation,” J. Chem. Phys., Submitted (2007).
    [CrossRef] [PubMed]
  22. S. Mukamel, Principles of Nonlinear Optical Spectroscopy (Oxford University Press, New York, 1995).
  23. E. C. Fulmer, F. Ding, P. Mukherjee, and M. T. Zanni, “Vibrational dynamics of ions in glass from fifth-order two-dimensional infrared spectroscopy,” Phys. Rev. Lett. 94, 067402 (2005).
    [CrossRef] [PubMed]
  24. E. C. Fulmer, P. Mukherjee, A. T. Krummel, and M. T. Zanni, “A pulse sequence for directly measuring the anharmonicities of coupled vibrations: Two-quantum two-dimensional infrared spectroscopy,” J. Chem. Phys. 120, 8067–8078 (2004).
    [CrossRef] [PubMed]
  25. W. M. Zhang, V. Chernyak, and S. Mukamel, “Multidimensional femtosecond correlation spectroscopies of electronic and vibrational excitons,” J. Chem. Phys. 110, 5011–5028 (1999).
    [CrossRef]
  26. D. Keusters, H. S. Tan, and W. S. Warren, “Role of pulse phase and direction in two-dimensional optical spectroscopy,” J. Phys. Chem. A 103, 10369–10380 (1999).
    [CrossRef]
  27. J. C. Vaughan, T. Feurer, K. W. Stone, and K. A. Nelson, “Analysis of replica pulses in femtosecond pulse shaping with pixelated devices,” Opt. Express 14, 1314–1328 (2006).
    [CrossRef] [PubMed]
  28. R. Trebino, Frequency-Resolved Optical Gating (Kluwer Avademic Publishers, Norwell, MA, 2000).
  29. R. S. Judson and H. Rabitz, “Teaching lasers to control molecules,” Phys. Rev. Lett. 68, 1500–1503 (1992).
    [CrossRef] [PubMed]
  30. S. A. Rice and M. Zhao, Optical Control of MolecularDdynamics. (Wiley, New York, 2000).
  31. M. A. Montgomery and N. H. Damrauer, “Elucidation of control mechanisms discovered during adaptive manipulation of [Ru(dpb)3](PF6)2 emission in the solution phase,” J. Phys. Chem. A 111, 1426–1433 (2007).
    [CrossRef] [PubMed]
  32. M. A. Montgomery, R. R. Meglen, and N. H. Damrauer, “General method for reducing adaptive laser pulse-shaping experiments to a single control variable,” J. Phys. Chem. A 111, 5126–5129 (2007).
    [CrossRef] [PubMed]
  33. T. Brixner, N. H. Damrauer, B. Kiefer, and G. Gerber, “Liquid-phase adaptive femtosecond quantum control: Removing intrinsic intensity dependencies,” J. Chem. Phys. 118, 3692–3701 (2003).
    [CrossRef]
  34. T. Brixner, N. H. Damrauer, and G. Gerber, “Femtosecond quantum control,” in Advances in Atomic, Molecular, and Optical Physics,  Vol 46(2001), pp. 1–54.
    [CrossRef]

2007 (4)

J. C. Vaughan, T. Hornung, K. W. Stone, and K. A. Nelson, “Coherently controlled ultrafast four-wave mixing spectroscopy,” J. Phys. Chem. A 111, 4873–4883 (2007).
[CrossRef] [PubMed]

S.-H. Shim, D. B. Strasfeld, Y. L. Ling, and M. T. Zanni, “Automated 2D IR spectroscopy using a mid-IR pulse shaper and application of this technology to the human islet amyloid polypeptide,” Proc. Natl. Acad. Sci. USA 104, 14197–14202 (2007).
[CrossRef] [PubMed]

M. A. Montgomery and N. H. Damrauer, “Elucidation of control mechanisms discovered during adaptive manipulation of [Ru(dpb)3](PF6)2 emission in the solution phase,” J. Phys. Chem. A 111, 1426–1433 (2007).
[CrossRef] [PubMed]

M. A. Montgomery, R. R. Meglen, and N. H. Damrauer, “General method for reducing adaptive laser pulse-shaping experiments to a single control variable,” J. Phys. Chem. A 111, 5126–5129 (2007).
[CrossRef] [PubMed]

2006 (3)

2005 (3)

2004 (3)

E. C. Fulmer, P. Mukherjee, A. T. Krummel, and M. T. Zanni, “A pulse sequence for directly measuring the anharmonicities of coupled vibrations: Two-quantum two-dimensional infrared spectroscopy,” J. Chem. Phys. 120, 8067–8078 (2004).
[CrossRef] [PubMed]

J. B. Asbury, T. Steinel, and M. D. Fayer, “Vibrational echo correlation spectroscopy probes of hydrogen bond dynamics in water and methanol,” J. Lumin. 107, 271–286 (2004).
[CrossRef] [PubMed]

