Abstract

Excitation, focusing and directing of surface plasmon polaritons (SPPs) with curved chains of nanoparticles located on a metal surface is investigated both experimentally and theoretically. We demonstrate that, by using a relatively narrow laser beam (at normal incidence) interacting only with a portion of a curved chain of nanoparticles, one can excite an SPP beam whose divergence and propagation direction are dictated by the incident light spot size and its position along the chain. It is also found that the SPP focusing regime is strongly influenced by the chain inter-particle distance. Extensive numerical simulations of the configuration investigated experimentally are carried out for a wide set of system parameters by making use of the Green’s tensor formalism and dipole approximation. Comparison of numerical results with experimental data shows good agreement with respect to the observed features in SPP focusing and directing, providing the guidelines for a proper choice of the system parameters.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Surface Polaritons, edited by V. M. Agranovich and D. L. Mills (North-Holland, Amsterdam,1982); H. Raether, Surface Plasmon, Springer Tracts in Modern Physics, Vol. 111 (Springer, Berlin, 1988).
  2. W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature 424,824-830 (2003).
    [CrossRef] [PubMed]
  3. A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, "Nano-optics of surface plasmon polaritons," Phys. Rep. 408,131-314 (2005).
    [CrossRef]
  4. I. I. Smolyaninov, D. L. Mazzoni, and C. C. Davis, "Imaging of surface plasmon scattering by lithographically created individual surface defects," Phys. Rev. Lett. 77,3877-3880 (1996).
    [CrossRef] [PubMed]
  5. S. I. Bozhevolnyi and F. A. Pudonin, "Two-dimensional micro-optics of surface plasmons," Phys. Rev. Lett. 78,2823-2826 (1997).
    [CrossRef]
  6. A. V. Zayats and I. I. Smolyaninov, "Near-field photonics: surface plasmon polaritons and localized surface plasmons," J. Opt. A: Pure Appl. Opt. 5,S16-S50 (2003).
    [CrossRef]
  7. H. Ditlbacher, J. R. Krenn, G. Schider, A. Leitner, and F. R. Aussenegg, "Two-dimensional optics with surface plasmon polaritons," Appl. Phys. Lett. 81,1762-1764, (2002).
    [CrossRef]
  8. J. R. Krenn, H. Ditlbacher, G. Schider, A. Hohenau, A. Leitner, and F. R. Aussenegg, "Surface plasmon microand nano-optics," J. Microsc. 209,167-172 (2003).
    [CrossRef] [PubMed]
  9. A. L. Stepanov, J. R. Krenn, H. Ditlbacher, A. Hohenau, A. Drezet, B. Steinberger, A. Leitner, and F. R. Aussenegg, "Quantitative analysis of surface plasmon interaction with silver nanoparticles," Opt. Lett. 30,1524-1526 (2005).
    [CrossRef] [PubMed]
  10. S. I. Bozhevolnyi, J. Erland, K. Leosson, P.M.W. Skovgaard, and J.M. Hvam, "Waveguiding in surface plasmon polariton band gap structures," Phys. Rev. Lett. 86,3008-3011 (2001).
    [CrossRef] [PubMed]
  11. A.-L. Baudrion, J.-C. Weeber, A Dereux, G. Lecamp, P. Lalanne, and S. I. Bozhevolnyi, "Influence of the filling factor on the spectral properties of plasmonic crystals," Phys. Rev. B 74,125406 (2006).
    [CrossRef]
  12. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, "Channel plasmon subwavelength waveguide components including interferometers and ring resonators," Nature 440,508-511 (2006).
    [CrossRef] [PubMed]
  13. E. Moreno, F. J. García-Vidal, S. G. Rodrigo, L. Martín-Moreno, and S. I. Bozhevolnyi, "Channel Plasmon-polaritons: modal shape, dispersion, and losses," Opt. Lett. 31,3447-3449 (2006).
    [CrossRef] [PubMed]
  14. M. Quinten, A. Leitner, J.R. Krenn, and F.R. Aussenegg, "Electromagnetic energy transport via linear chains of silver nanoparticles," Opt. Lett. 23,1331-1333, (1998).
    [CrossRef]
  15. J.R. Krenn, A. Dereux, J.C. Weeber, E. Bourillot, Y. Lacroute, J.P. Goudonnet, G. Schider, W. Gotschy, A. Leitner, F.R. Aussenegg, and C. Girard, "Squeezing the Optical Near-Field Zone by Plasmon Coupling of Metallic Nanoparticles," Phys. Rev. Lett. 82,2590-2593 (1999).
    [CrossRef]
  16. M.L. Brongersma, J.W. Hartman, and H.A. Atwater, "Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit," Phys. Rev. B 62,R16356-R16359 (2000).
    [CrossRef]
  17. S.A. Maier, P.G. Kik, H.A. Atwater, S. Meltzer, E. Harel, B.E. Koel, and A. Requicha, "Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides," Nat. Mater. 2,229-232 (2003).
    [CrossRef] [PubMed]
  18. R. Quidant, C. Girard, J.C. Weeber, and A. Dereux, "Tailoring the transmittance of integrated optical waveguides with short metallic nanoparticle chains," Phys. Rev. B 69,085407 (2004).
    [CrossRef]
  19. I. I. Smolyaninov, D. L. Mazzoni, J. Mait, and C. C. Davis, "Experimental study of surface-plasmon scattering by individual surface defects," Phys. Rev. B 56,1601-1611 (1997).
    [CrossRef]
  20. S. I. Bozhevolnyi and V. Coello, "Elastic scattering of surface plasmon polaritons: Modeling and experiment," Phys. Rev. B 58, 10899-10 910 (1998).
    [CrossRef]
  21. I. P. Radko, S. I. Bozhevolnyi, A. B. Evlyukhin, and A. Boltasseva, "Surface plasmon polariton beam focusing with parabolic nanoparticle chains," Opt. Express 15,6576-6582 (2007).
    [CrossRef] [PubMed]
  22. W. Nomura, M. Ohtsu, and T. Yatsui, "Nanodot coupler with a surface plasmon polariton condenser for optical far/near-field conversion," Appl. Phys. Lett. 86,181108 (2005).
    [CrossRef]
  23. Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, "Focusing Surface Plasmons with a Plasmonic Lens," Nano Lett. 5,1726-1729 (2005).
    [CrossRef] [PubMed]
  24. L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, "Subwavelength Focusing and Guiding of Surface Plasmons," Nano Lett. 5,1399-1402 (2005).
    [CrossRef] [PubMed]
  25. C. Reinhardt, S. Passinger, B. N. Chichkov, C. Marquart, I. P. Radko, and S. I. Bozhevolnyi, "Laser-fabricated dielectric optical components for surface plasmon polaritons," Opt. Lett. 31,1307-1309 (2006).
    [CrossRef] [PubMed]
  26. A. Drezet, A. L. Stepanov, H. Ditlbacher, A. Hohenau, B. Steinberger, F. R. Aussenegg, A. Leitner, and J. R. Krenn, Appl. Phys. Lett. 86 (2005) 074104.
    [CrossRef]
  27. C. Girard and A. Dereux, "Near-field optics theories," Rep. Prog. Phys. 59,657-699 (1996).
    [CrossRef]
  28. T. Søndergaard and S. I. Bozhevolnyi, "Surface plasmon polariton scattering by a small particle placed near a metal surface: An analytical study," Phys. Rev. B 69,045422 (2004).
    [CrossRef]
  29. L. Novotny, B. Hecht, and D. W. Pohl, "Interference of locally excited surface plasmons," J. Appl. Phys. 81 (1997) 1798-1806.
    [CrossRef]
  30. A. B. Evlyukhin, S. I. Bozhevolnyi, A. L. Stepanov, and J. R. Krenn, "Splitting of a surface plasmon polariton beam by chains of nanoparticles," Appl. Phys. B 84,29-34 (2006).
    [CrossRef]
  31. O. Keller, M. Xiao, and S. Bozhevolnyi, "Configurational resonances in optical near-field microscopy: a rigorous point-dipole approach," Surf. Sci. 280,217-230 (1993).
    [CrossRef]
  32. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 8: Electrodynamics of Continuous Media (Pergamon, New York, 1984).
  33. A. B. Evlyukhin and S. I. Bozhevolnyi, "Surface plasmon polariton scattering by small ellipsoid particles," Surf. Sci. 590,173-180 (2005).
    [CrossRef]
  34. Z. B. Wang, B. S. Lukyanchuk, M. H. Hong, Y. Lin, and T. C. Chong, "Energy flows around a small particle investigated by classical Mie theory," Phys. Rev. B 70,035418 (2004).
    [CrossRef]
  35. A. B. Evlyukhin and S. I. Bozhevolnyi, "Point-dipole approximation for surface plasmon polariton scattering: Implications and limitations," Phys. Rev. B 71,134303 (2005).
    [CrossRef]
  36. A. B. Evlyukhin and S. I. Bozhevolnyi, "Applicability conditions for the dipole approximation in the problems of scattering of surface plasmon polaritons," JETP Lett. 81,218-221 (2005).
    [CrossRef]
  37. M. I. Tribelsky and B. S. Lukyanchuk, "Anomalous light scattering by small particles," Phys. Rev. Lett. 97,263902 (2006).
    [CrossRef]
  38. A. B. Evlyukhin, G. Brucoli, L. Martín-Moreno, S. I. Bozhevolnyi, and F. J. García-Vidal, "Surface plasmon polariton scattering by finite-size nanoparticles," Phys. Rev. B 76,075426 (2007).
    [CrossRef]
  39. O. J. F. Martin, C. Girard, and A. Dereux, "Generalized field propagator for electromagnetic scattering and light confinement," Phys. Rev. Lett. 74,526-529 (1995).
    [CrossRef] [PubMed]
  40. T. Søndergaard and S. I. Bozhevolnyi, "Vectorial model for multiple scattering by surface nanoparticles via surface polariton-to-polariton interactions," Phys. Rev. B 67,165405 (2003).
    [CrossRef]
  41. E. Palik, Handbook of Optical Constant of Solids (Academic, San Diego, CA, 1985).

