Abstract

Several kinds of nonlinear optical effects have been observed in recent years using silicon waveguides, and their device applications are attracting considerable attention. In this review, we provide a unified theoretical platform that not only can be used for understanding the underlying physics but should also provide guidance toward new and useful applications. We begin with a description of the third-order nonlinearity of silicon and consider the tensorial nature of both the electronic and Raman contributions. The generation of free carriers through two-photon absorption and their impact on various nonlinear phenomena is included fully within the theory presented here. We derive a general propagation equation in the frequency domain and show how it leads to a generalized nonlinear Schrödinger equation when it is converted to the time domain. We use this equation to study propagation of ultrashort optical pulses in the presence of self-phase modulation and show the possibility of soliton formation and supercontinuum generation. The nonlinear phenomena of cross-phase modulation and stimulated Raman scattering are discussed next with emphasis on the impact of free carriers on Raman amplification and lasing. We also consider the four-wave mixing process for both continuous-wave and pulsed pumping and discuss the conditions under which parametric amplification and wavelength conversion can be realized with net gain in the telecommunication band.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Pavesi and D. J. Lockwood, Eds., Silicon Photonics (Springer, New York, 2004).
  2. G. T. Reed and A. P. Knights, Silicon Photonics: An Introduction (Wiley, Hoboken, NJ, 2004).
    [CrossRef]
  3. R. A. Soref, "The Past, Present, and Future of Silicon Photonics," IEEE J. Sel. Top. Quantum Electron. 12, 1678-1687 (2006).
    [CrossRef]
  4. R. A. Soref, S. J. Emelett, and W. R. Buchwald, "Silicon waveguided components for the long-wave infrared region," J. Opt. A: Pure Appl. Opt. 8, 840-848 (2006).
    [CrossRef]
  5. M. Dinu, F. Quochi, and H. Garcia, "Third-order nonlinearities in silicon at telecom wavelengths," Appl. Phys. Lett. 82, 2954-2956 (2003).
    [CrossRef]
  6. R. Claps, D. Dimitropoulos, V. Raghunathan, Y. Han, and B. Jalali, "Observation of stimulated Raman amplifi-cation in silicon waveguides," Opt. Express 11, 1731-1739 (2003).
    [CrossRef] [PubMed]
  7. H. K. Tsang, C. S. Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake, and M. Asghari, "Optical dispersion, two-photon absorption, and self-phase modulation in silicon waveguides at 1.5 μm wavelength," Appl. Phys. Lett. 80, 416-418 (2002).
    [CrossRef]
  8. O. Boyraz, T. Indukuri, and B. Jalali, "Self-phase-modulation induced spectral broadening in silicon waveguides," Opt. Express 12, 829-834 (2004).
    [CrossRef] [PubMed]
  9. G.W. Rieger, K. S. Virk, and J. F. Yong, "Nonlinear propagation of ultrafast 1.5 μm pulses in high-index-contrast silicon-on-insulator waveguides," Appl. Phys. Lett. 84, 900-902 (2004).
    [CrossRef]
  10. A. R. Cowan, G. W. Rieger, and J. F. Young, "Nonlinear transmission of 1.5 μm pulses through single-mode silicon-on-insulator waveguide structures," Opt. Express 12, 1611-1621 (2004).
    [CrossRef] [PubMed]
  11. H. Yamada, M. Shirane, T. Chu, H. Yokoyama, S. Ishida, and Y. Arakawa, "Nonlinear-optic silicon-nanowire waveguides," Jpn. J. Appl. Phys. 44, 6541-6545 (2005).
    [CrossRef]
  12. E. Dulkeith, Y. A. Vlasov, X. Chen, N. C. Panoiu, and R. M. Osgood, Jr., "Self-phase-modulation in submicron silicon-on-insulator photonic wires," Opt. Express 14, 5524-5534 (2006).
    [CrossRef] [PubMed]
  13. L. Yin, Q. Lin, and G. P. Agrawal, "Dispersion tailoring and soliton propagation in silicon waveguides," Opt. Lett. 31, 1295-1297 (2006).
    [CrossRef] [PubMed]
  14. R. Dekker, A. Driessen, T. Wahlbrink, C. Moormann, J. Niehusmann, and M. Först, "Ultrafast Kerr-induced all-optical wavelength conversion in silicon waveguides using 1.55 μm femtosecond pulses," Opt. Express 14, 8336-8346 (2006).
    [CrossRef] [PubMed]
  15. I-W. Hsieh, X. Chen, J. I. Dadap, N. C. Panoiu, R.M. Osgood, Jr., S. J. McNab, and Y. A. Vlasov, "Ultrafast-pulse self-phase modulation and third-order dispersion in Si photonic wire-waveguides," Opt. Express 14, 12380-12387 (2006).
    [CrossRef] [PubMed]
  16. L. Yin, Q. Lin, and G. P. Agrawal, "Soliton fission and supercontinuum generation in silicon waveguides," Opt. Lett. 32, 391-393 (2007).
    [CrossRef] [PubMed]
  17. J. Zhang, Q. Lin, G. Piredda, R. W. Boyd, G. P. Agrawal, and P. M. Fauchet, "Optical solitons in a silicon waveguide," Opt. Express 15, 7682-7688 (2007).
    [CrossRef] [PubMed]
  18. P. Koonath, D. R. Solli, and B. Jalali, "Continuum generation and carving on a silicon chip," Appl. Phys. Lett. 91, 061111 (2007).
    [CrossRef]
  19. R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, "All-optical regeneration on a silicon chip," Opt. Express 15, 7802-7809 (2007).
    [CrossRef] [PubMed]
  20. R. Dekker, N. Usechak, M. Först, and A. Driessen, "Ultrafast nonlinear all-optical processes in silicon-oninsulator waveguides," J. Phys. D: Appl. Phys. 40, R249-R271 (2007).
    [CrossRef]
  21. L. Yin and G. P. Agrawal, "Impact of two-photon absorption on self-phase modulation in silicon waveguides," Opt. Lett. 32, 2031-2033 (2007).
    [CrossRef] [PubMed]
  22. N. Suzuki, "FDTD analysis of two-photon absorption and free-carrier absorption in Si high-index-contrast waveguides," J. Lightwave Technol. 25, 2495-2501 (2007).
    [CrossRef]
  23. I-W. Hsieh, X. Chen, X. Liu, J. I. Dadap, N. C. Panoiu, C-Y. Chou, F. Xia,W. M. Green, Y. A. Vlasov, and R. M. Osgood, Jr., "Supercontinuum generation in silicon photonic wires," Opt. Express 15, 15242-15248 (2007).
    [CrossRef] [PubMed]
  24. A. Hache and M. Bourgeois, "Ultrafast all-optical switching in a silicon-based photonic crystal," Appl. Phys. Lett. 77, 4089-4091 (2000).
    [CrossRef]
  25. Ö. Boyraz, P. Koonath, V. Raghunathan, and B. Jalali, "All optical switching and continuum generation in silicon waveguides," Opt. Express 12, 4094-4102 (2004).
    [CrossRef] [PubMed]
  26. I-W. Hsieh, X. Chen, J. I. Dadap, N. C. Panoiu, R. M. Osgood, Jr., S. J. McNab, and Y. A. Vlasov, "Crossphase modulation-induced spectral and temporal effects on co-propagating femtosecond pulses in silicon photonic wires," Opt. Express 15, 1135-1146 (2007).
    [CrossRef] [PubMed]
  27. R. Claps, D. Dimitropoulos, Y. Han, and B. Jalali, "Observation of Raman emission in silicon waveguide at 1.54 μm," Opt. Express 10, 1305-1313 (2002).
    [PubMed]
  28. D. Dimitropoulos, B. Houshmand, R. Claps, and B. Jalali, "Coupled-mode theory of the Raman effect in siliconon-insulator waveguides," Opt. Lett. 28, 1954-1956 (2003).
    [CrossRef] [PubMed]
  29. J. I. Dadap, R. L. Espinola, R. M. Osgood, Jr., S. J. McNab, and Y. A. Vlasov, "Spontaneous Raman scattering in ultrasmall silicon waveguides," Opt. Lett. 29, 2755-2757 (2004).
    [CrossRef] [PubMed]
  30. R. L. Espinola, J. I. Dadap, R.M. Osgood, Jr., S. J. McNab, and Y. A. Vlasov, "Raman amplification in ultrasmall silicon-on-insulator wire waveguides," Opt. Express 12, 3713-3718 (2004).
    [CrossRef] [PubMed]
  31. Q. Xu, V. R. Almeida, and M. Lipson, "Time-resolved study of Raman gain in highly confined silicon-oninsulator waveguides," Opt. Express 12, 4437-4442 (2004).
    [CrossRef] [PubMed]
  32. A. Liu, H. Rong, M. Paniccia, O. Cohen, and D. Hak, "Net optical gain in a low loss silicon-on-insulator waveguide by stimulated Raman scattering," Opt. Express 12, 4261-4268 (2004).
    [CrossRef] [PubMed]
  33. H. Rong, A. Liu, R. Nicolaescu, M. Paniccia, O. Cohen, and D. Hak, "Raman gain and nonlinear optical absorption measurement in a low-loss silicon waveguide," Appl. Phys. Lett. 85, 2196-2198 (2004).
    [CrossRef]
  34. T. K. Liang and H. K. Tsang, "Efficient Raman amplificationin silicon-on-insulator waveguides," Appl. Phys. Lett. 85, 3343-3345 (2004).
    [CrossRef]
  35. T. K. Liang and H. K. Tsang, "Role of free carriers from two-photon absorption in Raman amplification in silicon-on-insulator waveguides," Appl. Phys. Lett. 84, 2745-2747 (2004).
    [CrossRef]
  36. R. Claps, V. Raghunathan, D. Dimitropoulos, and B. Jalali, "Influence of nonlinear absorption on Raman amplification in silicon waveguides," Opt. Express 12, 2774-2780 (2004).
    [CrossRef] [PubMed]
  37. T. K. Liang and H. K. Tsang, "Nonlinear absorption and Raman scattering in silicon-on-insulator optical waveguides," IEEE J. Quantum Electron. 10, 1149-1153 (2004).