T. Brixner, T. Mancal, I. V. Stiopkin, and G. R. Fleming, “Phase-stabilized two-dimensional electronic spectroscopy,” J. Chem. Phys. 121, 4221–4236 (2004).
[CrossRef] [PubMed]

2003 (2)

P. F. Tian, D. Keusters, Y. Suzaki, and W. S. Warren, “Femtosecond phase-coherent two-dimensional spectroscopy,” Science 300, 1553–1555 (2003).
[CrossRef] [PubMed]

T. Brixner, N. H. Damrauer, B. Kiefer, and G. Gerber, “Liquid-phase adaptive femtosecond quantum control: Removing intrinsic intensity dependencies,” J. Chem. Phys. 118, 3692–3701 (2003).
[CrossRef]

2001 (3)

T. Brixner, N. H. Damrauer, and G. Gerber, “Femtosecond quantum control,” in Advances in Atomic, Molecular, and Optical Physics,  Vol 46(2001), pp. 1–54.
[CrossRef]

M. Khalil and A. Tokmakoff, “Signatures of vibrational interactions in coherent two-dimensional infrared spectroscopy,” Chem. Phys. 266, 213–230 (2001).
[CrossRef]

C. Scheurer and S. Mukamel, “Design strategies for pulse sequences in multidimensional optical spectroscopies,” J. Chem. Phys. 115, 4989–5004 (2001).
[CrossRef]

1999 (4)

S. M. G. Faeder and D. M. Jonas, “Two-dimensional electronic correlation and relaxation spectra: Theory and model calculations,” J. Phys. Chem. A 103, 10489–10505 (1999).
[CrossRef]

T. Weinacht, J. Ahn, and P. Bucksbaum, “Controlling the shape of a quantum wavefunction,” Nature 397, 233–235 (1999).
[CrossRef]

W. M. Zhang, V. Chernyak, and S. Mukamel, “Multidimensional femtosecond correlation spectroscopies of electronic and vibrational excitons,” J. Chem. Phys. 110, 5011–5028 (1999).
[CrossRef]

D. Keusters, H. S. Tan, and W. S. Warren, “Role of pulse phase and direction in two-dimensional optical spectroscopy,” J. Phys. Chem. A 103, 10369–10380 (1999).
[CrossRef]

1998 (2)

T. C. Weinacht, J. Ahn, and P. H. Bucksbaum, “Measurement of the amplitude and phase of a sculpted Rydberg wave packet,” Phys. Rev. Lett. 80, 5508–5511 (1998).
[CrossRef]

G. D. Goodno, G. Dadusc, and R. J. D. Miller, “Ultrafast heterodyne-detected transient-grating spectroscopy using diffractive optics,” J. Opt. Soc. Am. B 15, 1791–1794 (1998).
[CrossRef]

1997 (1)

1995 (1)

H. Kawashima, M. M. Wefers, and K. A. Nelson, “Femtosecond Pulse Shaping, Multiple-Pulse Spectroscopy, and Optical Control,” Annu. Rev. Phys. Chem. 46, 627–656 (1995).
[CrossRef]

1992 (1)

R. S. Judson and H. Rabitz, “Teaching lasers to control molecules,” Phys. Rev. Lett. 68, 1500–1503 (1992).
[CrossRef] [PubMed]

Ahn, J.

T. Weinacht, J. Ahn, and P. Bucksbaum, “Controlling the shape of a quantum wavefunction,” Nature 397, 233–235 (1999).
[CrossRef]

T. C. Weinacht, J. Ahn, and P. H. Bucksbaum, “Measurement of the amplitude and phase of a sculpted Rydberg wave packet,” Phys. Rev. Lett. 80, 5508–5511 (1998).
[CrossRef]

Asbury, J. B.

J. B. Asbury, T. Steinel, and M. D. Fayer, “Vibrational echo correlation spectroscopy probes of hydrogen bond dynamics in water and methanol,” J. Lumin. 107, 271–286 (2004).
[CrossRef] [PubMed]

Borca, C. N.

Brixner, T.

T. Brixner, T. Mancal, I. V. Stiopkin, and G. R. Fleming, “Phase-stabilized two-dimensional electronic spectroscopy,” J. Chem. Phys. 121, 4221–4236 (2004).
[CrossRef] [PubMed]

T. Brixner, N. H. Damrauer, B. Kiefer, and G. Gerber, “Liquid-phase adaptive femtosecond quantum control: Removing intrinsic intensity dependencies,” J. Chem. Phys. 118, 3692–3701 (2003).
[CrossRef]

T. Brixner, N. H. Damrauer, and G. Gerber, “Femtosecond quantum control,” in Advances in Atomic, Molecular, and Optical Physics,  Vol 46(2001), pp. 1–54.
[CrossRef]

Bucksbaum, P.

T. Weinacht, J. Ahn, and P. Bucksbaum, “Controlling the shape of a quantum wavefunction,” Nature 397, 233–235 (1999).
[CrossRef]

Bucksbaum, P. H.