2007 (2)

A. B. Evlyukhin, G. Brucoli, L. Martín-Moreno, S. I. Bozhevolnyi, and F. J. García-Vidal, "Surface plasmon polariton scattering by finite-size nanoparticles," Phys. Rev. B 76,075426 (2007).
[CrossRef]

I. P. Radko, S. I. Bozhevolnyi, A. B. Evlyukhin, and A. Boltasseva, "Surface plasmon polariton beam focusing with parabolic nanoparticle chains," Opt. Express 15,6576-6582 (2007).
[CrossRef] [PubMed]

2006 (6)

C. Reinhardt, S. Passinger, B. N. Chichkov, C. Marquart, I. P. Radko, and S. I. Bozhevolnyi, "Laser-fabricated dielectric optical components for surface plasmon polaritons," Opt. Lett. 31,1307-1309 (2006).
[CrossRef] [PubMed]

E. Moreno, F. J. García-Vidal, S. G. Rodrigo, L. Martín-Moreno, and S. I. Bozhevolnyi, "Channel Plasmon-polaritons: modal shape, dispersion, and losses," Opt. Lett. 31,3447-3449 (2006).
[CrossRef] [PubMed]

M. I. Tribelsky and B. S. Lukyanchuk, "Anomalous light scattering by small particles," Phys. Rev. Lett. 97,263902 (2006).
[CrossRef]

A. B. Evlyukhin, S. I. Bozhevolnyi, A. L. Stepanov, and J. R. Krenn, "Splitting of a surface plasmon polariton beam by chains of nanoparticles," Appl. Phys. B 84,29-34 (2006).
[CrossRef]

A.-L. Baudrion, J.-C. Weeber, A Dereux, G. Lecamp, P. Lalanne, and S. I. Bozhevolnyi, "Influence of the filling factor on the spectral properties of plasmonic crystals," Phys. Rev. B 74,125406 (2006).
[CrossRef]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, "Channel plasmon subwavelength waveguide components including interferometers and ring resonators," Nature 440,508-511 (2006).
[CrossRef] [PubMed]

2005 (9)

A. Drezet, A. L. Stepanov, H. Ditlbacher, A. Hohenau, B. Steinberger, F. R. Aussenegg, A. Leitner, and J. R. Krenn, Appl. Phys. Lett. 86 (2005) 074104.
[CrossRef]

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, "Nano-optics of surface plasmon polaritons," Phys. Rep. 408,131-314 (2005).
[CrossRef]

A. B. Evlyukhin and S. I. Bozhevolnyi, "Surface plasmon polariton scattering by small ellipsoid particles," Surf. Sci. 590,173-180 (2005).
[CrossRef]

A. B. Evlyukhin and S. I. Bozhevolnyi, "Point-dipole approximation for surface plasmon polariton scattering: Implications and limitations," Phys. Rev. B 71,134303 (2005).
[CrossRef]

A. B. Evlyukhin and S. I. Bozhevolnyi, "Applicability conditions for the dipole approximation in the problems of scattering of surface plasmon polaritons," JETP Lett. 81,218-221 (2005).
[CrossRef]

W. Nomura, M. Ohtsu, and T. Yatsui, "Nanodot coupler with a surface plasmon polariton condenser for optical far/near-field conversion," Appl. Phys. Lett. 86,181108 (2005).
[CrossRef]

Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, "Focusing Surface Plasmons with a Plasmonic Lens," Nano Lett. 5,1726-1729 (2005).
[CrossRef] [PubMed]

L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, "Subwavelength Focusing and Guiding of Surface Plasmons," Nano Lett. 5,1399-1402 (2005).
[CrossRef] [PubMed]

A. L. Stepanov, J. R. Krenn, H. Ditlbacher, A. Hohenau, A. Drezet, B. Steinberger, A. Leitner, and F. R. Aussenegg, "Quantitative analysis of surface plasmon interaction with silver nanoparticles," Opt. Lett. 30,1524-1526 (2005).
[CrossRef] [PubMed]

2004 (3)

Z. B. Wang, B. S. Lukyanchuk, M. H. Hong, Y. Lin, and T. C. Chong, "Energy flows around a small particle investigated by classical Mie theory," Phys. Rev. B 70,035418 (2004).
[CrossRef]

T. Søndergaard and S. I. Bozhevolnyi, "Surface plasmon polariton scattering by a small particle placed near a metal surface: An analytical study," Phys. Rev. B 69,045422 (2004).
[CrossRef]

R. Quidant, C. Girard, J.C. Weeber, and A. Dereux, "Tailoring the transmittance of integrated optical waveguides with short metallic nanoparticle chains," Phys. Rev. B 69,085407 (2004).
[CrossRef]

2003 (5)

S.A. Maier, P.G. Kik, H.A. Atwater, S. Meltzer, E. Harel, B.E. Koel, and A. Requicha, "Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides," Nat. Mater. 2,229-232 (2003).
[CrossRef] [PubMed]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature 424,824-830 (2003).
[CrossRef] [PubMed]

A. V. Zayats and I. I. Smolyaninov, "Near-field photonics: surface plasmon polaritons and localized surface plasmons," J. Opt. A: Pure Appl. Opt. 5,S16-S50 (2003).
[CrossRef]

J. R. Krenn, H. Ditlbacher, G. Schider, A. Hohenau, A. Leitner, and F. R. Aussenegg, "Surface plasmon microand nano-optics," J. Microsc. 209,167-172 (2003).
[CrossRef] [PubMed]

T. Søndergaard and S. I. Bozhevolnyi, "Vectorial model for multiple scattering by surface nanoparticles via surface polariton-to-polariton interactions," Phys. Rev. B 67,165405 (2003).
[CrossRef]

2002 (1)

H. Ditlbacher, J. R. Krenn, G. Schider, A. Leitner, and F. R. Aussenegg, "Two-dimensional optics with surface plasmon polaritons," Appl. Phys. Lett. 81,1762-1764, (2002).
[CrossRef]

2001 (1)

S. I. Bozhevolnyi, J. Erland, K. Leosson, P.M.W. Skovgaard, and J.M. Hvam, "Waveguiding in surface plasmon polariton band gap structures," Phys. Rev. Lett. 86,3008-3011 (2001).
[CrossRef] [PubMed]

2000 (1)

M.L. Brongersma, J.W. Hartman, and H.A. Atwater, "Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit," Phys. Rev. B 62,R16356-R16359 (2000).
[CrossRef]

1999 (1)

J.R. Krenn, A. Dereux, J.C. Weeber, E. Bourillot, Y. Lacroute, J.P. Goudonnet, G. Schider, W. Gotschy, A. Leitner, F.R. Aussenegg, and C. Girard, "Squeezing the Optical Near-Field Zone by Plasmon Coupling of Metallic Nanoparticles," Phys. Rev. Lett. 82,2590-2593 (1999).
[CrossRef]

1998 (1)

1997 (3)