    [CrossRef]
  38. O. Boyraz and B. Jalali, "Demonstration of a silicon Raman laser," Opt. Express 12, 5269-5273 (2004).
    [CrossRef] [PubMed]
  39. M. Krause, H. Renner, and E. Brinkmeyer, "Analysis of Raman lasing characteristics in silicon-on-insulator waveguides," Opt. Express 12, 5703-5710 (2004).
    [CrossRef] [PubMed]
  40. Q. Xu, V. R. Almeida, and M. Lipson, "Demonstration of high Raman gain in a submicrometer-size silicon-oninsulator waveguide," Opt. Lett. 30, 35-37 (2005).
    [CrossRef] [PubMed]
  41. H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, "An all-silicon Raman laser," Nature 433, 292-294 (2005).
    [CrossRef] [PubMed]
  42. H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, "A continuous-wave Raman silicon laser," Nature 433, 725-728 (2005).
    [CrossRef] [PubMed]
  43. O. Boyraz and B. Jalali, "Demonstration of directly modulated silicon Raman laser," Opt. Express 13, 796-800 (2005).
    [CrossRef] [PubMed]
  44. V. Raghunathan, O. Boyraz, ann B. Jalali, "20 dB on-off Raman amplification in silicon waveguides," Proc. Conf. Lasers Electro-Optics (OSA, Washington, DC, 2005), pp. 349-351.
  45. R. Jones, A. Liu, H. Rong, M. Paniccia, O. Cohen, and D. Hak, "Lossless optical modulation in a silicon waveguide using stimulated Raman scattering," Opt. Express 13, 1716-1723 (2005).
    [CrossRef] [PubMed]
  46. X. Yang and C. W. Wong, "Design of photonic band gap nanocavities for stimulated Raman amplification and lasing in monolithic silicon," Opt. Express 13, 4723-4730 (2005).
    [CrossRef] [PubMed]
  47. X. Chen, N. C. Panoiu, R. M. Osgood, Jr., "Theory of Raman-mediated pulsed amplification in silicon-wire waveguides," IEEE J. Quantum Electron. 42, 160-170 (2006).
    [CrossRef]
  48. V. M. N. Passaro and F. D. Leonardis, "Space-time modeling of Raman pulses in silicon-on-insulator optical waveguides," IEEE J. Lightwave Technol. 24, 2920-2931 (2006).
    [CrossRef]
  49. J. F. McMillan, X. Yang, N. C. Panoiu, R. M. Osgood, and C.W. Wong, "Enhanced stimulated Raman scattering in slow-light photonic crystal waveguides," Opt. Lett. 31, 1235-1237 (2006).
    [CrossRef] [PubMed]
  50. S. Blair and K. Zheng, "Intensity-tunable group delay using stimulated Raman scattering in silicon slow-light waveguides," Opt. Express 14, 1064-1069 (2006).
    [CrossRef] [PubMed]
  51. Y. Okawachi, M. A. Foster, J. E. Sharping, A. L. Gaeta, Q. Xu, and M. Lipson, "All-optical slow-light on a photonic chip," Opt. Express 14, 2317-2322 (2006).
    [CrossRef] [PubMed]
  52. A. Liu, H. Rong, R. Jones, O. Cohen, D. Hak, and M. Paniccia, "Optical amplification and lasing by stimulated Raman scattering in silicon waveguides," IEEE J. Lightwave Technol. 24, 1440-1455 (2006).
    [CrossRef]
  53. B. Jalali, V. Raghunathan, D. Dimitropoulos, and O. Boyraz, "Raman-based silicon photonics," IEEE J. Sel. Top. Quantum Electron. 12, 412-421 (2006).
    [CrossRef]
  54. H. Rong, S. Xu, Y. Kuo, V. Sih, O. Cohen, O. Raday, and M. Paniccia, "Low-threshold continuous-wave Raman silicon laser," Nature Photon. 1, 232-237 (2007).
    [CrossRef]
  55. X. Yang and C.W. Wong, "Coupled-mode theory for stimulated Raman scattering in high-Q/Vm silicon photonic band gap defect cavity lasers," Opt. Express 15, 4763-4780 (2007).
    [CrossRef] [PubMed]
  56. V. Sih, S. Xu, Y. Kuo, H. Rong, M. Paniccia, O. Cohen, and O. Raday, "Raman amplification of 40 Gb/s data in low-loss silicon waveguides," Opt. Express 15, 357-362 (2007).
    [CrossRef] [PubMed]
  57. V. Raghunathan, H. Renner, R. R. Rice, and B. Jalali, "Self-imaging silicon Raman amplifier," Opt. Express 15, 3396-3408 (2007).
    [CrossRef] [PubMed]
  58. F. De Leonardis and V. M. N. Passaro, "Modelling of Raman amplification in silicon-on-insulator optical microcavities," New J. Phys. 9, 25 (2007).
    [CrossRef]
  59. F. De Leonardis and V. M. N. Passaro, "Modeling and performance of a guided-wave optical angular-velocity sensor based on Raman effect in SOI," IEEE J. Lightwave Technol. 25, 2352-2366 (2007).
    [CrossRef]
  60. V. Raghunathan, D. Borlaug, R. R. Rice, and B. Jalali, "Demonstration of a mid-infrared silicon Raman ampli-fier," Opt. Express 15, 14355-14362 (2007).
    [CrossRef] [PubMed]
  61. R. Claps, V. Raghunathan, D. Dimitropoulos, and B. Jalali, "Anti-Sotkes Raman conversion in silicon waveguides," Opt. Express 11, 2862-2872 (2003).
    [CrossRef] [PubMed]
  62. D. Dimitropoulos, V. Raghunathan, R. Claps, and B. Jalali, "Phase-matching and nonlinear optical processes in silicon waveguides," Opt. Express 12, 149-160 (2003).
    [CrossRef]
  63. V. Raghunathan, R. Claps, D. Dimitropoulos, and B. Jalali, "Wavelength conversion in silicon using Raman induced four-wave mixing," Appl. Phys. Lett. 85, 34-36 (2004).
    [CrossRef]
  64. R. L. Espinola, J. I, Dadap, R. M. Osgood, Jr., S. J. McNab, and Y. A. Vlasov, "C-band wavelength conversion in silicon photonic wire waveguides," Opt. Express 13, 4341-4349 (2005).
    [CrossRef] [PubMed]
  65. H. Fukuda, K. Yamada, T. Shoji, M. Takahashi, T. Tsuchizawa, T. Watanabe, J. Takahashi, and S. Itabashi, "Four-wave mixing in silicon wire waveguides," Opt. Express 13, 4629-4637 (2005).
    [CrossRef] [PubMed]
  66. V. Raghunathan, R. Claps, D. Dimitropoulos, and B. Jalali, "Parametric Raman wavelength conversion in scaled silicon waveguides," IEEE J. Lightwave Technol. 23, 2094-2102 (2005).
    [CrossRef]
  67. H. Rong, Y. Kuo, A. Liu, M. Paniccia, and O. Cohen, "High efficiency wavelength conversion of 10 Gb/s data in silicon waveguides," Opt. Express 14, 1182-1188 (2006).
    [CrossRef] [PubMed]
  68. Q. Lin, J. Zhang, P. M. Fauchet, and G. P. Agrawal, "Ultrabroadband parametric generation and wavelength conversion in silicon waveguides," Opt. Express 14, 4786-4799 (2006).
    [CrossRef] [PubMed]
  69. M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, "Broad-band optical parametric gain on a silicon photonic chip," Nature 441, 960-963 (2006).
    [CrossRef] [PubMed]
  70. D. Dimitropoulos, D. R. Solli, R. Claps, and B. Jalali, "Noise figure and photon statistics in coherent anti-Stokes Raman scattering," Opt. Express 14, 11418-11432 (2006).
    [CrossRef] [PubMed]
  71. K. Yamada, H. Fukuda, T. Tsuchizawa, T. Watanabe, T. Shoji, and S. Itabashi, "All-optical efficient wavelength conversion using silicon photonic wire waveguide," IEEE Photon. Technol. Lett. 18, 1046-1048 (2006).
    [CrossRef]
  72. Y. Kuo, H. Rong, V. Sih, S. Xu, M. Paniccia, and O. Cohen, "Demonstration of wavelength conversion at 40 Gb/s data rate in silicon waveguides," Opt. Express 14, 11721-11726 (2006).
    [CrossRef] [PubMed]
  73. Q. Lin and G. P. Agrawal, "Silicon waveguides for creating quantum-correlated photon pairs," Opt. Lett. 31, 3140-3142 (2006).
    [CrossRef] [PubMed]
  74. N. C. Panoiu, X. Chen, and R. M. Osgood, Jr., "Modulation instability in silicon photonic nanowires," Opt. Lett. 31, 3609-3611 (2006).
    [CrossRef] [PubMed]
  75. J. E. Sharping, K. F. Lee, M. A. Foster, A. C. Turner, B. S. Schmidt, M. Lipson, A. L. Gaeta, and P. Kumar, "Generation of correlated photons in nanoscale silicon waveguides," Opt. Express 14, 12388-12393 (2006).
    [CrossRef] [PubMed]
  76. N. Vermeulen, C. Debaes, and H. Thienpont, "Mitigating heat dissipation in near- and mid-infrared silicon-based Raman lasers using CARS," IEEE J. Sel. Top. Quantum Electron. 13, 770-787 (2007).
    [CrossRef]
  77. A. C. Turner, M. A. Foster, A. L Gaeda, and M. Lipson, "Ultra-low power frequency conversion in silicon microring resonators," Proc. Conf. Lasers Electro-Optics (OSA, Washington, DC, 2007), paper CPDA3.
  78. S. Ayotte, H. Rong, S. Xu, O. Cohen, and M. Paniccia, "Multichannel dispersion compensation using a silicon waveguide-based optical phase conjugator," Opt. Lett. 32, 2393-2395 (2007).
    [CrossRef] [PubMed]
  79. M. A. Foster, A. C. Turner, R. Salem, M. Lipson, and A. L. Gaeta, "Broad-band continuous-wave parametric wavelength conversion in silicon nanowaveguides," Opt. Express 15, 12949-12958 (2007).
    [CrossRef] [PubMed]
  80. G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic Press, Boston, 2007).
  81. R. A. Soref and B. R. Bennett, "Electrooptical effects in silicon," IEEE J. Quantum Electron. 23, 123-129 (1987).
    [CrossRef]
  82. V. Raghunathan, R. Shori, O. M. Stafsudd, B. Jalali, "Nonlinear absorption in silicon and the prospects of midinfrared silicon Raman lasers," Physica Status Solidi A 203, R38-R40 (2006).
    [CrossRef]
  83. A. D. Bristow, N. Rotenberg, and H. M. van Driel, "Two-photon absorption and Kerr coefficients of silicon for 850-2200 nm," Appl. Phys. Lett. 90, 191104 (2007).