T. C. Weinacht, J. Ahn, and P. H. Bucksbaum, “Measurement of the amplitude and phase of a sculpted Rydberg wave packet,” Phys. Rev. Lett. 80, 5508–5511 (1998).
[CrossRef]

Chernyak, V.

W. M. Zhang, V. Chernyak, and S. Mukamel, “Multidimensional femtosecond correlation spectroscopies of electronic and vibrational excitons,” J. Chem. Phys. 110, 5011–5028 (1999).
[CrossRef]

Cundiff, S. T.

Dadusc, G.

Dai, X. C.

E. B. W. Lerch, X. C. Dai, S. Gilb, E. A. Torres, and S. R. Leone, “Control of Li2 wave packet dynamics by modification of the quantum mechanical amplitude of a single state,” J. Chem. Phys.124 (2006).
[CrossRef] [PubMed]

Damrauer, N. H.

M. A. Montgomery and N. H. Damrauer, “Elucidation of control mechanisms discovered during adaptive manipulation of [Ru(dpb)3](PF6)2 emission in the solution phase,” J. Phys. Chem. A 111, 1426–1433 (2007).
[CrossRef] [PubMed]

M. A. Montgomery, R. R. Meglen, and N. H. Damrauer, “General method for reducing adaptive laser pulse-shaping experiments to a single control variable,” J. Phys. Chem. A 111, 5126–5129 (2007).
[CrossRef] [PubMed]

M. A. Montgomery, R. R. Meglen, and N. H. Damrauer, “General method for the dimension reduction of adaptive control experiments,” J. Phys. Chem. A 110, 6391–6394 (2006).
[CrossRef] [PubMed]

T. Brixner, N. H. Damrauer, B. Kiefer, and G. Gerber, “Liquid-phase adaptive femtosecond quantum control: Removing intrinsic intensity dependencies,” J. Chem. Phys. 118, 3692–3701 (2003).
[CrossRef]

T. Brixner, N. H. Damrauer, and G. Gerber, “Femtosecond quantum control,” in Advances in Atomic, Molecular, and Optical Physics,  Vol 46(2001), pp. 1–54.
[CrossRef]

Ding, F.

F. Ding, P. Mukherjee, and M. T. Zanni, “Passively correcting phase drift in two-dimensional infrared spectroscopy,” Opt. Lett. 31, 2918–2920 (2006).
[CrossRef] [PubMed]

E. C. Fulmer, F. Ding, P. Mukherjee, and M. T. Zanni, “Vibrational dynamics of ions in glass from fifth-order two-dimensional infrared spectroscopy,” Phys. Rev. Lett. 94, 067402 (2005).
[CrossRef] [PubMed]

Dugan, M. A.

Faeder, S. M. G.

S. M. G. Faeder and D. M. Jonas, “Two-dimensional electronic correlation and relaxation spectra: Theory and model calculations,” J. Phys. Chem. A 103, 10489–10505 (1999).
[CrossRef]

Fayer, M. D.

J. B. Asbury, T. Steinel, and M. D. Fayer, “Vibrational echo correlation spectroscopy probes of hydrogen bond dynamics in water and methanol,” J. Lumin. 107, 271–286 (2004).
[CrossRef] [PubMed]

Feurer, T.

Fleming, G. R.

T. Brixner, T. Mancal, I. V. Stiopkin, and G. R. Fleming, “Phase-stabilized two-dimensional electronic spectroscopy,” J. Chem. Phys. 121, 4221–4236 (2004).
[CrossRef] [PubMed]

Fulmer, E. C.

E. C. Fulmer, F. Ding, P. Mukherjee, and M. T. Zanni, “Vibrational dynamics of ions in glass from fifth-order two-dimensional infrared spectroscopy,” Phys. Rev. Lett. 94, 067402 (2005).
[CrossRef] [PubMed]

E. C. Fulmer, P. Mukherjee, A. T. Krummel, and M. T. Zanni, “A pulse sequence for directly measuring the anharmonicities of coupled vibrations: Two-quantum two-dimensional infrared spectroscopy,” J. Chem. Phys. 120, 8067–8078 (2004).
[CrossRef] [PubMed]

Gerber, G.

T. Brixner, N. H. Damrauer, B. Kiefer, and G. Gerber, “Liquid-phase adaptive femtosecond quantum control: Removing intrinsic intensity dependencies,” J. Chem. Phys. 118, 3692–3701 (2003).
[CrossRef]

T. Brixner, N. H. Damrauer, and G. Gerber, “Femtosecond quantum control,” in Advances in Atomic, Molecular, and Optical Physics,  Vol 46(2001), pp. 1–54.
[CrossRef]

Gilb, S.