L. Novotny, B. Hecht, and D. W. Pohl, "Interference of locally excited surface plasmons," J. Appl. Phys. 81 (1997) 1798-1806.
[CrossRef]

I. I. Smolyaninov, D. L. Mazzoni, J. Mait, and C. C. Davis, "Experimental study of surface-plasmon scattering by individual surface defects," Phys. Rev. B 56,1601-1611 (1997).
[CrossRef]

S. I. Bozhevolnyi and F. A. Pudonin, "Two-dimensional micro-optics of surface plasmons," Phys. Rev. Lett. 78,2823-2826 (1997).
[CrossRef]

1996 (2)

I. I. Smolyaninov, D. L. Mazzoni, and C. C. Davis, "Imaging of surface plasmon scattering by lithographically created individual surface defects," Phys. Rev. Lett. 77,3877-3880 (1996).
[CrossRef] [PubMed]

C. Girard and A. Dereux, "Near-field optics theories," Rep. Prog. Phys. 59,657-699 (1996).
[CrossRef]

1995 (1)

O. J. F. Martin, C. Girard, and A. Dereux, "Generalized field propagator for electromagnetic scattering and light confinement," Phys. Rev. Lett. 74,526-529 (1995).
[CrossRef] [PubMed]

1993 (1)

O. Keller, M. Xiao, and S. Bozhevolnyi, "Configurational resonances in optical near-field microscopy: a rigorous point-dipole approach," Surf. Sci. 280,217-230 (1993).
[CrossRef]

Atwater, H.A.

S.A. Maier, P.G. Kik, H.A. Atwater, S. Meltzer, E. Harel, B.E. Koel, and A. Requicha, "Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides," Nat. Mater. 2,229-232 (2003).
[CrossRef] [PubMed]

M.L. Brongersma, J.W. Hartman, and H.A. Atwater, "Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit," Phys. Rev. B 62,R16356-R16359 (2000).
[CrossRef]

Aussenegg, F. R.

A. L. Stepanov, J. R. Krenn, H. Ditlbacher, A. Hohenau, A. Drezet, B. Steinberger, A. Leitner, and F. R. Aussenegg, "Quantitative analysis of surface plasmon interaction with silver nanoparticles," Opt. Lett. 30,1524-1526 (2005).
[CrossRef] [PubMed]

A. Drezet, A. L. Stepanov, H. Ditlbacher, A. Hohenau, B. Steinberger, F. R. Aussenegg, A. Leitner, and J. R. Krenn, Appl. Phys. Lett. 86 (2005) 074104.
[CrossRef]

J. R. Krenn, H. Ditlbacher, G. Schider, A. Hohenau, A. Leitner, and F. R. Aussenegg, "Surface plasmon microand nano-optics," J. Microsc. 209,167-172 (2003).
[CrossRef] [PubMed]

H. Ditlbacher, J. R. Krenn, G. Schider, A. Leitner, and F. R. Aussenegg, "Two-dimensional optics with surface plasmon polaritons," Appl. Phys. Lett. 81,1762-1764, (2002).
[CrossRef]

Aussenegg, F.R.

J.R. Krenn, A. Dereux, J.C. Weeber, E. Bourillot, Y. Lacroute, J.P. Goudonnet, G. Schider, W. Gotschy, A. Leitner, F.R. Aussenegg, and C. Girard, "Squeezing the Optical Near-Field Zone by Plasmon Coupling of Metallic Nanoparticles," Phys. Rev. Lett. 82,2590-2593 (1999).
[CrossRef]

M. Quinten, A. Leitner, J.R. Krenn, and F.R. Aussenegg, "Electromagnetic energy transport via linear chains of silver nanoparticles," Opt. Lett. 23,1331-1333, (1998).
[CrossRef]

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature 424,824-830 (2003).
[CrossRef] [PubMed]

Baudrion, A.-L.

A.-L. Baudrion, J.-C. Weeber, A Dereux, G. Lecamp, P. Lalanne, and S. I. Bozhevolnyi, "Influence of the filling factor on the spectral properties of plasmonic crystals," Phys. Rev. B 74,125406 (2006).
[CrossRef]

Boltasseva, A.

Bourillot, E.

J.R. Krenn, A. Dereux, J.C. Weeber, E. Bourillot, Y. Lacroute, J.P. Goudonnet, G. Schider, W. Gotschy, A. Leitner, F.R. Aussenegg, and C. Girard, "Squeezing the Optical Near-Field Zone by Plasmon Coupling of Metallic Nanoparticles," Phys. Rev. Lett. 82,2590-2593 (1999).
[CrossRef]

Bozhevolnyi, S.

O. Keller, M. Xiao, and S. Bozhevolnyi, "Configurational resonances in optical near-field microscopy: a rigorous point-dipole approach," Surf. Sci. 280,217-230 (1993).
[CrossRef]

Bozhevolnyi, S. I.

A. B. Evlyukhin, G. Brucoli, L. Martín-Moreno, S. I. Bozhevolnyi, and F. J. García-Vidal, "Surface plasmon polariton scattering by finite-size nanoparticles," Phys. Rev. B 76,075426 (2007).
[CrossRef]

I. P. Radko, S. I. Bozhevolnyi, A. B. Evlyukhin, and A. Boltasseva, "Surface plasmon polariton beam focusing with parabolic nanoparticle chains," Opt. Express 15,6576-6582 (2007).
[CrossRef] [PubMed]

C. Reinhardt, S. Passinger, B. N. Chichkov, C. Marquart, I. P. Radko, and S. I. Bozhevolnyi, "Laser-fabricated dielectric optical components for surface plasmon polaritons," Opt. Lett. 31,1307-1309 (2006).
[CrossRef] [PubMed]

E. Moreno, F. J. García-Vidal, S. G. Rodrigo, L. Martín-Moreno, and S. I. Bozhevolnyi, "Channel Plasmon-polaritons: modal shape, dispersion, and losses," Opt. Lett. 31,3447-3449 (2006).
[CrossRef] [PubMed]

A.-L. Baudrion, J.-C. Weeber, A Dereux, G. Lecamp, P. Lalanne, and S. I. Bozhevolnyi, "Influence of the filling factor on the spectral properties of plasmonic crystals," Phys. Rev. B 74,125406 (2006).
[CrossRef]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, "Channel plasmon subwavelength waveguide components including interferometers and ring resonators," Nature 440,508-511 (2006).
[CrossRef] [PubMed]

A. B. Evlyukhin, S. I. Bozhevolnyi, A. L. Stepanov, and J. R. Krenn, "Splitting of a surface plasmon polariton beam by chains of nanoparticles," Appl. Phys. B 84,29-34 (2006).
[CrossRef]

A. B. Evlyukhin and S. I. Bozhevolnyi, "Surface plasmon polariton scattering by small ellipsoid particles," Surf. Sci. 590,173-180 (2005).
[CrossRef]

A. B. Evlyukhin and S. I. Bozhevolnyi, "Applicability conditions for the dipole approximation in the problems of scattering of surface plasmon polaritons," JETP Lett. 81,218-221 (2005).
[CrossRef]

A. B. Evlyukhin and S. I. Bozhevolnyi, "Point-dipole approximation for surface plasmon polariton scattering: Implications and limitations," Phys. Rev. B 71,134303 (2005).
[CrossRef]

T. Søndergaard and S. I. Bozhevolnyi, "Surface plasmon polariton scattering by a small particle placed near a metal surface: An analytical study," Phys. Rev. B 69,045422 (2004).
[CrossRef]

T. Søndergaard and S. I. Bozhevolnyi, "Vectorial model for multiple scattering by surface nanoparticles via surface polariton-to-polariton interactions," Phys. Rev. B 67,165405 (2003).
[CrossRef]

S. I. Bozhevolnyi, J. Erland, K. Leosson, P.M.W. Skovgaard, and J.M. Hvam, "Waveguiding in surface plasmon polariton band gap structures," Phys. Rev. Lett. 86,3008-3011 (2001).
[CrossRef] [PubMed]

S. I. Bozhevolnyi and F. A. Pudonin, "Two-dimensional micro-optics of surface plasmons," Phys. Rev. Lett. 78,2823-2826 (1997).
[CrossRef]

Brongersma, M.L.

M.L. Brongersma, J.W. Hartman, and H.A. Atwater, "Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit," Phys. Rev. B 62,R16356-R16359 (2000).
[CrossRef]

Brown, D. E.

L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, "Subwavelength Focusing and Guiding of Surface Plasmons," Nano Lett. 5,1399-1402 (2005).
[CrossRef] [PubMed]

Brucoli, G.