    [CrossRef]
  84. Q. Lin, J. Zhang, G. Piredda, R.W. Boyd, P. M. Fauchet, and G. P. Agrawal, "Dispersion of silicon nonlinearities in the near-infrared region," Appl. Phys. Lett. 90, 021111 (2007).
    [CrossRef]
  85. M. Foster and A. L. Gaeta, "Wavelength dependence of the ultrafast third-order nonlinearity of Silicon," Proc. Conf. Lasers Electro-Optics (OSA, Washington, DC, 2007), Paper CTuY5.
  86. D. J. Moss, H. M. van Driel, and J. E. Sipe, "Dispersion in the anisotropy of optical third-harmonic generation in silicon," Opt. Lett. 14, 57-59 (1989).
    [CrossRef] [PubMed]
  87. J. Zhang, Q. Lin, G. Piredda, R. W. Boyd, G. P. Agrawal, and P. M. Fauchet, "Anisotropic nonlinear response of silicon in the near-infrared region," Appl. Phys. Lett. 90, 071113 (2007).
    [CrossRef]
  88. P. E. Barclay, K. Srinivasan, and O. Painter, "Nonlinear response of silicon photonic crystal microresonators excited via an integrated waveguide and fiber taper", Opt. Express 13, 801-820 (2005).
    [CrossRef] [PubMed]
  89. T. J. Johnson,M. Borselli, and O. Painter, "Self-induced optical modulation of the transmission through a high-Q silicon microdisk resonator," Opt. Express 14, 817-831 (2006).
    [CrossRef] [PubMed]
  90. V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, "All-optical control of light on a silicon chip," Nature 431, 1081-1084 (2004).
    [CrossRef] [PubMed]
  91. T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya, and E. Kuramochi, "All-optical switches on a silicon chip realized using photonic crystal nanocavities," Appl. Phys. Lett. 87, 151112 (2005).
    [CrossRef]
  92. S. F. Preble, Q. Xu, B. S. Schmidt, and M. Lipson, "Ultrafast all-optical modulation on a silicon chip," Opt. Lett. 30, 2891-2893 (2005).
    [CrossRef] [PubMed]
  93. T. G. Eusera and W. L. Vos, "Spatial homogeneity of optically switched semiconductor photonic crystals and of bulk semiconductors," J. Appl. Phys. 97, 043102 (2005).
    [CrossRef]
  94. C. Manolatou and M. Lipson, "All-optical silicon modulators based on carrier injection by two-photon absorption," IEEE J. Lightwave Technol. 24, 1433-1439 (2006).
    [CrossRef]
  95. F. Gan, F. J. Grawert, J. M. Schley, S. Akiyama, J. Michel, K. Wada, L. C. Kimerling, and F. X. K¨artner, "Design of all-optical switches based on carrier injection in Si/SiO2 split-ridge waveguides (SRWs)," IEEE J. Lightwave Technol. 24, 3454-3463 (2006).
    [CrossRef]
  96. K. Ikeda and Y. Fainman, "Nonlinear Fabry-Perot resonator with a silicon photonic crystal waveguide," Opt. Lett. 31, 3486-3488 (2006).
    [CrossRef] [PubMed]
  97. E. Tien, N. S. Yuksek, F. Qian, and O. Boyraz, "Pulse compression and modelocking by using TPA in silicon waveguides," Opt. Express 15, 6500-6506 (2007).
    [CrossRef] [PubMed]
  98. T. K. Liang, L. R. Nunes, T. Sakamoto, K. Sasagawa, T. Kawanishi, M. Tsuchiya, G. R. A. Priem, D. Van Thourhout, P. Dumon, R. Baets, and H. K. Tsang, "Ultrafast all-optical switching by cross-absorption modulation in silicon wire waveguides," Opt. Express 13, 7298-7303 (2005).
    [CrossRef] [PubMed]
  99. D. J. Moss, L. Fu, I. Littler, and B. J. Eggleton, "Ultrafast all-optical modulation via two-photon absorption in silicon-on-insulator waveguides," Electron. Lett. 41, 320-321 (2005).
    [CrossRef]
  100. T. K. Liang, L. R. Nunes, M. Tsuchiya, K. S. Abedin, T. Miyazaki, D. Van Thourhout, W. Bogaerts, P. Dumon, R. Baets, and H. K. Tsang, "High speed logic gate using two-photon absorption in silicon waveguides," Opt. Commun. 265, 171-174 (2006).
    [CrossRef]
  101. J. M. Dudley, G. Genty, and S. Coen, "Supercontinuum generation in photonic crystal fiber," Rev. Mod. Phys. 78, 1135-1184 (2006).
    [CrossRef]
  102. P. N. Butcher and D. Cotter, The Elements of Nonlinear Optics (Cambridge University Press, New York, 1991).
  103. R. W. Boyd, Nonlinear Optics, 2nd ed. (Academic Press, Boston, 2003).
  104. Y. R. Shen and N. Bloembergen, "Theory of stimulated Brillouin and Raman scattering," Phys. Rev. 137, A1787- A1805 (1965).
    [CrossRef]
  105. M. D. Lvenson and N. Bloembergen, "Dispersion of the nonlinear optical susceptibility tensor in centrosymmetric media," Phys. Rev. B 10, 4447-4463 (1974).
    [CrossRef]
  106. M. Cardona, "Resonance phenomena," in Light Scattering in Solid II, M. Cardona and G. Güntherodt eds. (Springer-Verlag, New York, 1982).
  107. R. H. Stolen, J. P. Gordon, W. J. Tomlinson, and H. A. Haus, "Raman response function of silica-core fibers," J. Opt. Soc. Am. B 6, 1159-1166 (1989).
    [CrossRef]
  108. P. A. Temple and C. E. Hathaway, "Multiphonon Raman spectrum of silicon," Phys. Rev. B 7, 3685-3697 (1973).
    [CrossRef]
  109. T. R. Hart, R. L. Aggarwal, and B. Lax, "Temperature dependence of Raman scattering in silicon," Phys. Rev. B 1, 638-642 (1970).
    [CrossRef]
  110. A. Zwick and R. Carles, "Multiple-order Raman scattering in crystalline and amorphous silicon," Phys. Rev. B 48, 6024-6032 (1993).
    [CrossRef]
  111. R. Loudon, "The Raman effect in crystals," Adv. Phys. 50, 813-864 (2001).
    [CrossRef]
  112. J. R. Sandercock, "Brillouin-scattering measurements on silicon and germanium," Phys. Rev. Lett. 28, 237-240 (1972).
    [CrossRef]
  113. M. Dinu, "Dispersion of phonon-assisted nonresonant third-order nonlinearities," IEEE J. Quantum Electron. 39, 1498-1503 (2003).
    [CrossRef]
  114. H. Garcia and R. Kalyanaraman, "Phonon-assisted two-photon absorption in the presence of a dc-field: the nonlinear Franz-Keldysh effect in indirect gap semiconductor," J. Phys. B 39, 2737-2746 (2006).
    [CrossRef]
  115. M. Sheik-Bahae and E. W. Van Stryland, "Optical nonlinearities in the transparency region of bulk semiconductors," in Nonlinear Optics in Semiconductors I, E. Garmire and A. Kost, eds., Semiconductors and Semimetals, (Academic, Boston, 1999) vol. 58.
  116. G. P. Agrawal, Applications of Nonlinear Fiber Optics, 2nd ed. (Academic Press, Boston, 2007).
  117. R. W. Hellwarth, "Third-order optical susceptibilities of liquids and solids," Prog. Quantum Electron. 5, 1-68 (1977).
    [CrossRef]
  118. P. D. Maker and R.W. Terhune, "Study of optical effects due to an induced polarization third order in the electric field strength," Phys. Rev. 137, A801-A818 (1965).
    [CrossRef]
  119. S. S. Jha and N. Bloembergen, "Nonlinear optical susceptibilities in group-IV and III-V semiconductors," Phys. Rev. 171, 891-898 (1968).
    [CrossRef]
  120. J. J. Wynne, "Optical third-order mixing in GaAs, Ge, Si, and InAs," Phys. Rev. 178, 1295-1303 (1969).
    [CrossRef]
  121. R. Buhleier, G. Lüpke, G. Marowsky, Z. Gogolak, and J. Kuhl, "Anisotropic interference of degenerate four-wave mixing in crystalline silicon," Phys. Rev. B 50, 2425-2431 (1994).
    [CrossRef]
  122. W. K. Burns and N. Bloembergen, "Third-harmonic generation in absorbing media of cubic or isotropic symmetry," Phys. Rev. B 4, 3437-3450 (1971).
    [CrossRef]
  123. D. J. Moss, H. M. van Driel, and J. E. Sipe, "Third harmonic generation as a structure diagonostic of ionimplanted amorphous and crystalline silicon," Appl. Phys. Lett. 48, 1150-1152 (1986).
    [CrossRef]
  124. C. C. Wang, J. Bomback, W. T. Donlon, C. R. Huo, and J. V. James, "Optical third-harmonic generation in reflection from crystalline and amorphous samples of silicon," Phys. Rev. Lett. 57, 1647-1650 (1986).
    [CrossRef] [PubMed]
  125. D. J. Moss, E. Ghahramani, J. E. Sipe, and H. M. van Driel, "Band-structure calculation of dispersion and anisotropy in χ(3) for third-harmonic generation in Si, Ge, and GaAs," Phys. Rev. B 41, 1542-1560 (1990).
    [CrossRef]
  126. J. F. Reintjes and J. C. McGroddy, "Indirect two-photon transition in Si at 1.06 μm", Phys. Rev. Lett. 30, 901-903 (1973).
    [CrossRef]
  127. V. Mizrahi, K. W. DeLong, G. I. Stegeman, M. A. Saifi, and M. J. Andrejco, "Two-photon absorption as a limitation to all-optical switching," Opt. Lett. 14, 1140-1142 (1989).
    [CrossRef] [PubMed]
  128. M. Sheik-Bahae, D. C. Hutchings, D. J. Hagan, and E. W. Van Stryland, "Dispersion of bound electronic nonlinear refraction in solids," IEEE J. Quantum Electron. 27, 1296-1309 (1991).
    [CrossRef]
  129. R. Salem and T. E. Murphy, "Polarization-insensitive cross correlation using two-photon absorption in a silicon photodiode," Opt. Lett. 29, 1524-1526 (2004).
    [CrossRef] [PubMed]
  130. T. Kagawa and S. Ooami, "Polarization dependence of two-photon absorption in Si avalanche photodiodes," Jpn. J. Appl. Phys. 46, 664-668 (2007).
    [CrossRef]