E. B. W. Lerch, X. C. Dai, S. Gilb, E. A. Torres, and S. R. Leone, “Control of Li2 wave packet dynamics by modification of the quantum mechanical amplitude of a single state,” J. Chem. Phys.124 (2006).
[CrossRef] [PubMed]

Goodno, G. D.

Hamm, P.

Hornung, T.

J. C. Vaughan, T. Hornung, K. W. Stone, and K. A. Nelson, “Coherently controlled ultrafast four-wave mixing spectroscopy,” J. Phys. Chem. A 111, 4873–4883 (2007).
[CrossRef] [PubMed]

Jonas, D. M.

S. M. G. Faeder and D. M. Jonas, “Two-dimensional electronic correlation and relaxation spectra: Theory and model calculations,” J. Phys. Chem. A 103, 10489–10505 (1999).
[CrossRef]

Judson, R. S.

R. S. Judson and H. Rabitz, “Teaching lasers to control molecules,” Phys. Rev. Lett. 68, 1500–1503 (1992).
[CrossRef] [PubMed]

Kawashima, H.

H. Kawashima, M. M. Wefers, and K. A. Nelson, “Femtosecond Pulse Shaping, Multiple-Pulse Spectroscopy, and Optical Control,” Annu. Rev. Phys. Chem. 46, 627–656 (1995).
[CrossRef]

Keusters, D.

P. F. Tian, D. Keusters, Y. Suzaki, and W. S. Warren, “Femtosecond phase-coherent two-dimensional spectroscopy,” Science 300, 1553–1555 (2003).
[CrossRef] [PubMed]

D. Keusters, H. S. Tan, and W. S. Warren, “Role of pulse phase and direction in two-dimensional optical spectroscopy,” J. Phys. Chem. A 103, 10369–10380 (1999).
[CrossRef]

Khalil, M.

M. Khalil and A. Tokmakoff, “Signatures of vibrational interactions in coherent two-dimensional infrared spectroscopy,” Chem. Phys. 266, 213–230 (2001).
[CrossRef]

Kiefer, B.

T. Brixner, N. H. Damrauer, B. Kiefer, and G. Gerber, “Liquid-phase adaptive femtosecond quantum control: Removing intrinsic intensity dependencies,” J. Chem. Phys. 118, 3692–3701 (2003).
[CrossRef]

Krummel, A. T.

E. C. Fulmer, P. Mukherjee, A. T. Krummel, and M. T. Zanni, “A pulse sequence for directly measuring the anharmonicities of coupled vibrations: Two-quantum two-dimensional infrared spectroscopy,” J. Chem. Phys. 120, 8067–8078 (2004).
[CrossRef] [PubMed]

Leone, S. R.

E. B. W. Lerch, X. C. Dai, S. Gilb, E. A. Torres, and S. R. Leone, “Control of Li2 wave packet dynamics by modification of the quantum mechanical amplitude of a single state,” J. Chem. Phys.124 (2006).
[CrossRef] [PubMed]

Lerch, E. B. W.

E. B. W. Lerch, X. C. Dai, S. Gilb, E. A. Torres, and S. R. Leone, “Control of Li2 wave packet dynamics by modification of the quantum mechanical amplitude of a single state,” J. Chem. Phys.124 (2006).
[CrossRef] [PubMed]

Li, X. Q.

Ling, Y. L.

S.-H. Shim, D. B. Strasfeld, Y. L. Ling, and M. T. Zanni, “Automated 2D IR spectroscopy using a mid-IR pulse shaper and application of this technology to the human islet amyloid polypeptide,” Proc. Natl. Acad. Sci. USA 104, 14197–14202 (2007).
[CrossRef] [PubMed]

Lott, G. A.

P. F. Tekavec, G. A. Lott, and A. H. Marcus, “Flourescence-Detected Two-Dimensional Electronic Coherence Spectroscopy by Acousto-Optic Phase Modulation,” J. Chem. Phys., Submitted (2007).
[CrossRef] [PubMed]

Mancal, T.

T. Brixner, T. Mancal, I. V. Stiopkin, and G. R. Fleming, “Phase-stabilized two-dimensional electronic spectroscopy,” J. Chem. Phys. 121, 4221–4236 (2004).
[CrossRef] [PubMed]

Marcus, A. H.

P. F. Tekavec, G. A. Lott, and A. H. Marcus, “Flourescence-Detected Two-Dimensional Electronic Coherence Spectroscopy by Acousto-Optic Phase Modulation,” J. Chem. Phys., Submitted (2007).
[CrossRef] [PubMed]

Meglen, R. R.

M. A. Montgomery, R. R. Meglen, and N. H. Damrauer, “General method for reducing adaptive laser pulse-shaping experiments to a single control variable,” J. Phys. Chem. A 111, 5126–5129 (2007).
[CrossRef] [PubMed]

M. A. Montgomery, R. R. Meglen, and N. H. Damrauer, “General method for the dimension reduction of adaptive control experiments,” J. Phys. Chem. A 110, 6391–6394 (2006).
[CrossRef] [PubMed]

Miller, R. J. D.