A. B. Evlyukhin, G. Brucoli, L. Martín-Moreno, S. I. Bozhevolnyi, and F. J. García-Vidal, "Surface plasmon polariton scattering by finite-size nanoparticles," Phys. Rev. B 76,075426 (2007).
[CrossRef]

Chichkov, B. N.

Chong, T. C.

Z. B. Wang, B. S. Lukyanchuk, M. H. Hong, Y. Lin, and T. C. Chong, "Energy flows around a small particle investigated by classical Mie theory," Phys. Rev. B 70,035418 (2004).
[CrossRef]

Davis, C. C.

I. I. Smolyaninov, D. L. Mazzoni, J. Mait, and C. C. Davis, "Experimental study of surface-plasmon scattering by individual surface defects," Phys. Rev. B 56,1601-1611 (1997).
[CrossRef]

I. I. Smolyaninov, D. L. Mazzoni, and C. C. Davis, "Imaging of surface plasmon scattering by lithographically created individual surface defects," Phys. Rev. Lett. 77,3877-3880 (1996).
[CrossRef] [PubMed]

Dereux, A

A.-L. Baudrion, J.-C. Weeber, A Dereux, G. Lecamp, P. Lalanne, and S. I. Bozhevolnyi, "Influence of the filling factor on the spectral properties of plasmonic crystals," Phys. Rev. B 74,125406 (2006).
[CrossRef]

Dereux, A.

R. Quidant, C. Girard, J.C. Weeber, and A. Dereux, "Tailoring the transmittance of integrated optical waveguides with short metallic nanoparticle chains," Phys. Rev. B 69,085407 (2004).
[CrossRef]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature 424,824-830 (2003).
[CrossRef] [PubMed]

J.R. Krenn, A. Dereux, J.C. Weeber, E. Bourillot, Y. Lacroute, J.P. Goudonnet, G. Schider, W. Gotschy, A. Leitner, F.R. Aussenegg, and C. Girard, "Squeezing the Optical Near-Field Zone by Plasmon Coupling of Metallic Nanoparticles," Phys. Rev. Lett. 82,2590-2593 (1999).
[CrossRef]

C. Girard and A. Dereux, "Near-field optics theories," Rep. Prog. Phys. 59,657-699 (1996).
[CrossRef]

O. J. F. Martin, C. Girard, and A. Dereux, "Generalized field propagator for electromagnetic scattering and light confinement," Phys. Rev. Lett. 74,526-529 (1995).
[CrossRef] [PubMed]

Devaux, E.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, "Channel plasmon subwavelength waveguide components including interferometers and ring resonators," Nature 440,508-511 (2006).
[CrossRef] [PubMed]

Ditlbacher, H.

A. Drezet, A. L. Stepanov, H. Ditlbacher, A. Hohenau, B. Steinberger, F. R. Aussenegg, A. Leitner, and J. R. Krenn, Appl. Phys. Lett. 86 (2005) 074104.
[CrossRef]

A. L. Stepanov, J. R. Krenn, H. Ditlbacher, A. Hohenau, A. Drezet, B. Steinberger, A. Leitner, and F. R. Aussenegg, "Quantitative analysis of surface plasmon interaction with silver nanoparticles," Opt. Lett. 30,1524-1526 (2005).
[CrossRef] [PubMed]

J. R. Krenn, H. Ditlbacher, G. Schider, A. Hohenau, A. Leitner, and F. R. Aussenegg, "Surface plasmon microand nano-optics," J. Microsc. 209,167-172 (2003).
[CrossRef] [PubMed]

H. Ditlbacher, J. R. Krenn, G. Schider, A. Leitner, and F. R. Aussenegg, "Two-dimensional optics with surface plasmon polaritons," Appl. Phys. Lett. 81,1762-1764, (2002).
[CrossRef]

Drezet, A.

Ebbesen, T. W.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, "Channel plasmon subwavelength waveguide components including interferometers and ring resonators," Nature 440,508-511 (2006).
[CrossRef] [PubMed]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature 424,824-830 (2003).
[CrossRef] [PubMed]

Erland, J.

S. I. Bozhevolnyi, J. Erland, K. Leosson, P.M.W. Skovgaard, and J.M. Hvam, "Waveguiding in surface plasmon polariton band gap structures," Phys. Rev. Lett. 86,3008-3011 (2001).
[CrossRef] [PubMed]

Evlyukhin, A. B.

A. B. Evlyukhin, G. Brucoli, L. Martín-Moreno, S. I. Bozhevolnyi, and F. J. García-Vidal, "Surface plasmon polariton scattering by finite-size nanoparticles," Phys. Rev. B 76,075426 (2007).
[CrossRef]

I. P. Radko, S. I. Bozhevolnyi, A. B. Evlyukhin, and A. Boltasseva, "Surface plasmon polariton beam focusing with parabolic nanoparticle chains," Opt. Express 15,6576-6582 (2007).
[CrossRef] [PubMed]

A. B. Evlyukhin, S. I. Bozhevolnyi, A. L. Stepanov, and J. R. Krenn, "Splitting of a surface plasmon polariton beam by chains of nanoparticles," Appl. Phys. B 84,29-34 (2006).
[CrossRef]

A. B. Evlyukhin and S. I. Bozhevolnyi, "Surface plasmon polariton scattering by small ellipsoid particles," Surf. Sci. 590,173-180 (2005).
[CrossRef]

A. B. Evlyukhin and S. I. Bozhevolnyi, "Applicability conditions for the dipole approximation in the problems of scattering of surface plasmon polaritons," JETP Lett. 81,218-221 (2005).
[CrossRef]

A. B. Evlyukhin and S. I. Bozhevolnyi, "Point-dipole approximation for surface plasmon polariton scattering: Implications and limitations," Phys. Rev. B 71,134303 (2005).
[CrossRef]

García-Vidal, F. J.

A. B. Evlyukhin, G. Brucoli, L. Martín-Moreno, S. I. Bozhevolnyi, and F. J. García-Vidal, "Surface plasmon polariton scattering by finite-size nanoparticles," Phys. Rev. B 76,075426 (2007).
[CrossRef]

E. Moreno, F. J. García-Vidal, S. G. Rodrigo, L. Martín-Moreno, and S. I. Bozhevolnyi, "Channel Plasmon-polaritons: modal shape, dispersion, and losses," Opt. Lett. 31,3447-3449 (2006).
[CrossRef] [PubMed]

Girard, C.

R. Quidant, C. Girard, J.C. Weeber, and A. Dereux, "Tailoring the transmittance of integrated optical waveguides with short metallic nanoparticle chains," Phys. Rev. B 69,085407 (2004).
[CrossRef]

J.R. Krenn, A. Dereux, J.C. Weeber, E. Bourillot, Y. Lacroute, J.P. Goudonnet, G. Schider, W. Gotschy, A. Leitner, F.R. Aussenegg, and C. Girard, "Squeezing the Optical Near-Field Zone by Plasmon Coupling of Metallic Nanoparticles," Phys. Rev. Lett. 82,2590-2593 (1999).
[CrossRef]

C. Girard and A. Dereux, "Near-field optics theories," Rep. Prog. Phys. 59,657-699 (1996).
[CrossRef]

O. J. F. Martin, C. Girard, and A. Dereux, "Generalized field propagator for electromagnetic scattering and light confinement," Phys. Rev. Lett. 74,526-529 (1995).
[CrossRef] [PubMed]

Gotschy, W.

J.R. Krenn, A. Dereux, J.C. Weeber, E. Bourillot, Y. Lacroute, J.P. Goudonnet, G. Schider, W. Gotschy, A. Leitner, F.R. Aussenegg, and C. Girard, "Squeezing the Optical Near-Field Zone by Plasmon Coupling of Metallic Nanoparticles," Phys. Rev. Lett. 82,2590-2593 (1999).
[CrossRef]

Goudonnet, J.P.

J.R. Krenn, A. Dereux, J.C. Weeber, E. Bourillot, Y. Lacroute, J.P. Goudonnet, G. Schider, W. Gotschy, A. Leitner, F.R. Aussenegg, and C. Girard, "Squeezing the Optical Near-Field Zone by Plasmon Coupling of Metallic Nanoparticles," Phys. Rev. Lett. 82,2590-2593 (1999).
[CrossRef]

Harel, E.

S.A. Maier, P.G. Kik, H.A. Atwater, S. Meltzer, E. Harel, B.E. Koel, and A. Requicha, "Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides," Nat. Mater. 2,229-232 (2003).
[CrossRef] [PubMed]

Hartman, J.W.