  131. S. M. Sze and K. K. Ng, Physics of Semiconductor Devices, 3rd ed. (Wiley, Hoboken, NJ, 2007).
  132. A. Othonos, "Probing ultrafast carrier and phonon dynamics in semiconductors," J. Appl. Phys. 83, 1789-1830 (1998), and references therein.
    [CrossRef]
  133. A. J. Sabbah and D. M. Riffe, "Femtosecond pump-probe reflectivity study of silicon carrier dynamics," Phys. Rev. B 66, 165217 (2002).
    [CrossRef]
  134. A. Kost, "Resonant optical nonlinearities in semiconductors," in Nonlinear Optics in Semiconductors I, E. Garmire and A. Kost, Eds., Semiconductors and Semimetals, vol. 58 (Academic, Boston, 1999).
  135. R. A. Soref and B. R. Bennett, "Kramers-Kronig analysis of electro-optical switching in silicon," Proc. SPIE 704, 32-37 (1987).
  136. D. S. Chemla, "Ultrafast transient nonlinear optical processes in semiconductors," in Nonlinear Optics in Semiconductors I, E. Garmire and A. Kost, Eds., Semiconductors and Semimetals, (Academic, Boston, 1999) vol. 58 .
  137. Q. Lin, T. Johnson, R. Perahia, C. Michael, and O. J. Painter, "Highly tunable optical parametric oscillation in silicon micro-resonators," submitted for publication.
  138. M. J. Adams, S. Ritchie, and M. J. Robertson, "Optimum overlap of electric and optical fields in semiconductor waveguide devices," Appl. Phys. Lett. 18, 820-822 (1986).
    [CrossRef]
  139. D. Dimitropoulos, R. Jhaveri, R. Claps, J. C. S. Woo, and B. Jalali, "Lifetime of photogenerated carriers in silicon-on-insulator rib waveguides," Appl. Phys. Lett. 86, 071115 (2005).
    [CrossRef]
  140. Y. Liu and H. K. Tsang, "Nonlinear absorption and Raman gain in helium-ion-implanted silicon waveguides," Opt. Lett. 31, 1714-1716 (2006).
    [CrossRef] [PubMed]
  141. Y. Liu and H. K. Tsang, "Time dependent density of free carriers generated by two photon absorption in silicon waveguides," Appl. Phys. Lett. 90, 211105 (2007).
    [CrossRef]
  142. M. Först, J. Niehusmann, T. Plötzing, J. Bolten, T. Wahlbrink, C. Moormann, and H. Kurz, "High-speed alloptical switching in ion-implanted silicon-on-insulator microring resonators," Opt. Lett. 32, 2046-2048 (2007).
    [CrossRef] [PubMed]
  143. T. Tanabe, K. Nishiguchi, A. Shinya, E. Kuramochi, H. Inokawa, and M. Notomi, "Fast all-optical switching using ion-implanted silicon photonic crystal nanocavities," Appl. Phys. Lett. 90, 031115 (2007).
    [CrossRef]
  144. D. Dimitropoulos, S. Fathpour, and B. Jalali, "Limitations of active carrier removal in silicon Raman amplifiers and lasers," Appl. Phys. Lett. 87, 261108 (2005).
    [CrossRef]
  145. J. M. Ralston and R. K. Chang, "Spontaneous-Raman-scattering efficiency and stimulated scattering in silicon", Phys. Rev. B 2, 1858 (1970).
    [CrossRef]
  146. J. B. Renucci, R. N. Tyte, and M. Cardona, "Resonant Raman scattering in silicon", Phys. Rev. B 11, 3885 (1975).
    [CrossRef]
  147. T. A. Birks,W. J. Wadsworth, and P. St. J. Russell, "Supercontinuum generation in tapered fibers," Opt. Lett. 25, 1415-1416 (2000).
    [CrossRef]
  148. P. St. J. Russell, "Photonic crystal fibers," IEEE J. Lightwave Technol. 24, 4729-4749 (2006).
    [CrossRef]
  149. A. C. Turner, C. Manolatou, B. S. Schmidt, M. Lipson, M. A. Foster, J. E. Sharping, and A. L. Gaeta, "Tailored anomalous group-velocity dispersion in silicon channel waveguides," Opt. Express 14, 4357-4362 (2006).
    [CrossRef] [PubMed]
  150. N. Bloembergen and P. Lallemand, "Complex intensity-dependent index of refraction, frequency broadening of stimulated Raman scattering, and stimulated Rayleigh scattering," Phys. Rev. Lett. 16, 81-84 (1966).
    [CrossRef]
  151. K. Kikuchi, "Highly sensitive interferometric autocorrelator using Si avalanche photodiode as two-photon absorber," Electron. Lett. 34, 123-125 (1998).
    [CrossRef]
  152. C. Xu, J. M. Roth, W. H. Knox, K. Bergman, "Ultra-sensitive autocorrelation of 1.5 μm light with single photon counting silicon avalanche photodiode," Electron. Lett. 38, 86-88 (2002).
    [CrossRef]
  153. T. K. Liang, H. K. Tsang, T. E. Day, J. Drake, A. P. Knights, M. Asghari, "Silicon waveguide two-photon absorption detector at 1.5 μm wavelength for autocorrelation measurements," Appl. Phys. Lett. 81, 1323-1325 (2002).
    [CrossRef]
  154. D. Panasenko, Y. Fainman, "Single-shot sonogram generation for femtosecond laser pulse diagnostics by use of two-photon absorption in a silicon CCD camera," Opt. Lett. 27, 1475-1477 (2002).
    [CrossRef]
  155. R. Salem, G. E. Tudury, T. U. Horton, G.M. Carter, T. E. Murphy, "Polarization-insensitive optical clock recovery at 80 Gb/s using a silicon photodiode," IEEE Photon. Technol. Lett. 17, 1968-1970 (2005).
    [CrossRef]
  156. M. Dinu, D. C. Kilper, H. R. Stuart, "Optical performance monitoring using data stream intensity autocorrelation," IEEE J. Lightwave Technol. 24, 1194-1202 (2006).
    [CrossRef]
  157. K. Taira, Y. Fukuchi, R. Ohta, K. Katoh, and K. Kikuchi, "Background-free intensity autocorrelator employing Si avalanche photodiode as two-photon absorber," Electron. Lett. 38, 1465-1466 (2002).
    [CrossRef]
  158. T. J. Kippenberg, S. M. Spillane, B. Min, and K. J. Vahala, "Theoretical and Experimental Study of Stimulated and Cascaded Raman Scattering in Ultrahigh-Q Optical Microcavities," IEEE J. Sel. Top. Quantum Electron. 10, 1219-1228 (2004).
    [CrossRef]
  159. J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P. Hedekvist, "Fiber-based optical parametric amplifiers and their applications," IEEE J. Sel. Top. Quantum Electron. 8, 506-520 (2002).
    [CrossRef]
  160. S. Fathpour, K. K. Tsia, and B. Jalali, "Energy harvesting in silicon Raman amplifiers," Appl. Phys. Lett. 89, 061109 (2006).
    [CrossRef]
  161. K. K. Tsia, S. Fathpour, and B. Jalali, "Energy harvesting in silicon wavelength converters," Opt. Express 14, 12327-12333 (2006).
    [CrossRef] [PubMed]
  162. T. Torounidis and P. Andrekson, "Broadband single-pumped fiber-optic parametric amplifiers," IEEE Photon. Technol. Lett. 19, 650-652 (2007).
    [CrossRef]
  163. J. M. Chavez Boggio, J. D. Marconi, S. R. Bickham, and H. L. Fragnito, "Spectrally flat and broadband double-pumped fiber optical parametric amplifiers," Opt. Express 15, 5288-5309 (2007).
    [CrossRef] [PubMed]
  164. M. D. Levenson, C. Flytzanis, and N. Bloembergen, "Interference of resonant and nonresonant three-wave mixing in diamond," Phys. Rev. B 6, 3962-3965 (1972).
    [CrossRef]
  165. M. D. Levenson and S. Kano, Intronduction to Nonlinear Laser Spectroscopy (Academic Press, Boston, 1988).
  166. B. Jalali, V. Raghunathan, R. Shori, S. Fathpour, D. Dimitropoulos, and O. Stafsudd, "Prospects for silicon Mid-IR Raman Lasers," IEEE J. Sel. Top. Quantum Electron. 12, 1618-1627 (2006).
    [CrossRef]
  167. H. Takesue and K. Inoue, "Generation of polarization-entangled photon pairs and violation of Bell’s inequality using spontaneous four-wave mixing in a fiber loop," Phys. Rev. A 70, 031802(R) (2004).
    [CrossRef]
  168. X. Li, P. L. Voss, J. E. Sharping, and P. Kumar, "Optical-Fiber Source of Polarization-Entangled Photons in the 1550 nm Telecom Band," Phys. Rev. Lett. 94, 053601 (2005).
    [CrossRef] [PubMed]
  169. J. Fulconis, O. Alibart, W. J. Wadsworth, P. St. J. Russell, and J. G. Rarity, "High brightness single mode source of correlated photon pairs using a photonic crystal fiber," Opt. Express 13, 7572-7582 (2005).
    [CrossRef] [PubMed]
  170. J. Fan, A. Migdall, and L. J. Wang, "Efficient generation of correlated photon pairs in a microstructure fiber," Opt. Lett. 30, 3368-3370 (2005).
    [CrossRef]
  171. X. Li, J. Chen, P. Voss, J. Sharping, and P. Kumar, "All-fiber photon-pair source for quantum communications: Improved generation of correlated photons," Opt. Express 12, 3737-3744 (2004).
    [CrossRef] [PubMed]
  172. Q. Lin, F. Yaman, and G. P. Agrawal, "Photon-pair generation by four-wave mixing in optical fibers," Opt. Lett. 31, 1286-1288 (2006).
    [CrossRef] [PubMed]
  173. Q. Lin, F. Yaman, and G. P. Agrawal, "Photon-pair generation in optical fibers through four-wave mixing: Role of Raman scattering and pump polarization," Phys. Rev. A 75, 023803 (2007).
    [CrossRef]
  174. H. Takesue and K. Inoue, "1.5- μm band quantum-correlated photon pair generation in dispersion-shifted fibers: suppression of noise photons by cooling fiber," Opt. Express 13, 7832-7839 (2005).
    [CrossRef] [PubMed]
  175. K. F. Lee, J. Chen, C. Liang, X. Li, P. L. Voss, and P. Kumar, "Generation of high-purity telecom-band entangled photon pairs in dispersion-shifted fiber," Opt. Lett. 31, 1905-1907 (2006).
    [CrossRef] [PubMed]