Montgomery, M. A.

M. A. Montgomery, R. R. Meglen, and N. H. Damrauer, “General method for reducing adaptive laser pulse-shaping experiments to a single control variable,” J. Phys. Chem. A 111, 5126–5129 (2007).
[CrossRef] [PubMed]

M. A. Montgomery and N. H. Damrauer, “Elucidation of control mechanisms discovered during adaptive manipulation of [Ru(dpb)3](PF6)2 emission in the solution phase,” J. Phys. Chem. A 111, 1426–1433 (2007).
[CrossRef] [PubMed]

M. A. Montgomery, R. R. Meglen, and N. H. Damrauer, “General method for the dimension reduction of adaptive control experiments,” J. Phys. Chem. A 110, 6391–6394 (2006).
[CrossRef] [PubMed]

Mukamel, S.

C. Scheurer and S. Mukamel, “Design strategies for pulse sequences in multidimensional optical spectroscopies,” J. Chem. Phys. 115, 4989–5004 (2001).
[CrossRef]

W. M. Zhang, V. Chernyak, and S. Mukamel, “Multidimensional femtosecond correlation spectroscopies of electronic and vibrational excitons,” J. Chem. Phys. 110, 5011–5028 (1999).
[CrossRef]

S. Mukamel, Principles of Nonlinear Optical Spectroscopy (Oxford University Press, New York, 1995).

Mukherjee, P.

F. Ding, P. Mukherjee, and M. T. Zanni, “Passively correcting phase drift in two-dimensional infrared spectroscopy,” Opt. Lett. 31, 2918–2920 (2006).
[CrossRef] [PubMed]

E. C. Fulmer, F. Ding, P. Mukherjee, and M. T. Zanni, “Vibrational dynamics of ions in glass from fifth-order two-dimensional infrared spectroscopy,” Phys. Rev. Lett. 94, 067402 (2005).
[CrossRef] [PubMed]

E. C. Fulmer, P. Mukherjee, A. T. Krummel, and M. T. Zanni, “A pulse sequence for directly measuring the anharmonicities of coupled vibrations: Two-quantum two-dimensional infrared spectroscopy,” J. Chem. Phys. 120, 8067–8078 (2004).
[CrossRef] [PubMed]

Nelson, K. A.

J. C. Vaughan, T. Hornung, K. W. Stone, and K. A. Nelson, “Coherently controlled ultrafast four-wave mixing spectroscopy,” J. Phys. Chem. A 111, 4873–4883 (2007).
[CrossRef] [PubMed]

J. C. Vaughan, T. Feurer, K. W. Stone, and K. A. Nelson, “Analysis of replica pulses in femtosecond pulse shaping with pixelated devices,” Opt. Express 14, 1314–1328 (2006).
[CrossRef] [PubMed]

H. Kawashima, M. M. Wefers, and K. A. Nelson, “Femtosecond Pulse Shaping, Multiple-Pulse Spectroscopy, and Optical Control,” Annu. Rev. Phys. Chem. 46, 627–656 (1995).
[CrossRef]

Rabitz, H.

R. S. Judson and H. Rabitz, “Teaching lasers to control molecules,” Phys. Rev. Lett. 68, 1500–1503 (1992).
[CrossRef] [PubMed]

Rice, S. A.

S. A. Rice and M. Zhao, Optical Control of MolecularDdynamics. (Wiley, New York, 2000).

Schanz, R.

Scheurer, C.

C. Scheurer and S. Mukamel, “Design strategies for pulse sequences in multidimensional optical spectroscopies,” J. Chem. Phys. 115, 4989–5004 (2001).
[CrossRef]

Shim, S.-H.

S.-H. Shim, D. B. Strasfeld, Y. L. Ling, and M. T. Zanni, “Automated 2D IR spectroscopy using a mid-IR pulse shaper and application of this technology to the human islet amyloid polypeptide,” Proc. Natl. Acad. Sci. USA 104, 14197–14202 (2007).
[CrossRef] [PubMed]

Steinel, T.

J. B. Asbury, T. Steinel, and M. D. Fayer, “Vibrational echo correlation spectroscopy probes of hydrogen bond dynamics in water and methanol,” J. Lumin. 107, 271–286 (2004).
[CrossRef] [PubMed]

Stiopkin, I. V.

T. Brixner, T. Mancal, I. V. Stiopkin, and G. R. Fleming, “Phase-stabilized two-dimensional electronic spectroscopy,” J. Chem. Phys. 121, 4221–4236 (2004).
[CrossRef] [PubMed]

Stone, K. W.

J. C. Vaughan, T. Hornung, K. W. Stone, and K. A. Nelson, “Coherently controlled ultrafast four-wave mixing spectroscopy,” J. Phys. Chem. A 111, 4873–4883 (2007).
[CrossRef] [PubMed]

J. C. Vaughan, T. Feurer, K. W. Stone, and K. A. Nelson, “Analysis of replica pulses in femtosecond pulse shaping with pixelated devices,” Opt. Express 14, 1314–1328 (2006).
[CrossRef] [PubMed]

Strasfeld, D. B.