M.L. Brongersma, J.W. Hartman, and H.A. Atwater, "Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit," Phys. Rev. B 62,R16356-R16359 (2000).
[CrossRef]

Hecht, B.

L. Novotny, B. Hecht, and D. W. Pohl, "Interference of locally excited surface plasmons," J. Appl. Phys. 81 (1997) 1798-1806.
[CrossRef]

Hiller, J. M.

L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, "Subwavelength Focusing and Guiding of Surface Plasmons," Nano Lett. 5,1399-1402 (2005).
[CrossRef] [PubMed]

Hohenau, A.

A. Drezet, A. L. Stepanov, H. Ditlbacher, A. Hohenau, B. Steinberger, F. R. Aussenegg, A. Leitner, and J. R. Krenn, Appl. Phys. Lett. 86 (2005) 074104.
[CrossRef]

A. L. Stepanov, J. R. Krenn, H. Ditlbacher, A. Hohenau, A. Drezet, B. Steinberger, A. Leitner, and F. R. Aussenegg, "Quantitative analysis of surface plasmon interaction with silver nanoparticles," Opt. Lett. 30,1524-1526 (2005).
[CrossRef] [PubMed]

J. R. Krenn, H. Ditlbacher, G. Schider, A. Hohenau, A. Leitner, and F. R. Aussenegg, "Surface plasmon microand nano-optics," J. Microsc. 209,167-172 (2003).
[CrossRef] [PubMed]

Hong, M. H.

Z. B. Wang, B. S. Lukyanchuk, M. H. Hong, Y. Lin, and T. C. Chong, "Energy flows around a small particle investigated by classical Mie theory," Phys. Rev. B 70,035418 (2004).
[CrossRef]

Hua, J.

L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, "Subwavelength Focusing and Guiding of Surface Plasmons," Nano Lett. 5,1399-1402 (2005).
[CrossRef] [PubMed]

Hvam, J.M.

S. I. Bozhevolnyi, J. Erland, K. Leosson, P.M.W. Skovgaard, and J.M. Hvam, "Waveguiding in surface plasmon polariton band gap structures," Phys. Rev. Lett. 86,3008-3011 (2001).
[CrossRef] [PubMed]

Keller, O.

O. Keller, M. Xiao, and S. Bozhevolnyi, "Configurational resonances in optical near-field microscopy: a rigorous point-dipole approach," Surf. Sci. 280,217-230 (1993).
[CrossRef]

Kik, P.G.

S.A. Maier, P.G. Kik, H.A. Atwater, S. Meltzer, E. Harel, B.E. Koel, and A. Requicha, "Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides," Nat. Mater. 2,229-232 (2003).
[CrossRef] [PubMed]

Kimball, C. W.

L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, "Subwavelength Focusing and Guiding of Surface Plasmons," Nano Lett. 5,1399-1402 (2005).
[CrossRef] [PubMed]

Koel, B.E.

S.A. Maier, P.G. Kik, H.A. Atwater, S. Meltzer, E. Harel, B.E. Koel, and A. Requicha, "Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides," Nat. Mater. 2,229-232 (2003).
[CrossRef] [PubMed]

Krenn, J. R.

A. B. Evlyukhin, S. I. Bozhevolnyi, A. L. Stepanov, and J. R. Krenn, "Splitting of a surface plasmon polariton beam by chains of nanoparticles," Appl. Phys. B 84,29-34 (2006).
[CrossRef]

A. L. Stepanov, J. R. Krenn, H. Ditlbacher, A. Hohenau, A. Drezet, B. Steinberger, A. Leitner, and F. R. Aussenegg, "Quantitative analysis of surface plasmon interaction with silver nanoparticles," Opt. Lett. 30,1524-1526 (2005).
[CrossRef] [PubMed]

A. Drezet, A. L. Stepanov, H. Ditlbacher, A. Hohenau, B. Steinberger, F. R. Aussenegg, A. Leitner, and J. R. Krenn, Appl. Phys. Lett. 86 (2005) 074104.
[CrossRef]

J. R. Krenn, H. Ditlbacher, G. Schider, A. Hohenau, A. Leitner, and F. R. Aussenegg, "Surface plasmon microand nano-optics," J. Microsc. 209,167-172 (2003).
[CrossRef] [PubMed]

H. Ditlbacher, J. R. Krenn, G. Schider, A. Leitner, and F. R. Aussenegg, "Two-dimensional optics with surface plasmon polaritons," Appl. Phys. Lett. 81,1762-1764, (2002).
[CrossRef]

Krenn, J.R.

J.R. Krenn, A. Dereux, J.C. Weeber, E. Bourillot, Y. Lacroute, J.P. Goudonnet, G. Schider, W. Gotschy, A. Leitner, F.R. Aussenegg, and C. Girard, "Squeezing the Optical Near-Field Zone by Plasmon Coupling of Metallic Nanoparticles," Phys. Rev. Lett. 82,2590-2593 (1999).
[CrossRef]

M. Quinten, A. Leitner, J.R. Krenn, and F.R. Aussenegg, "Electromagnetic energy transport via linear chains of silver nanoparticles," Opt. Lett. 23,1331-1333, (1998).
[CrossRef]

Lacroute, Y.

J.R. Krenn, A. Dereux, J.C. Weeber, E. Bourillot, Y. Lacroute, J.P. Goudonnet, G. Schider, W. Gotschy, A. Leitner, F.R. Aussenegg, and C. Girard, "Squeezing the Optical Near-Field Zone by Plasmon Coupling of Metallic Nanoparticles," Phys. Rev. Lett. 82,2590-2593 (1999).
[CrossRef]

Lalanne, P.

A.-L. Baudrion, J.-C. Weeber, A Dereux, G. Lecamp, P. Lalanne, and S. I. Bozhevolnyi, "Influence of the filling factor on the spectral properties of plasmonic crystals," Phys. Rev. B 74,125406 (2006).
[CrossRef]

Laluet, J.-Y.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, "Channel plasmon subwavelength waveguide components including interferometers and ring resonators," Nature 440,508-511 (2006).
[CrossRef] [PubMed]

Lecamp, G.

A.-L. Baudrion, J.-C. Weeber, A Dereux, G. Lecamp, P. Lalanne, and S. I. Bozhevolnyi, "Influence of the filling factor on the spectral properties of plasmonic crystals," Phys. Rev. B 74,125406 (2006).
[CrossRef]

Leitner, A.

A. L. Stepanov, J. R. Krenn, H. Ditlbacher, A. Hohenau, A. Drezet, B. Steinberger, A. Leitner, and F. R. Aussenegg, "Quantitative analysis of surface plasmon interaction with silver nanoparticles," Opt. Lett. 30,1524-1526 (2005).
[CrossRef] [PubMed]

A. Drezet, A. L. Stepanov, H. Ditlbacher, A. Hohenau, B. Steinberger, F. R. Aussenegg, A. Leitner, and J. R. Krenn, Appl. Phys. Lett. 86 (2005) 074104.
[CrossRef]

J. R. Krenn, H. Ditlbacher, G. Schider, A. Hohenau, A. Leitner, and F. R. Aussenegg, "Surface plasmon microand nano-optics," J. Microsc. 209,167-172 (2003).
[CrossRef] [PubMed]

H. Ditlbacher, J. R. Krenn, G. Schider, A. Leitner, and F. R. Aussenegg, "Two-dimensional optics with surface plasmon polaritons," Appl. Phys. Lett. 81,1762-1764, (2002).
[CrossRef]

J.R. Krenn, A. Dereux, J.C. Weeber, E. Bourillot, Y. Lacroute, J.P. Goudonnet, G. Schider, W. Gotschy, A. Leitner, F.R. Aussenegg, and C. Girard, "Squeezing the Optical Near-Field Zone by Plasmon Coupling of Metallic Nanoparticles," Phys. Rev. Lett. 82,2590-2593 (1999).
[CrossRef]

M. Quinten, A. Leitner, J.R. Krenn, and F.R. Aussenegg, "Electromagnetic energy transport via linear chains of silver nanoparticles," Opt. Lett. 23,1331-1333, (1998).
[CrossRef]

Leosson, K.

S. I. Bozhevolnyi, J. Erland, K. Leosson, P.M.W. Skovgaard, and J.M. Hvam, "Waveguiding in surface plasmon polariton band gap structures," Phys. Rev. Lett. 86,3008-3011 (2001).
[CrossRef] [PubMed]

Lin, Y.