2007 (30)

P. Koonath, D. R. Solli, and B. Jalali, "Continuum generation and carving on a silicon chip," Appl. Phys. Lett. 91, 061111 (2007).
[CrossRef]

R. Dekker, N. Usechak, M. Först, and A. Driessen, "Ultrafast nonlinear all-optical processes in silicon-oninsulator waveguides," J. Phys. D: Appl. Phys. 40, R249-R271 (2007).
[CrossRef]

H. Rong, S. Xu, Y. Kuo, V. Sih, O. Cohen, O. Raday, and M. Paniccia, "Low-threshold continuous-wave Raman silicon laser," Nature Photon. 1, 232-237 (2007).
[CrossRef]

F. De Leonardis and V. M. N. Passaro, "Modelling of Raman amplification in silicon-on-insulator optical microcavities," New J. Phys. 9, 25 (2007).
[CrossRef]

F. De Leonardis and V. M. N. Passaro, "Modeling and performance of a guided-wave optical angular-velocity sensor based on Raman effect in SOI," IEEE J. Lightwave Technol. 25, 2352-2366 (2007).
[CrossRef]

N. Vermeulen, C. Debaes, and H. Thienpont, "Mitigating heat dissipation in near- and mid-infrared silicon-based Raman lasers using CARS," IEEE J. Sel. Top. Quantum Electron. 13, 770-787 (2007).
[CrossRef]

A. D. Bristow, N. Rotenberg, and H. M. van Driel, "Two-photon absorption and Kerr coefficients of silicon for 850-2200 nm," Appl. Phys. Lett. 90, 191104 (2007).
[CrossRef]

Q. Lin, J. Zhang, G. Piredda, R.W. Boyd, P. M. Fauchet, and G. P. Agrawal, "Dispersion of silicon nonlinearities in the near-infrared region," Appl. Phys. Lett. 90, 021111 (2007).
[CrossRef]

J. Zhang, Q. Lin, G. Piredda, R. W. Boyd, G. P. Agrawal, and P. M. Fauchet, "Anisotropic nonlinear response of silicon in the near-infrared region," Appl. Phys. Lett. 90, 071113 (2007).
[CrossRef]

T. Kagawa and S. Ooami, "Polarization dependence of two-photon absorption in Si avalanche photodiodes," Jpn. J. Appl. Phys. 46, 664-668 (2007).
[CrossRef]

T. Tanabe, K. Nishiguchi, A. Shinya, E. Kuramochi, H. Inokawa, and M. Notomi, "Fast all-optical switching using ion-implanted silicon photonic crystal nanocavities," Appl. Phys. Lett. 90, 031115 (2007).
[CrossRef]

Y. Liu and H. K. Tsang, "Time dependent density of free carriers generated by two photon absorption in silicon waveguides," Appl. Phys. Lett. 90, 211105 (2007).
[CrossRef]

T. Torounidis and P. Andrekson, "Broadband single-pumped fiber-optic parametric amplifiers," IEEE Photon. Technol. Lett. 19, 650-652 (2007).
[CrossRef]

Q. Lin, F. Yaman, and G. P. Agrawal, "Photon-pair generation in optical fibers through four-wave mixing: Role of Raman scattering and pump polarization," Phys. Rev. A 75, 023803 (2007).
[CrossRef]

V. Sih, S. Xu, Y. Kuo, H. Rong, M. Paniccia, O. Cohen, and O. Raday, "Raman amplification of 40 Gb/s data in low-loss silicon waveguides," Opt. Express 15, 357-362 (2007).
[CrossRef] [PubMed]

L. Yin, Q. Lin, and G. P. Agrawal, "Soliton fission and supercontinuum generation in silicon waveguides," Opt. Lett. 32, 391-393 (2007).
[CrossRef] [PubMed]

I-W. Hsieh, X. Chen, J. I. Dadap, N. C. Panoiu, R. M. Osgood, Jr., S. J. McNab, and Y. A. Vlasov, "Crossphase modulation-induced spectral and temporal effects on co-propagating femtosecond pulses in silicon photonic wires," Opt. Express 15, 1135-1146 (2007).
[CrossRef] [PubMed]

V. Raghunathan, H. Renner, R. R. Rice, and B. Jalali, "Self-imaging silicon Raman amplifier," Opt. Express 15, 3396-3408 (2007).
[CrossRef] [PubMed]

X. Yang and C.W. Wong, "Coupled-mode theory for stimulated Raman scattering in high-Q/Vm silicon photonic band gap defect cavity lasers," Opt. Express 15, 4763-4780 (2007).
[CrossRef] [PubMed]

J. M. Chavez Boggio, J. D. Marconi, S. R. Bickham, and H. L. Fragnito, "Spectrally flat and broadband double-pumped fiber optical parametric amplifiers," Opt. Express 15, 5288-5309 (2007).
[CrossRef] [PubMed]

E. Tien, N. S. Yuksek, F. Qian, and O. Boyraz, "Pulse compression and modelocking by using TPA in silicon waveguides," Opt. Express 15, 6500-6506 (2007).
[CrossRef] [PubMed]

J. Zhang, Q. Lin, G. Piredda, R. W. Boyd, G. P. Agrawal, and P. M. Fauchet, "Optical solitons in a silicon waveguide," Opt. Express 15, 7682-7688 (2007).
[CrossRef] [PubMed]

R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, "All-optical regeneration on a silicon chip," Opt. Express 15, 7802-7809 (2007).
[CrossRef] [PubMed]

L. Yin and G. P. Agrawal, "Impact of two-photon absorption on self-phase modulation in silicon waveguides," Opt. Lett. 32, 2031-2033 (2007).
[CrossRef] [PubMed]

M. Först, J. Niehusmann, T. Plötzing, J. Bolten, T. Wahlbrink, C. Moormann, and H. Kurz, "High-speed alloptical switching in ion-implanted silicon-on-insulator microring resonators," Opt. Lett. 32, 2046-2048 (2007).
[CrossRef] [PubMed]

S. Ayotte, H. Rong, S. Xu, O. Cohen, and M. Paniccia, "Multichannel dispersion compensation using a silicon waveguide-based optical phase conjugator," Opt. Lett. 32, 2393-2395 (2007).
[CrossRef] [PubMed]

M. A. Foster, A. C. Turner, R. Salem, M. Lipson, and A. L. Gaeta, "Broad-band continuous-wave parametric wavelength conversion in silicon nanowaveguides," Opt. Express 15, 12949-12958 (2007).
[CrossRef] [PubMed]

N. Suzuki, "FDTD analysis of two-photon absorption and free-carrier absorption in Si high-index-contrast waveguides," J. Lightwave Technol. 25, 2495-2501 (2007).
[CrossRef]

V. Raghunathan, D. Borlaug, R. R. Rice, and B. Jalali, "Demonstration of a mid-infrared silicon Raman ampli-fier," Opt. Express 15, 14355-14362 (2007).
[CrossRef] [PubMed]

I-W. Hsieh, X. Chen, X. Liu, J. I. Dadap, N. C. Panoiu, C-Y. Chou, F. Xia,W. M. Green, Y. A. Vlasov, and R. M. Osgood, Jr., "Supercontinuum generation in silicon photonic wires," Opt. Express 15, 15242-15248 (2007).
[CrossRef] [PubMed]

2006 (39)

T. J. Johnson,M. Borselli, and O. Painter, "Self-induced optical modulation of the transmission through a high-Q silicon microdisk resonator," Opt. Express 14, 817-831 (2006).
[CrossRef] [PubMed]