S.-H. Shim, D. B. Strasfeld, Y. L. Ling, and M. T. Zanni, “Automated 2D IR spectroscopy using a mid-IR pulse shaper and application of this technology to the human islet amyloid polypeptide,” Proc. Natl. Acad. Sci. USA 104, 14197–14202 (2007).
[CrossRef] [PubMed]

Suzaki, Y.

P. F. Tian, D. Keusters, Y. Suzaki, and W. S. Warren, “Femtosecond phase-coherent two-dimensional spectroscopy,” Science 300, 1553–1555 (2003).
[CrossRef] [PubMed]

Tan, H. S.

D. Keusters, H. S. Tan, and W. S. Warren, “Role of pulse phase and direction in two-dimensional optical spectroscopy,” J. Phys. Chem. A 103, 10369–10380 (1999).
[CrossRef]

Tekavec, P. F.

P. F. Tekavec, G. A. Lott, and A. H. Marcus, “Flourescence-Detected Two-Dimensional Electronic Coherence Spectroscopy by Acousto-Optic Phase Modulation,” J. Chem. Phys., Submitted (2007).
[CrossRef] [PubMed]

Tian, P. F.

P. F. Tian, D. Keusters, Y. Suzaki, and W. S. Warren, “Femtosecond phase-coherent two-dimensional spectroscopy,” Science 300, 1553–1555 (2003).
[CrossRef] [PubMed]

Tokmakoff, A.

M. Khalil and A. Tokmakoff, “Signatures of vibrational interactions in coherent two-dimensional infrared spectroscopy,” Chem. Phys. 266, 213–230 (2001).
[CrossRef]

Torres, E. A.

E. B. W. Lerch, X. C. Dai, S. Gilb, E. A. Torres, and S. R. Leone, “Control of Li2 wave packet dynamics by modification of the quantum mechanical amplitude of a single state,” J. Chem. Phys.124 (2006).
[CrossRef] [PubMed]

Trebino, R.

R. Trebino, Frequency-Resolved Optical Gating (Kluwer Avademic Publishers, Norwell, MA, 2000).

Tull, J. X.

Vaughan, J. C.

J. C. Vaughan, T. Hornung, K. W. Stone, and K. A. Nelson, “Coherently controlled ultrafast four-wave mixing spectroscopy,” J. Phys. Chem. A 111, 4873–4883 (2007).
[CrossRef] [PubMed]

J. C. Vaughan, T. Feurer, K. W. Stone, and K. A. Nelson, “Analysis of replica pulses in femtosecond pulse shaping with pixelated devices,” Opt. Express 14, 1314–1328 (2006).
[CrossRef] [PubMed]

Volkov, V.

Warren, W. S.

P. F. Tian, D. Keusters, Y. Suzaki, and W. S. Warren, “Femtosecond phase-coherent two-dimensional spectroscopy,” Science 300, 1553–1555 (2003).
[CrossRef] [PubMed]

D. Keusters, H. S. Tan, and W. S. Warren, “Role of pulse phase and direction in two-dimensional optical spectroscopy,” J. Phys. Chem. A 103, 10369–10380 (1999).
[CrossRef]

M. A. Dugan, J. X. Tull, and W. S. Warren, “High-resolution acousto-optic shaping of unamplified and amplified femtosecond laser pulses,” J. Opt. Soc. Am. B 14, 2348–2358 (1997).
[CrossRef]

Wefers, M. M.

H. Kawashima, M. M. Wefers, and K. A. Nelson, “Femtosecond Pulse Shaping, Multiple-Pulse Spectroscopy, and Optical Control,” Annu. Rev. Phys. Chem. 46, 627–656 (1995).
[CrossRef]

Weinacht, T.

T. Weinacht, J. Ahn, and P. Bucksbaum, “Controlling the shape of a quantum wavefunction,” Nature 397, 233–235 (1999).
[CrossRef]

Weinacht, T. C.

T. C. Weinacht, J. Ahn, and P. H. Bucksbaum, “Measurement of the amplitude and phase of a sculpted Rydberg wave packet,” Phys. Rev. Lett. 80, 5508–5511 (1998).
[CrossRef]

Zanni, M. T.