Z. B. Wang, B. S. Lukyanchuk, M. H. Hong, Y. Lin, and T. C. Chong, "Energy flows around a small particle investigated by classical Mie theory," Phys. Rev. B 70,035418 (2004).
[CrossRef]

Liu, Z.

Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, "Focusing Surface Plasmons with a Plasmonic Lens," Nano Lett. 5,1726-1729 (2005).
[CrossRef] [PubMed]

Lukyanchuk, B. S.

M. I. Tribelsky and B. S. Lukyanchuk, "Anomalous light scattering by small particles," Phys. Rev. Lett. 97,263902 (2006).
[CrossRef]

Z. B. Wang, B. S. Lukyanchuk, M. H. Hong, Y. Lin, and T. C. Chong, "Energy flows around a small particle investigated by classical Mie theory," Phys. Rev. B 70,035418 (2004).
[CrossRef]

Maier, S.A.

S.A. Maier, P.G. Kik, H.A. Atwater, S. Meltzer, E. Harel, B.E. Koel, and A. Requicha, "Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides," Nat. Mater. 2,229-232 (2003).
[CrossRef] [PubMed]

Mait, J.

I. I. Smolyaninov, D. L. Mazzoni, J. Mait, and C. C. Davis, "Experimental study of surface-plasmon scattering by individual surface defects," Phys. Rev. B 56,1601-1611 (1997).
[CrossRef]

Maradudin, A. A.

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, "Nano-optics of surface plasmon polaritons," Phys. Rep. 408,131-314 (2005).
[CrossRef]

Marquart, C.

Martin, O. J. F.

O. J. F. Martin, C. Girard, and A. Dereux, "Generalized field propagator for electromagnetic scattering and light confinement," Phys. Rev. Lett. 74,526-529 (1995).
[CrossRef] [PubMed]

Martín-Moreno, L.

A. B. Evlyukhin, G. Brucoli, L. Martín-Moreno, S. I. Bozhevolnyi, and F. J. García-Vidal, "Surface plasmon polariton scattering by finite-size nanoparticles," Phys. Rev. B 76,075426 (2007).
[CrossRef]

E. Moreno, F. J. García-Vidal, S. G. Rodrigo, L. Martín-Moreno, and S. I. Bozhevolnyi, "Channel Plasmon-polaritons: modal shape, dispersion, and losses," Opt. Lett. 31,3447-3449 (2006).
[CrossRef] [PubMed]

Mazzoni, D. L.

I. I. Smolyaninov, D. L. Mazzoni, J. Mait, and C. C. Davis, "Experimental study of surface-plasmon scattering by individual surface defects," Phys. Rev. B 56,1601-1611 (1997).
[CrossRef]

I. I. Smolyaninov, D. L. Mazzoni, and C. C. Davis, "Imaging of surface plasmon scattering by lithographically created individual surface defects," Phys. Rev. Lett. 77,3877-3880 (1996).
[CrossRef] [PubMed]

Meltzer, S.

S.A. Maier, P.G. Kik, H.A. Atwater, S. Meltzer, E. Harel, B.E. Koel, and A. Requicha, "Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides," Nat. Mater. 2,229-232 (2003).
[CrossRef] [PubMed]

Moreno, E.

Nomura, W.

W. Nomura, M. Ohtsu, and T. Yatsui, "Nanodot coupler with a surface plasmon polariton condenser for optical far/near-field conversion," Appl. Phys. Lett. 86,181108 (2005).
[CrossRef]

Novotny, L.

L. Novotny, B. Hecht, and D. W. Pohl, "Interference of locally excited surface plasmons," J. Appl. Phys. 81 (1997) 1798-1806.
[CrossRef]

Ohtsu, M.

W. Nomura, M. Ohtsu, and T. Yatsui, "Nanodot coupler with a surface plasmon polariton condenser for optical far/near-field conversion," Appl. Phys. Lett. 86,181108 (2005).
[CrossRef]

Passinger, S.

Pearson, J.

L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, "Subwavelength Focusing and Guiding of Surface Plasmons," Nano Lett. 5,1399-1402 (2005).
[CrossRef] [PubMed]

Pikus, Y.

Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, "Focusing Surface Plasmons with a Plasmonic Lens," Nano Lett. 5,1726-1729 (2005).
[CrossRef] [PubMed]

Pohl, D. W.

L. Novotny, B. Hecht, and D. W. Pohl, "Interference of locally excited surface plasmons," J. Appl. Phys. 81 (1997) 1798-1806.
[CrossRef]

Pudonin, F. A.

S. I. Bozhevolnyi and F. A. Pudonin, "Two-dimensional micro-optics of surface plasmons," Phys. Rev. Lett. 78,2823-2826 (1997).
[CrossRef]

Quidant, R.

R. Quidant, C. Girard, J.C. Weeber, and A. Dereux, "Tailoring the transmittance of integrated optical waveguides with short metallic nanoparticle chains," Phys. Rev. B 69,085407 (2004).
[CrossRef]

Quinten, M.

Radko, I. P.

Reinhardt, C.

Requicha, A.

S.A. Maier, P.G. Kik, H.A. Atwater, S. Meltzer, E. Harel, B.E. Koel, and A. Requicha, "Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides," Nat. Mater. 2,229-232 (2003).
[CrossRef] [PubMed]

Rodrigo, S. G.

Schider, G.

J. R. Krenn, H. Ditlbacher, G. Schider, A. Hohenau, A. Leitner, and F. R. Aussenegg, "Surface plasmon microand nano-optics," J. Microsc. 209,167-172 (2003).
[CrossRef] [PubMed]

H. Ditlbacher, J. R. Krenn, G. Schider, A. Leitner, and F. R. Aussenegg, "Two-dimensional optics with surface plasmon polaritons," Appl. Phys. Lett. 81,1762-1764, (2002).
[CrossRef]

J.R. Krenn, A. Dereux, J.C. Weeber, E. Bourillot, Y. Lacroute, J.P. Goudonnet, G. Schider, W. Gotschy, A. Leitner, F.R. Aussenegg, and C. Girard, "Squeezing the Optical Near-Field Zone by Plasmon Coupling of Metallic Nanoparticles," Phys. Rev. Lett. 82,2590-2593 (1999).
[CrossRef]

Skovgaard, P.M.W.

S. I. Bozhevolnyi, J. Erland, K. Leosson, P.M.W. Skovgaard, and J.M. Hvam, "Waveguiding in surface plasmon polariton band gap structures," Phys. Rev. Lett. 86,3008-3011 (2001).
[CrossRef] [PubMed]

Smolyaninov, I. I.

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, "Nano-optics of surface plasmon polaritons," Phys. Rep. 408,131-314 (2005).
[CrossRef]

A. V. Zayats and I. I. Smolyaninov, "Near-field photonics: surface plasmon polaritons and localized surface plasmons," J. Opt. A: Pure Appl. Opt. 5,S16-S50 (2003).
[CrossRef]

I. I. Smolyaninov, D. L. Mazzoni, J. Mait, and C. C. Davis, "Experimental study of surface-plasmon scattering by individual surface defects," Phys. Rev. B 56,1601-1611 (1997).
[CrossRef]

I. I. Smolyaninov, D. L. Mazzoni, and C. C. Davis, "Imaging of surface plasmon scattering by lithographically created individual surface defects," Phys. Rev. Lett. 77,3877-3880 (1996).
[CrossRef] [PubMed]

Søndergaard, T.

T. Søndergaard and S. I. Bozhevolnyi, "Surface plasmon polariton scattering by a small particle placed near a metal surface: An analytical study," Phys. Rev. B 69,045422 (2004).
[CrossRef]

T. Søndergaard and S. I. Bozhevolnyi, "Vectorial model for multiple scattering by surface nanoparticles via surface polariton-to-polariton interactions," Phys. Rev. B 67,165405 (2003).
[CrossRef]

Srituravanich, W.

Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, "Focusing Surface Plasmons with a Plasmonic Lens," Nano Lett. 5,1726-1729 (2005).
[CrossRef] [PubMed]

Steele, J. M.

Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, "Focusing Surface Plasmons with a Plasmonic Lens," Nano Lett. 5,1726-1729 (2005).
[CrossRef] [PubMed]

Steinberger, B.

Stepanov, A. L.