S. Blair and K. Zheng, "Intensity-tunable group delay using stimulated Raman scattering in silicon slow-light waveguides," Opt. Express 14, 1064-1069 (2006).
[CrossRef] [PubMed]

H. Rong, Y. Kuo, A. Liu, M. Paniccia, and O. Cohen, "High efficiency wavelength conversion of 10 Gb/s data in silicon waveguides," Opt. Express 14, 1182-1188 (2006).
[CrossRef] [PubMed]

Y. Okawachi, M. A. Foster, J. E. Sharping, A. L. Gaeta, Q. Xu, and M. Lipson, "All-optical slow-light on a photonic chip," Opt. Express 14, 2317-2322 (2006).
[CrossRef] [PubMed]

J. F. McMillan, X. Yang, N. C. Panoiu, R. M. Osgood, and C.W. Wong, "Enhanced stimulated Raman scattering in slow-light photonic crystal waveguides," Opt. Lett. 31, 1235-1237 (2006).
[CrossRef] [PubMed]

Q. Lin, F. Yaman, and G. P. Agrawal, "Photon-pair generation by four-wave mixing in optical fibers," Opt. Lett. 31, 1286-1288 (2006).
[CrossRef] [PubMed]

L. Yin, Q. Lin, and G. P. Agrawal, "Dispersion tailoring and soliton propagation in silicon waveguides," Opt. Lett. 31, 1295-1297 (2006).
[CrossRef] [PubMed]

Y. Liu and H. K. Tsang, "Nonlinear absorption and Raman gain in helium-ion-implanted silicon waveguides," Opt. Lett. 31, 1714-1716 (2006).
[CrossRef] [PubMed]

A. C. Turner, C. Manolatou, B. S. Schmidt, M. Lipson, M. A. Foster, J. E. Sharping, and A. L. Gaeta, "Tailored anomalous group-velocity dispersion in silicon channel waveguides," Opt. Express 14, 4357-4362 (2006).
[CrossRef] [PubMed]

K. F. Lee, J. Chen, C. Liang, X. Li, P. L. Voss, and P. Kumar, "Generation of high-purity telecom-band entangled photon pairs in dispersion-shifted fiber," Opt. Lett. 31, 1905-1907 (2006).
[CrossRef] [PubMed]

Q. Lin, J. Zhang, P. M. Fauchet, and G. P. Agrawal, "Ultrabroadband parametric generation and wavelength conversion in silicon waveguides," Opt. Express 14, 4786-4799 (2006).
[CrossRef] [PubMed]

E. Dulkeith, Y. A. Vlasov, X. Chen, N. C. Panoiu, and R. M. Osgood, Jr., "Self-phase-modulation in submicron silicon-on-insulator photonic wires," Opt. Express 14, 5524-5534 (2006).
[CrossRef] [PubMed]

R. Dekker, A. Driessen, T. Wahlbrink, C. Moormann, J. Niehusmann, and M. Först, "Ultrafast Kerr-induced all-optical wavelength conversion in silicon waveguides using 1.55 μm femtosecond pulses," Opt. Express 14, 8336-8346 (2006).
[CrossRef] [PubMed]

Q. Lin and G. P. Agrawal, "Silicon waveguides for creating quantum-correlated photon pairs," Opt. Lett. 31, 3140-3142 (2006).
[CrossRef] [PubMed]

K. Ikeda and Y. Fainman, "Nonlinear Fabry-Perot resonator with a silicon photonic crystal waveguide," Opt. Lett. 31, 3486-3488 (2006).
[CrossRef] [PubMed]

D. Dimitropoulos, D. R. Solli, R. Claps, and B. Jalali, "Noise figure and photon statistics in coherent anti-Stokes Raman scattering," Opt. Express 14, 11418-11432 (2006).
[CrossRef] [PubMed]

N. C. Panoiu, X. Chen, and R. M. Osgood, Jr., "Modulation instability in silicon photonic nanowires," Opt. Lett. 31, 3609-3611 (2006).
[CrossRef] [PubMed]

Y. Kuo, H. Rong, V. Sih, S. Xu, M. Paniccia, and O. Cohen, "Demonstration of wavelength conversion at 40 Gb/s data rate in silicon waveguides," Opt. Express 14, 11721-11726 (2006).
[CrossRef] [PubMed]

K. K. Tsia, S. Fathpour, and B. Jalali, "Energy harvesting in silicon wavelength converters," Opt. Express 14, 12327-12333 (2006).
[CrossRef] [PubMed]

I-W. Hsieh, X. Chen, J. I. Dadap, N. C. Panoiu, R.M. Osgood, Jr., S. J. McNab, and Y. A. Vlasov, "Ultrafast-pulse self-phase modulation and third-order dispersion in Si photonic wire-waveguides," Opt. Express 14, 12380-12387 (2006).
[CrossRef] [PubMed]

J. E. Sharping, K. F. Lee, M. A. Foster, A. C. Turner, B. S. Schmidt, M. Lipson, A. L. Gaeta, and P. Kumar, "Generation of correlated photons in nanoscale silicon waveguides," Opt. Express 14, 12388-12393 (2006).
[CrossRef] [PubMed]

S. Fathpour, K. K. Tsia, and B. Jalali, "Energy harvesting in silicon Raman amplifiers," Appl. Phys. Lett. 89, 061109 (2006).
[CrossRef]

B. Jalali, V. Raghunathan, R. Shori, S. Fathpour, D. Dimitropoulos, and O. Stafsudd, "Prospects for silicon Mid-IR Raman Lasers," IEEE J. Sel. Top. Quantum Electron. 12, 1618-1627 (2006).
[CrossRef]

M. Dinu, D. C. Kilper, H. R. Stuart, "Optical performance monitoring using data stream intensity autocorrelation," IEEE J. Lightwave Technol. 24, 1194-1202 (2006).
[CrossRef]

P. St. J. Russell, "Photonic crystal fibers," IEEE J. Lightwave Technol. 24, 4729-4749 (2006).
[CrossRef]

C. Manolatou and M. Lipson, "All-optical silicon modulators based on carrier injection by two-photon absorption," IEEE J. Lightwave Technol. 24, 1433-1439 (2006).
[CrossRef]

F. Gan, F. J. Grawert, J. M. Schley, S. Akiyama, J. Michel, K. Wada, L. C. Kimerling, and F. X. K¨artner, "Design of all-optical switches based on carrier injection in Si/SiO2 split-ridge waveguides (SRWs)," IEEE J. Lightwave Technol. 24, 3454-3463 (2006).
[CrossRef]

T. K. Liang, L. R. Nunes, M. Tsuchiya, K. S. Abedin, T. Miyazaki, D. Van Thourhout, W. Bogaerts, P. Dumon, R. Baets, and H. K. Tsang, "High speed logic gate using two-photon absorption in silicon waveguides," Opt. Commun. 265, 171-174 (2006).
[CrossRef]

J. M. Dudley, G. Genty, and S. Coen, "Supercontinuum generation in photonic crystal fiber," Rev. Mod. Phys. 78, 1135-1184 (2006).
[CrossRef]

H. Garcia and R. Kalyanaraman, "Phonon-assisted two-photon absorption in the presence of a dc-field: the nonlinear Franz-Keldysh effect in indirect gap semiconductor," J. Phys. B 39, 2737-2746 (2006).
[CrossRef]

V. Raghunathan, R. Shori, O. M. Stafsudd, B. Jalali, "Nonlinear absorption in silicon and the prospects of midinfrared silicon Raman lasers," Physica Status Solidi A 203, R38-R40 (2006).
[CrossRef]

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, "Broad-band optical parametric gain on a silicon photonic chip," Nature 441, 960-963 (2006).
[CrossRef] [PubMed]

K. Yamada, H. Fukuda, T. Tsuchizawa, T. Watanabe, T. Shoji, and S. Itabashi, "All-optical efficient wavelength conversion using silicon photonic wire waveguide," IEEE Photon. Technol. Lett. 18, 1046-1048 (2006).
[CrossRef]

R. A. Soref, "The Past, Present, and Future of Silicon Photonics," IEEE J. Sel. Top. Quantum Electron. 12, 1678-1687 (2006).
[CrossRef]

R. A. Soref, S. J. Emelett, and W. R. Buchwald, "Silicon waveguided components for the long-wave infrared region," J. Opt. A: Pure Appl. Opt. 8, 840-848 (2006).
[CrossRef]

X. Chen, N. C. Panoiu, R. M. Osgood, Jr., "Theory of Raman-mediated pulsed amplification in silicon-wire waveguides," IEEE J. Quantum Electron. 42, 160-170 (2006).
[CrossRef]

V. M. N. Passaro and F. D. Leonardis, "Space-time modeling of Raman pulses in silicon-on-insulator optical waveguides," IEEE J. Lightwave Technol. 24, 2920-2931 (2006).
[CrossRef]

A. Liu, H. Rong, R. Jones, O. Cohen, D. Hak, and M. Paniccia, "Optical amplification and lasing by stimulated Raman scattering in silicon waveguides," IEEE J. Lightwave Technol. 24, 1440-1455 (2006).
[CrossRef]

B. Jalali, V. Raghunathan, D. Dimitropoulos, and O. Boyraz, "Raman-based silicon photonics," IEEE J. Sel. Top. Quantum Electron. 12, 412-421 (2006).
[CrossRef]

2005 (23)

H. Yamada, M. Shirane, T. Chu, H. Yokoyama, S. Ishida, and Y. Arakawa, "Nonlinear-optic silicon-nanowire waveguides," Jpn. J. Appl. Phys. 44, 6541-6545 (2005).
[CrossRef]

H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, "An all-silicon Raman laser," Nature 433, 292-294 (2005).
[CrossRef] [PubMed]

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, "A continuous-wave Raman silicon laser," Nature 433, 725-728 (2005).
[CrossRef] [PubMed]

V. Raghunathan, R. Claps, D. Dimitropoulos, and B. Jalali, "Parametric Raman wavelength conversion in scaled silicon waveguides," IEEE J. Lightwave Technol. 23, 2094-2102 (2005).
[CrossRef]