S.-H. Shim, D. B. Strasfeld, Y. L. Ling, and M. T. Zanni, “Automated 2D IR spectroscopy using a mid-IR pulse shaper and application of this technology to the human islet amyloid polypeptide,” Proc. Natl. Acad. Sci. USA 104, 14197–14202 (2007).
[CrossRef] [PubMed]

F. Ding, P. Mukherjee, and M. T. Zanni, “Passively correcting phase drift in two-dimensional infrared spectroscopy,” Opt. Lett. 31, 2918–2920 (2006).
[CrossRef] [PubMed]

E. C. Fulmer, F. Ding, P. Mukherjee, and M. T. Zanni, “Vibrational dynamics of ions in glass from fifth-order two-dimensional infrared spectroscopy,” Phys. Rev. Lett. 94, 067402 (2005).
[CrossRef] [PubMed]

E. C. Fulmer, P. Mukherjee, A. T. Krummel, and M. T. Zanni, “A pulse sequence for directly measuring the anharmonicities of coupled vibrations: Two-quantum two-dimensional infrared spectroscopy,” J. Chem. Phys. 120, 8067–8078 (2004).
[CrossRef] [PubMed]

Zhang, T. H.

Zhang, W. M.

W. M. Zhang, V. Chernyak, and S. Mukamel, “Multidimensional femtosecond correlation spectroscopies of electronic and vibrational excitons,” J. Chem. Phys. 110, 5011–5028 (1999).
[CrossRef]

Zhao, M.

S. A. Rice and M. Zhao, Optical Control of MolecularDdynamics. (Wiley, New York, 2000).

Annu. Rev. Phys. Chem. (1)

H. Kawashima, M. M. Wefers, and K. A. Nelson, “Femtosecond Pulse Shaping, Multiple-Pulse Spectroscopy, and Optical Control,” Annu. Rev. Phys. Chem. 46, 627–656 (1995).
[CrossRef]

Chem. Phys. (1)

M. Khalil and A. Tokmakoff, “Signatures of vibrational interactions in coherent two-dimensional infrared spectroscopy,” Chem. Phys. 266, 213–230 (2001).
[CrossRef]

in Advances in Atomic, Molecular, and Optical Physics (1)

T. Brixner, N. H. Damrauer, and G. Gerber, “Femtosecond quantum control,” in Advances in Atomic, Molecular, and Optical Physics,  Vol 46(2001), pp. 1–54.
[CrossRef]

J. Chem. Phys. (5)

T. Brixner, T. Mancal, I. V. Stiopkin, and G. R. Fleming, “Phase-stabilized two-dimensional electronic spectroscopy,” J. Chem. Phys. 121, 4221–4236 (2004).
[CrossRef] [PubMed]

T. Brixner, N. H. Damrauer, B. Kiefer, and G. Gerber, “Liquid-phase adaptive femtosecond quantum control: Removing intrinsic intensity dependencies,” J. Chem. Phys. 118, 3692–3701 (2003).
[CrossRef]

C. Scheurer and S. Mukamel, “Design strategies for pulse sequences in multidimensional optical spectroscopies,” J. Chem. Phys. 115, 4989–5004 (2001).
[CrossRef]

E. C. Fulmer, P. Mukherjee, A. T. Krummel, and M. T. Zanni, “A pulse sequence for directly measuring the anharmonicities of coupled vibrations: Two-quantum two-dimensional infrared spectroscopy,” J. Chem. Phys. 120, 8067–8078 (2004).
[CrossRef] [PubMed]

W. M. Zhang, V. Chernyak, and S. Mukamel, “Multidimensional femtosecond correlation spectroscopies of electronic and vibrational excitons,” J. Chem. Phys. 110, 5011–5028 (1999).
[CrossRef]

J. Lumin. (1)

J. B. Asbury, T. Steinel, and M. D. Fayer, “Vibrational echo correlation spectroscopy probes of hydrogen bond dynamics in water and methanol,” J. Lumin. 107, 271–286 (2004).
[CrossRef] [PubMed]

J. Opt. Soc. Am. B (2)

J. Phys. Chem. A (6)

M. A. Montgomery and N. H. Damrauer, “Elucidation of control mechanisms discovered during adaptive manipulation of [Ru(dpb)3](PF6)2 emission in the solution phase,” J. Phys. Chem. A 111, 1426–1433 (2007).
[CrossRef] [PubMed]

M. A. Montgomery, R. R. Meglen, and N. H. Damrauer, “General method for reducing adaptive laser pulse-shaping experiments to a single control variable,” J. Phys. Chem. A 111, 5126–5129 (2007).
[CrossRef] [PubMed]

J. C. Vaughan, T. Hornung, K. W. Stone, and K. A. Nelson, “Coherently controlled ultrafast four-wave mixing spectroscopy,” J. Phys. Chem. A 111, 4873–4883 (2007).
[CrossRef] [PubMed]

S. M. G. Faeder and D. M. Jonas, “Two-dimensional electronic correlation and relaxation spectra: Theory and model calculations,” J. Phys. Chem. A 103, 10489–10505 (1999).
[CrossRef]

D. Keusters, H. S. Tan, and W. S. Warren, “Role of pulse phase and direction in two-dimensional optical spectroscopy,” J. Phys. Chem. A 103, 10369–10380 (1999).
[CrossRef]