A. B. Evlyukhin, S. I. Bozhevolnyi, A. L. Stepanov, and J. R. Krenn, "Splitting of a surface plasmon polariton beam by chains of nanoparticles," Appl. Phys. B 84,29-34 (2006).
[CrossRef]

A. L. Stepanov, J. R. Krenn, H. Ditlbacher, A. Hohenau, A. Drezet, B. Steinberger, A. Leitner, and F. R. Aussenegg, "Quantitative analysis of surface plasmon interaction with silver nanoparticles," Opt. Lett. 30,1524-1526 (2005).
[CrossRef] [PubMed]

A. Drezet, A. L. Stepanov, H. Ditlbacher, A. Hohenau, B. Steinberger, F. R. Aussenegg, A. Leitner, and J. R. Krenn, Appl. Phys. Lett. 86 (2005) 074104.
[CrossRef]

Sun, C.

Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, "Focusing Surface Plasmons with a Plasmonic Lens," Nano Lett. 5,1726-1729 (2005).
[CrossRef] [PubMed]

Tribelsky, M. I.

M. I. Tribelsky and B. S. Lukyanchuk, "Anomalous light scattering by small particles," Phys. Rev. Lett. 97,263902 (2006).
[CrossRef]

Vlasko-Vlasov, V. K.

L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, "Subwavelength Focusing and Guiding of Surface Plasmons," Nano Lett. 5,1399-1402 (2005).
[CrossRef] [PubMed]

Volkov, V. S.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, "Channel plasmon subwavelength waveguide components including interferometers and ring resonators," Nature 440,508-511 (2006).
[CrossRef] [PubMed]

Wang, Z. B.

Z. B. Wang, B. S. Lukyanchuk, M. H. Hong, Y. Lin, and T. C. Chong, "Energy flows around a small particle investigated by classical Mie theory," Phys. Rev. B 70,035418 (2004).
[CrossRef]

Weeber, J.C.

R. Quidant, C. Girard, J.C. Weeber, and A. Dereux, "Tailoring the transmittance of integrated optical waveguides with short metallic nanoparticle chains," Phys. Rev. B 69,085407 (2004).
[CrossRef]

J.R. Krenn, A. Dereux, J.C. Weeber, E. Bourillot, Y. Lacroute, J.P. Goudonnet, G. Schider, W. Gotschy, A. Leitner, F.R. Aussenegg, and C. Girard, "Squeezing the Optical Near-Field Zone by Plasmon Coupling of Metallic Nanoparticles," Phys. Rev. Lett. 82,2590-2593 (1999).
[CrossRef]

Weeber, J.-C.

A.-L. Baudrion, J.-C. Weeber, A Dereux, G. Lecamp, P. Lalanne, and S. I. Bozhevolnyi, "Influence of the filling factor on the spectral properties of plasmonic crystals," Phys. Rev. B 74,125406 (2006).
[CrossRef]

Welp, U.

L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, "Subwavelength Focusing and Guiding of Surface Plasmons," Nano Lett. 5,1399-1402 (2005).
[CrossRef] [PubMed]

Xiao, M.

O. Keller, M. Xiao, and S. Bozhevolnyi, "Configurational resonances in optical near-field microscopy: a rigorous point-dipole approach," Surf. Sci. 280,217-230 (1993).
[CrossRef]

Yatsui, T.

W. Nomura, M. Ohtsu, and T. Yatsui, "Nanodot coupler with a surface plasmon polariton condenser for optical far/near-field conversion," Appl. Phys. Lett. 86,181108 (2005).
[CrossRef]

Yin, L.

L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, "Subwavelength Focusing and Guiding of Surface Plasmons," Nano Lett. 5,1399-1402 (2005).
[CrossRef] [PubMed]

Zayats, A. V.

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, "Nano-optics of surface plasmon polaritons," Phys. Rep. 408,131-314 (2005).
[CrossRef]

A. V. Zayats and I. I. Smolyaninov, "Near-field photonics: surface plasmon polaritons and localized surface plasmons," J. Opt. A: Pure Appl. Opt. 5,S16-S50 (2003).
[CrossRef]

Zhang, X.

Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, "Focusing Surface Plasmons with a Plasmonic Lens," Nano Lett. 5,1726-1729 (2005).
[CrossRef] [PubMed]

Appl. Phys. B (1)

A. B. Evlyukhin, S. I. Bozhevolnyi, A. L. Stepanov, and J. R. Krenn, "Splitting of a surface plasmon polariton beam by chains of nanoparticles," Appl. Phys. B 84,29-34 (2006).
[CrossRef]

Appl. Phys. Lett. (3)

A. Drezet, A. L. Stepanov, H. Ditlbacher, A. Hohenau, B. Steinberger, F. R. Aussenegg, A. Leitner, and J. R. Krenn, Appl. Phys. Lett. 86 (2005) 074104.
[CrossRef]

W. Nomura, M. Ohtsu, and T. Yatsui, "Nanodot coupler with a surface plasmon polariton condenser for optical far/near-field conversion," Appl. Phys. Lett. 86,181108 (2005).
[CrossRef]

H. Ditlbacher, J. R. Krenn, G. Schider, A. Leitner, and F. R. Aussenegg, "Two-dimensional optics with surface plasmon polaritons," Appl. Phys. Lett. 81,1762-1764, (2002).
[CrossRef]

J. Appl. Phys. (1)

L. Novotny, B. Hecht, and D. W. Pohl, "Interference of locally excited surface plasmons," J. Appl. Phys. 81 (1997) 1798-1806.
[CrossRef]

J. Microsc. (1)

J. R. Krenn, H. Ditlbacher, G. Schider, A. Hohenau, A. Leitner, and F. R. Aussenegg, "Surface plasmon microand nano-optics," J. Microsc. 209,167-172 (2003).
[CrossRef] [PubMed]

J. Opt. A: Pure Appl. Opt. (1)

A. V. Zayats and I. I. Smolyaninov, "Near-field photonics: surface plasmon polaritons and localized surface plasmons," J. Opt. A: Pure Appl. Opt. 5,S16-S50 (2003).
[CrossRef]

JETP Lett. (1)

A. B. Evlyukhin and S. I. Bozhevolnyi, "Applicability conditions for the dipole approximation in the problems of scattering of surface plasmon polaritons," JETP Lett. 81,218-221 (2005).
[CrossRef]

Nano Lett. (2)

Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, "Focusing Surface Plasmons with a Plasmonic Lens," Nano Lett. 5,1726-1729 (2005).
[CrossRef] [PubMed]

L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, "Subwavelength Focusing and Guiding of Surface Plasmons," Nano Lett. 5,1399-1402 (2005).
[CrossRef] [PubMed]

Nat. Mater. (1)

S.A. Maier, P.G. Kik, H.A. Atwater, S. Meltzer, E. Harel, B.E. Koel, and A. Requicha, "Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides," Nat. Mater. 2,229-232 (2003).
[CrossRef] [PubMed]

Nature (2)

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, "Channel plasmon subwavelength waveguide components including interferometers and ring resonators," Nature 440,508-511 (2006).
[CrossRef] [PubMed]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature 424,824-830 (2003).
[CrossRef] [PubMed]

Opt. Express (1)

Opt. Lett. (4)

Phys. Rep. (1)

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, "Nano-optics of surface plasmon polaritons," Phys. Rep. 408,131-314 (2005).
[CrossRef]

Phys. Rev. B (9)

A.-L. Baudrion, J.-C. Weeber, A Dereux, G. Lecamp, P. Lalanne, and S. I. Bozhevolnyi, "Influence of the filling factor on the spectral properties of plasmonic crystals," Phys. Rev. B 74,125406 (2006).
[CrossRef]

M.L. Brongersma, J.W. Hartman, and H.A. Atwater, "Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit," Phys. Rev. B 62,R16356-R16359 (2000).
[CrossRef]

R. Quidant, C. Girard, J.C. Weeber, and A. Dereux, "Tailoring the transmittance of integrated optical waveguides with short metallic nanoparticle chains," Phys. Rev. B 69,085407 (2004).
[CrossRef]

I. I. Smolyaninov, D. L. Mazzoni, J. Mait, and C. C. Davis, "Experimental study of surface-plasmon scattering by individual surface defects," Phys. Rev. B 56,1601-1611 (1997).
[CrossRef]

A. B. Evlyukhin, G. Brucoli, L. Martín-Moreno, S. I. Bozhevolnyi, and F. J. García-Vidal, "Surface plasmon polariton scattering by finite-size nanoparticles," Phys. Rev. B 76,075426 (2007).
[CrossRef]

T. Søndergaard and S. I. Bozhevolnyi, "Surface plasmon polariton scattering by a small particle placed near a metal surface: An analytical study," Phys. Rev. B 69,045422 (2004).
[CrossRef]

Z. B. Wang, B. S. Lukyanchuk, M. H. Hong, Y. Lin, and T. C. Chong, "Energy flows around a small particle investigated by classical Mie theory," Phys. Rev. B 70,035418 (2004).
[CrossRef]