D. J. Moss, L. Fu, I. Littler, and B. J. Eggleton, "Ultrafast all-optical modulation via two-photon absorption in silicon-on-insulator waveguides," Electron. Lett. 41, 320-321 (2005).
[CrossRef]

T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya, and E. Kuramochi, "All-optical switches on a silicon chip realized using photonic crystal nanocavities," Appl. Phys. Lett. 87, 151112 (2005).
[CrossRef]

T. G. Eusera and W. L. Vos, "Spatial homogeneity of optically switched semiconductor photonic crystals and of bulk semiconductors," J. Appl. Phys. 97, 043102 (2005).
[CrossRef]

D. Dimitropoulos, S. Fathpour, and B. Jalali, "Limitations of active carrier removal in silicon Raman amplifiers and lasers," Appl. Phys. Lett. 87, 261108 (2005).
[CrossRef]

D. Dimitropoulos, R. Jhaveri, R. Claps, J. C. S. Woo, and B. Jalali, "Lifetime of photogenerated carriers in silicon-on-insulator rib waveguides," Appl. Phys. Lett. 86, 071115 (2005).
[CrossRef]

R. Salem, G. E. Tudury, T. U. Horton, G.M. Carter, T. E. Murphy, "Polarization-insensitive optical clock recovery at 80 Gb/s using a silicon photodiode," IEEE Photon. Technol. Lett. 17, 1968-1970 (2005).
[CrossRef]

X. Li, P. L. Voss, J. E. Sharping, and P. Kumar, "Optical-Fiber Source of Polarization-Entangled Photons in the 1550 nm Telecom Band," Phys. Rev. Lett. 94, 053601 (2005).
[CrossRef] [PubMed]

Q. Xu, V. R. Almeida, and M. Lipson, "Demonstration of high Raman gain in a submicrometer-size silicon-oninsulator waveguide," Opt. Lett. 30, 35-37 (2005).
[CrossRef] [PubMed]

O. Boyraz and B. Jalali, "Demonstration of directly modulated silicon Raman laser," Opt. Express 13, 796-800 (2005).
[CrossRef] [PubMed]

P. E. Barclay, K. Srinivasan, and O. Painter, "Nonlinear response of silicon photonic crystal microresonators excited via an integrated waveguide and fiber taper", Opt. Express 13, 801-820 (2005).
[CrossRef] [PubMed]

R. Jones, A. Liu, H. Rong, M. Paniccia, O. Cohen, and D. Hak, "Lossless optical modulation in a silicon waveguide using stimulated Raman scattering," Opt. Express 13, 1716-1723 (2005).
[CrossRef] [PubMed]

R. L. Espinola, J. I, Dadap, R. M. Osgood, Jr., S. J. McNab, and Y. A. Vlasov, "C-band wavelength conversion in silicon photonic wire waveguides," Opt. Express 13, 4341-4349 (2005).
[CrossRef] [PubMed]

H. Fukuda, K. Yamada, T. Shoji, M. Takahashi, T. Tsuchizawa, T. Watanabe, J. Takahashi, and S. Itabashi, "Four-wave mixing in silicon wire waveguides," Opt. Express 13, 4629-4637 (2005).
[CrossRef] [PubMed]

X. Yang and C. W. Wong, "Design of photonic band gap nanocavities for stimulated Raman amplification and lasing in monolithic silicon," Opt. Express 13, 4723-4730 (2005).
[CrossRef] [PubMed]

T. K. Liang, L. R. Nunes, T. Sakamoto, K. Sasagawa, T. Kawanishi, M. Tsuchiya, G. R. A. Priem, D. Van Thourhout, P. Dumon, R. Baets, and H. K. Tsang, "Ultrafast all-optical switching by cross-absorption modulation in silicon wire waveguides," Opt. Express 13, 7298-7303 (2005).
[CrossRef] [PubMed]

J. Fulconis, O. Alibart, W. J. Wadsworth, P. St. J. Russell, and J. G. Rarity, "High brightness single mode source of correlated photon pairs using a photonic crystal fiber," Opt. Express 13, 7572-7582 (2005).
[CrossRef] [PubMed]

H. Takesue and K. Inoue, "1.5- μm band quantum-correlated photon pair generation in dispersion-shifted fibers: suppression of noise photons by cooling fiber," Opt. Express 13, 7832-7839 (2005).
[CrossRef] [PubMed]

S. F. Preble, Q. Xu, B. S. Schmidt, and M. Lipson, "Ultrafast all-optical modulation on a silicon chip," Opt. Lett. 30, 2891-2893 (2005).
[CrossRef] [PubMed]

J. Fan, A. Migdall, and L. J. Wang, "Efficient generation of correlated photon pairs in a microstructure fiber," Opt. Lett. 30, 3368-3370 (2005).
[CrossRef]

2004 (21)

O. Boyraz, T. Indukuri, and B. Jalali, "Self-phase-modulation induced spectral broadening in silicon waveguides," Opt. Express 12, 829-834 (2004).
[CrossRef] [PubMed]

A. R. Cowan, G. W. Rieger, and J. F. Young, "Nonlinear transmission of 1.5 μm pulses through single-mode silicon-on-insulator waveguide structures," Opt. Express 12, 1611-1621 (2004).
[CrossRef] [PubMed]

R. Claps, V. Raghunathan, D. Dimitropoulos, and B. Jalali, "Influence of nonlinear absorption on Raman amplification in silicon waveguides," Opt. Express 12, 2774-2780 (2004).
[CrossRef] [PubMed]

R. Salem and T. E. Murphy, "Polarization-insensitive cross correlation using two-photon absorption in a silicon photodiode," Opt. Lett. 29, 1524-1526 (2004).
[CrossRef] [PubMed]

R. L. Espinola, J. I. Dadap, R.M. Osgood, Jr., S. J. McNab, and Y. A. Vlasov, "Raman amplification in ultrasmall silicon-on-insulator wire waveguides," Opt. Express 12, 3713-3718 (2004).
[CrossRef] [PubMed]

X. Li, J. Chen, P. Voss, J. Sharping, and P. Kumar, "All-fiber photon-pair source for quantum communications: Improved generation of correlated photons," Opt. Express 12, 3737-3744 (2004).
[CrossRef] [PubMed]

Ö. Boyraz, P. Koonath, V. Raghunathan, and B. Jalali, "All optical switching and continuum generation in silicon waveguides," Opt. Express 12, 4094-4102 (2004).
[CrossRef] [PubMed]

A. Liu, H. Rong, M. Paniccia, O. Cohen, and D. Hak, "Net optical gain in a low loss silicon-on-insulator waveguide by stimulated Raman scattering," Opt. Express 12, 4261-4268 (2004).
[CrossRef] [PubMed]

Q. Xu, V. R. Almeida, and M. Lipson, "Time-resolved study of Raman gain in highly confined silicon-oninsulator waveguides," Opt. Express 12, 4437-4442 (2004).
[CrossRef] [PubMed]

O. Boyraz and B. Jalali, "Demonstration of a silicon Raman laser," Opt. Express 12, 5269-5273 (2004).
[CrossRef] [PubMed]

M. Krause, H. Renner, and E. Brinkmeyer, "Analysis of Raman lasing characteristics in silicon-on-insulator waveguides," Opt. Express 12, 5703-5710 (2004).
[CrossRef] [PubMed]

J. I. Dadap, R. L. Espinola, R. M. Osgood, Jr., S. J. McNab, and Y. A. Vlasov, "Spontaneous Raman scattering in ultrasmall silicon waveguides," Opt. Lett. 29, 2755-2757 (2004).
[CrossRef] [PubMed]

T. J. Kippenberg, S. M. Spillane, B. Min, and K. J. Vahala, "Theoretical and Experimental Study of Stimulated and Cascaded Raman Scattering in Ultrahigh-Q Optical Microcavities," IEEE J. Sel. Top. Quantum Electron. 10, 1219-1228 (2004).
[CrossRef]

H. Takesue and K. Inoue, "Generation of polarization-entangled photon pairs and violation of Bell’s inequality using spontaneous four-wave mixing in a fiber loop," Phys. Rev. A 70, 031802(R) (2004).
[CrossRef]

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, "All-optical control of light on a silicon chip," Nature 431, 1081-1084 (2004).
[CrossRef] [PubMed]

V. Raghunathan, R. Claps, D. Dimitropoulos, and B. Jalali, "Wavelength conversion in silicon using Raman induced four-wave mixing," Appl. Phys. Lett. 85, 34-36 (2004).
[CrossRef]

G.W. Rieger, K. S. Virk, and J. F. Yong, "Nonlinear propagation of ultrafast 1.5 μm pulses in high-index-contrast silicon-on-insulator waveguides," Appl. Phys. Lett. 84, 900-902 (2004).
[CrossRef]

H. Rong, A. Liu, R. Nicolaescu, M. Paniccia, O. Cohen, and D. Hak, "Raman gain and nonlinear optical absorption measurement in a low-loss silicon waveguide," Appl. Phys. Lett. 85, 2196-2198 (2004).
[CrossRef]

T. K. Liang and H. K. Tsang, "Efficient Raman amplificationin silicon-on-insulator waveguides," Appl. Phys. Lett. 85, 3343-3345 (2004).
[CrossRef]

T. K. Liang and H. K. Tsang, "Role of free carriers from two-photon absorption in Raman amplification in silicon-on-insulator waveguides," Appl. Phys. Lett. 84, 2745-2747 (2004).
[CrossRef]

T. K. Liang and H. K. Tsang, "Nonlinear absorption and Raman scattering in silicon-on-insulator optical waveguides," IEEE J. Quantum Electron. 10, 1149-1153 (2004).
[CrossRef]

2003 (6)

2002 (8)

D. Panasenko, Y. Fainman, "Single-shot sonogram generation for femtosecond laser pulse diagnostics by use of two-photon absorption in a silicon CCD camera," Opt. Lett. 27, 1475-1477 (2002).
[CrossRef]