M. A. Montgomery, R. R. Meglen, and N. H. Damrauer, “General method for the dimension reduction of adaptive control experiments,” J. Phys. Chem. A 110, 6391–6394 (2006).
[CrossRef] [PubMed]

Nature (1)

T. Weinacht, J. Ahn, and P. Bucksbaum, “Controlling the shape of a quantum wavefunction,” Nature 397, 233–235 (1999).
[CrossRef]

Opt. Express (2)

Opt. Lett. (2)

Phys. Rev. Lett. (3)

E. C. Fulmer, F. Ding, P. Mukherjee, and M. T. Zanni, “Vibrational dynamics of ions in glass from fifth-order two-dimensional infrared spectroscopy,” Phys. Rev. Lett. 94, 067402 (2005).
[CrossRef] [PubMed]

R. S. Judson and H. Rabitz, “Teaching lasers to control molecules,” Phys. Rev. Lett. 68, 1500–1503 (1992).
[CrossRef] [PubMed]

T. C. Weinacht, J. Ahn, and P. H. Bucksbaum, “Measurement of the amplitude and phase of a sculpted Rydberg wave packet,” Phys. Rev. Lett. 80, 5508–5511 (1998).
[CrossRef]

Proc. Natl. Acad. Sci. USA (1)

S.-H. Shim, D. B. Strasfeld, Y. L. Ling, and M. T. Zanni, “Automated 2D IR spectroscopy using a mid-IR pulse shaper and application of this technology to the human islet amyloid polypeptide,” Proc. Natl. Acad. Sci. USA 104, 14197–14202 (2007).
[CrossRef] [PubMed]

Science (1)

P. F. Tian, D. Keusters, Y. Suzaki, and W. S. Warren, “Femtosecond phase-coherent two-dimensional spectroscopy,” Science 300, 1553–1555 (2003).
[CrossRef] [PubMed]

Other (7)

E. B. W. Lerch, X. C. Dai, S. Gilb, E. A. Torres, and S. R. Leone, “Control of Li2 wave packet dynamics by modification of the quantum mechanical amplitude of a single state,” J. Chem. Phys.124 (2006).
[CrossRef] [PubMed]

P. F. Tekavec, G. A. Lott, and A. H. Marcus, “Flourescence-Detected Two-Dimensional Electronic Coherence Spectroscopy by Acousto-Optic Phase Modulation,” J. Chem. Phys., Submitted (2007).
[CrossRef] [PubMed]

S. Mukamel, Principles of Nonlinear Optical Spectroscopy (Oxford University Press, New York, 1995).

“Special Issue on Multidimensional Spectroscopies,” Chem. Phys.266, 135–352 (2001).

“Multidimensional Ultrafast Spectroscopy Special Feature,” Proc. Natl. Acad. Sci. USA104, 14189–14544 (2007).
[PubMed]

S. A. Rice and M. Zhao, Optical Control of MolecularDdynamics. (Wiley, New York, 2000).

R. Trebino, Frequency-Resolved Optical Gating (Kluwer Avademic Publishers, Norwell, MA, 2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Methods for collecting 2D spectra. kn are the wavevectors (directions) of the excitation pulses and ks is the wavevector of the emitted signal. (a) An entirely collinear pulse sequence in which fluorescence is collected orthogonally to the beam path. (b) A boxcar type of geometry in which all four beams propagate at different angles. (c) The partially collinear geometry employed here in which two “pump” pulses are followed by an off axis “probe” pulse which is then spectrally resolved.

Fig. 2.
Fig. 2.

Time domain data collected at λprobe=780 nm and t2=1.0 ps. Fast oscillations of the signal (see inset) are superimposed on slow modulation of transient absorption signal.

Fig. 3.
Fig. 3.

(color) (a) 2D spectrum of Rb vapor. (b) Detail of the peak at λpumpprobe=780 nm.

Fig. 4.
Fig. 4.

Phase stability as measured over 35 hours by repeatedly scanning the signal from t1=200-220 fs. Phase drift was measured to be λ/67.

Fig. 5.
Fig. 5.

(a). Simulated pulse pair (t1=4 ps) produced with a perfect shaper. (b). Pulse pair produced with simulated gaps, but otherwise continuous shaping ability. Arrows point to small pulses caused by gaps. (c). Spurious pulses produced as a result of mask pixilation. The double arrow points to a spurious peak that interferes with the signal for t1>2 ps.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

S ( t 1 , t 2 , ω probe ) = n ( R n ( t 1 , t 2 , t 3 ) E 1 E 2 E probe + E probe ) e i ω probe t dt 2
S ( ω pump , t 2 , ω probe ) = S ( t 1 , t 2 , ω probe ) e i ω pump t 1 dt 1
R n ( t 1 , t 2 , t 3 ) = R n rephase ( t 1 , t 2 , t 3 ) + R n nonrephase ( t 1 , t 2 , t 3 ) + R n two-quantum ( t 1 , t 2 , t 3 )

Metrics