A. B. Evlyukhin and S. I. Bozhevolnyi, "Point-dipole approximation for surface plasmon polariton scattering: Implications and limitations," Phys. Rev. B 71,134303 (2005).
[CrossRef]

T. Søndergaard and S. I. Bozhevolnyi, "Vectorial model for multiple scattering by surface nanoparticles via surface polariton-to-polariton interactions," Phys. Rev. B 67,165405 (2003).
[CrossRef]

Phys. Rev. Lett. (6)

O. J. F. Martin, C. Girard, and A. Dereux, "Generalized field propagator for electromagnetic scattering and light confinement," Phys. Rev. Lett. 74,526-529 (1995).
[CrossRef] [PubMed]

M. I. Tribelsky and B. S. Lukyanchuk, "Anomalous light scattering by small particles," Phys. Rev. Lett. 97,263902 (2006).
[CrossRef]

J.R. Krenn, A. Dereux, J.C. Weeber, E. Bourillot, Y. Lacroute, J.P. Goudonnet, G. Schider, W. Gotschy, A. Leitner, F.R. Aussenegg, and C. Girard, "Squeezing the Optical Near-Field Zone by Plasmon Coupling of Metallic Nanoparticles," Phys. Rev. Lett. 82,2590-2593 (1999).
[CrossRef]

I. I. Smolyaninov, D. L. Mazzoni, and C. C. Davis, "Imaging of surface plasmon scattering by lithographically created individual surface defects," Phys. Rev. Lett. 77,3877-3880 (1996).
[CrossRef] [PubMed]

S. I. Bozhevolnyi and F. A. Pudonin, "Two-dimensional micro-optics of surface plasmons," Phys. Rev. Lett. 78,2823-2826 (1997).
[CrossRef]

S. I. Bozhevolnyi, J. Erland, K. Leosson, P.M.W. Skovgaard, and J.M. Hvam, "Waveguiding in surface plasmon polariton band gap structures," Phys. Rev. Lett. 86,3008-3011 (2001).
[CrossRef] [PubMed]

Rep. Prog. Phys. (1)

C. Girard and A. Dereux, "Near-field optics theories," Rep. Prog. Phys. 59,657-699 (1996).
[CrossRef]

Surf. Sci. (2)

O. Keller, M. Xiao, and S. Bozhevolnyi, "Configurational resonances in optical near-field microscopy: a rigorous point-dipole approach," Surf. Sci. 280,217-230 (1993).
[CrossRef]

A. B. Evlyukhin and S. I. Bozhevolnyi, "Surface plasmon polariton scattering by small ellipsoid particles," Surf. Sci. 590,173-180 (2005).
[CrossRef]

Other (4)

E. Palik, Handbook of Optical Constant of Solids (Academic, San Diego, CA, 1985).

L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 8: Electrodynamics of Continuous Media (Pergamon, New York, 1984).

Surface Polaritons, edited by V. M. Agranovich and D. L. Mills (North-Holland, Amsterdam,1982); H. Raether, Surface Plasmon, Springer Tracts in Modern Physics, Vol. 111 (Springer, Berlin, 1988).

S. I. Bozhevolnyi and V. Coello, "Elastic scattering of surface plasmon polaritons: Modeling and experiment," Phys. Rev. B 58, 10899-10 910 (1998).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1.
Fig. 1.

Schematic of an experimental setup for sample fabrication by the 2PP.

Fig. 2.
Fig. 2.

Schematic cross-section of a sample fabricated by the 2PP followed by gold deposition.

Fig. 3.
Fig. 3.

Scanning electron microscope (SEM) (a) the top image of the structure, (b) the image of the structure obtained with view angle 45°. The radius of curved chains of nanoparticles is equal to 10 µm. The particle in-plane size (diameter) and inter-particle distance are estimated to be about 350 nm and 850 nm, respectively, the particle height is 300 nm.

Fig. 4.
Fig. 4.

Typical experimental LRM image of the SPP focusing by the surface structure shown in Fig. 3. Here the diameter of the incident light spot size for the SPP excitation (dashed circle) is equal to approximately 10 µm. The arrow indicates the incident light polarization.

Fig. 5.
Fig. 5.

Experimental LRM images of the SPPs excited by the surface structure shown in Fig. 3b. The diameter of the incident light spot for the SPP excitation (dashed circles) is equal to 3 µm. (a) The exciting laser spot is at the center of the structure, (b) and (c) the laser spot is shifted away from the center. The arrow indicates the incident light polarization in all cases.

Fig. 6.
Fig. 6.

Schematic top view of the considered system: a curved chain of identical gold particles with constant inter-particle (center-to-center) spacing D and with curvature radius R is located above the gold-air interface in the air half-space. The dashed circle indicates the incident light spot exciting SPPs. Only the particles located inside this circle interact efficiently with the incident light. The angle α determines the center of the incident light spot along the chain. The angle β determines the length of a circle segment filled with chain particles.

Fig. 7.
Fig. 7.

Magnitude of scattered electric field calculated above the gold surface with a curved chain (with R=10µm and β=60°) of spheroid gold nanoparticles illuminated by a light beam at the wavelength of 800 nm being incident perpendicular to the gold surface and polarized along x-direction (Fig. 6). The waist W of the incident beam and the inter-particle (center-to-center) spacing D in the chain are (a) W=10 µm, D=400 nm;(b) W=10µm, D=800 nm; (c) W=1.5 µm, D=400 nm; (d) W=1.5 µm, D=800 nm.

Fig. 8.
Fig. 8.

Normalized field intensities (a) along the cross section through the SPP focus parallel to the y-axis Fig. 6 (transverse cross section) and (b) along the cross section through the SPP focus parallel to the x-axis Fig. 6 (longitudinal cross section). For the calculation the chain curvature radius R, the angle β, the inter-particle distance D, and the waist W of incident light have been chosen correspondingly an experimental realization (R=10 µm; β=60°; D=850 nm; W=8 µm).

Fig. 9.
Fig. 9.

Field intensities calculated along the cross section through the SPP focus parallel to the y-axis (transverse cross section) for the different inter-particle distances D. The chain curvature radius R and angle β are as in Fig.7 and W=10 µm.

Fig. 10.
Fig. 10.

Field intensities calculated along the cross section through the SPP focus parallel to the x-axis (longitudinal cross section). The chain curvature radius R and angle β are as in Fig.7 and D=400 nm. The power of the incident light is constant for the different values of W.

Fig. 11.
Fig. 11.

Intensity of scattered electric field calculated above the gold surface with a curved chain of spheroid gold nanoparticles having the curvature radius R=10 µm, the angle β=60° and the inter-particle (center-to-center) spacing D=400 nm. The incident laser beam with the waist W=3 µm is shifted along the chain on the angle (a) α=30°, (b) α=-30° with respect of the x-axis. The incident light polarization is along x-direction.

Fig. 12.
Fig. 12.

Maximum of field intensity in the beam propagating from the particles to the center of chain curvature as a function of position of the exiting light spot on the chain, the position is determined by the angle α (Fig. 6). The basic parameters are as in Fig. 11. The power of the incident light is constant for the different values of W.

Fig. 13.
Fig. 13.

Field intensities calculated along the cross section through the SPP focus parallel to the x-axis (longitudinal cross section). The chain curvature radius R=10 µm, D=400 nm and W=20 µm.

Fig. 14.
Fig. 14.

Field intensities calculated along the cross section through the SPP focus parallel to the y-axis (transverse cross section). The chain curvature radius R=10 µm and D=400 nm. The power of the incident light is constant for the different values of W.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

E ( r ) = E 0 ( r ) + k 0 2 i = 1 N V i G ̂ ( r , r ) ( ε g 1 ) E ( r ) d r ,
p i = α ̂ E 0 ( r i ) + k 0 2 ε 0 α ̂ G ̂ s ( r i , r i ) p i
+ k 0 2 ε 0 j i N α ̂ [ G ̂ 0 ( r i , r j ) + G ̂ s ( r i , r j ) ] p j ,
i = 1 , , N
α ̂ = ( α x x ̂ x ̂ + α y y ̂ y ̂ + α z z ̂ z ̂ ) ,
α τ = ε 0 V ( ε g 1 ) ( 1 + ( ε g 1 ) m τ ) , τ = x , y , z .
E ( r ) = k 0 2 ε 0 i = 1 N [ G ̂ 0 ( r , r i ) + G ̂ s ( r , r i ) ] p i .

Metrics