R. Claps, D. Dimitropoulos, Y. Han, and B. Jalali, "Observation of Raman emission in silicon waveguide at 1.54 μm," Opt. Express 10, 1305-1313 (2002).
[PubMed]

J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P. Hedekvist, "Fiber-based optical parametric amplifiers and their applications," IEEE J. Sel. Top. Quantum Electron. 8, 506-520 (2002).
[CrossRef]

K. Taira, Y. Fukuchi, R. Ohta, K. Katoh, and K. Kikuchi, "Background-free intensity autocorrelator employing Si avalanche photodiode as two-photon absorber," Electron. Lett. 38, 1465-1466 (2002).
[CrossRef]

C. Xu, J. M. Roth, W. H. Knox, K. Bergman, "Ultra-sensitive autocorrelation of 1.5 μm light with single photon counting silicon avalanche photodiode," Electron. Lett. 38, 86-88 (2002).
[CrossRef]

T. K. Liang, H. K. Tsang, T. E. Day, J. Drake, A. P. Knights, M. Asghari, "Silicon waveguide two-photon absorption detector at 1.5 μm wavelength for autocorrelation measurements," Appl. Phys. Lett. 81, 1323-1325 (2002).
[CrossRef]

A. J. Sabbah and D. M. Riffe, "Femtosecond pump-probe reflectivity study of silicon carrier dynamics," Phys. Rev. B 66, 165217 (2002).
[CrossRef]

H. K. Tsang, C. S. Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake, and M. Asghari, "Optical dispersion, two-photon absorption, and self-phase modulation in silicon waveguides at 1.5 μm wavelength," Appl. Phys. Lett. 80, 416-418 (2002).
[CrossRef]

2001 (1)

R. Loudon, "The Raman effect in crystals," Adv. Phys. 50, 813-864 (2001).
[CrossRef]

2000 (2)

A. Hache and M. Bourgeois, "Ultrafast all-optical switching in a silicon-based photonic crystal," Appl. Phys. Lett. 77, 4089-4091 (2000).
[CrossRef]

T. A. Birks,W. J. Wadsworth, and P. St. J. Russell, "Supercontinuum generation in tapered fibers," Opt. Lett. 25, 1415-1416 (2000).
[CrossRef]

1998 (2)

A. Othonos, "Probing ultrafast carrier and phonon dynamics in semiconductors," J. Appl. Phys. 83, 1789-1830 (1998), and references therein.
[CrossRef]

K. Kikuchi, "Highly sensitive interferometric autocorrelator using Si avalanche photodiode as two-photon absorber," Electron. Lett. 34, 123-125 (1998).
[CrossRef]

1994 (1)

R. Buhleier, G. Lüpke, G. Marowsky, Z. Gogolak, and J. Kuhl, "Anisotropic interference of degenerate four-wave mixing in crystalline silicon," Phys. Rev. B 50, 2425-2431 (1994).
[CrossRef]

1993 (1)

A. Zwick and R. Carles, "Multiple-order Raman scattering in crystalline and amorphous silicon," Phys. Rev. B 48, 6024-6032 (1993).
[CrossRef]

1991 (1)

M. Sheik-Bahae, D. C. Hutchings, D. J. Hagan, and E. W. Van Stryland, "Dispersion of bound electronic nonlinear refraction in solids," IEEE J. Quantum Electron. 27, 1296-1309 (1991).
[CrossRef]

1990 (1)

D. J. Moss, E. Ghahramani, J. E. Sipe, and H. M. van Driel, "Band-structure calculation of dispersion and anisotropy in χ(3) for third-harmonic generation in Si, Ge, and GaAs," Phys. Rev. B 41, 1542-1560 (1990).
[CrossRef]

1989 (3)

1987 (2)

R. A. Soref and B. R. Bennett, "Kramers-Kronig analysis of electro-optical switching in silicon," Proc. SPIE 704, 32-37 (1987).

R. A. Soref and B. R. Bennett, "Electrooptical effects in silicon," IEEE J. Quantum Electron. 23, 123-129 (1987).
[CrossRef]

1986 (3)

M. J. Adams, S. Ritchie, and M. J. Robertson, "Optimum overlap of electric and optical fields in semiconductor waveguide devices," Appl. Phys. Lett. 18, 820-822 (1986).
[CrossRef]

D. J. Moss, H. M. van Driel, and J. E. Sipe, "Third harmonic generation as a structure diagonostic of ionimplanted amorphous and crystalline silicon," Appl. Phys. Lett. 48, 1150-1152 (1986).
[CrossRef]

C. C. Wang, J. Bomback, W. T. Donlon, C. R. Huo, and J. V. James, "Optical third-harmonic generation in reflection from crystalline and amorphous samples of silicon," Phys. Rev. Lett. 57, 1647-1650 (1986).
[CrossRef] [PubMed]

1977 (1)

R. W. Hellwarth, "Third-order optical susceptibilities of liquids and solids," Prog. Quantum Electron. 5, 1-68 (1977).
[CrossRef]

1975 (1)

J. B. Renucci, R. N. Tyte, and M. Cardona, "Resonant Raman scattering in silicon", Phys. Rev. B 11, 3885 (1975).
[CrossRef]

1974 (1)

M. D. Lvenson and N. Bloembergen, "Dispersion of the nonlinear optical susceptibility tensor in centrosymmetric media," Phys. Rev. B 10, 4447-4463 (1974).
[CrossRef]

1973 (2)

P. A. Temple and C. E. Hathaway, "Multiphonon Raman spectrum of silicon," Phys. Rev. B 7, 3685-3697 (1973).
[CrossRef]

J. F. Reintjes and J. C. McGroddy, "Indirect two-photon transition in Si at 1.06 μm", Phys. Rev. Lett. 30, 901-903 (1973).
[CrossRef]

1972 (2)

J. R. Sandercock, "Brillouin-scattering measurements on silicon and germanium," Phys. Rev. Lett. 28, 237-240 (1972).
[CrossRef]

M. D. Levenson, C. Flytzanis, and N. Bloembergen, "Interference of resonant and nonresonant three-wave mixing in diamond," Phys. Rev. B 6, 3962-3965 (1972).
[CrossRef]

1971 (1)

W. K. Burns and N. Bloembergen, "Third-harmonic generation in absorbing media of cubic or isotropic symmetry," Phys. Rev. B 4, 3437-3450 (1971).
[CrossRef]

1970 (2)

J. M. Ralston and R. K. Chang, "Spontaneous-Raman-scattering efficiency and stimulated scattering in silicon", Phys. Rev. B 2, 1858 (1970).
[CrossRef]

T. R. Hart, R. L. Aggarwal, and B. Lax, "Temperature dependence of Raman scattering in silicon," Phys. Rev. B 1, 638-642 (1970).
[CrossRef]

1969 (1)

J. J. Wynne, "Optical third-order mixing in GaAs, Ge, Si, and InAs," Phys. Rev. 178, 1295-1303 (1969).
[CrossRef]

1968 (1)

S. S. Jha and N. Bloembergen, "Nonlinear optical susceptibilities in group-IV and III-V semiconductors," Phys. Rev. 171, 891-898 (1968).
[CrossRef]

1966 (1)

N. Bloembergen and P. Lallemand, "Complex intensity-dependent index of refraction, frequency broadening of stimulated Raman scattering, and stimulated Rayleigh scattering," Phys. Rev. Lett. 16, 81-84 (1966).
[CrossRef]

1965 (2)

P. D. Maker and R.W. Terhune, "Study of optical effects due to an induced polarization third order in the electric field strength," Phys. Rev. 137, A801-A818 (1965).
[CrossRef]

Y. R. Shen and N. Bloembergen, "Theory of stimulated Brillouin and Raman scattering," Phys. Rev. 137, A1787- A1805 (1965).
[CrossRef]

Abedin, K. S.

T. K. Liang, L. R. Nunes, M. Tsuchiya, K. S. Abedin, T. Miyazaki, D. Van Thourhout, W. Bogaerts, P. Dumon, R. Baets, and H. K. Tsang, "High speed logic gate using two-photon absorption in silicon waveguides," Opt. Commun. 265, 171-174 (2006).
[CrossRef]

Adams, M. J.

M. J. Adams, S. Ritchie, and M. J. Robertson, "Optimum overlap of electric and optical fields in semiconductor waveguide devices," Appl. Phys. Lett. 18, 820-822 (1986).
[CrossRef]

Aggarwal, R. L.

T. R. Hart, R. L. Aggarwal, and B. Lax, "Temperature dependence of Raman scattering in silicon," Phys. Rev. B 1, 638-642 (1970).
[CrossRef]

Agrawal, G. P.

Q. Lin, F. Yaman, and G. P. Agrawal, "Photon-pair generation in optical fibers through four-wave mixing: Role of Raman scattering and pump polarization," Phys. Rev. A 75, 023803 (2007).
[CrossRef]

J. Zhang, Q. Lin, G. Piredda, R. W. Boyd, G. P. Agrawal, and P. M. Fauchet, "Anisotropic nonlinear response of silicon in the near-infrared region," Appl. Phys. Lett. 90, 071113 (2007).
[CrossRef]

L. Yin and G. P. Agrawal, "Impact of two-photon absorption on self-phase modulation in silicon waveguides," Opt. Lett. 32, 2031-2033 (2007).
[CrossRef] [PubMed]

J. Zhang, Q. Lin, G. Piredda, R. W. Boyd, G. P. Agrawal, and P. M. Fauchet, "Optical solitons in a silicon waveguide," Opt. Express 15, 7682-7688 (2007).
[CrossRef] [PubMed]

L. Yin, Q. Lin, and G. P. Agrawal, "Soliton fission and supercontinuum generation in silicon waveguides," Opt. Lett. 32, 391-393 (2007).
[CrossRef] [PubMed]

Q. Lin, J. Zhang, G. Piredda, R.W. Boyd, P. M. Fauchet, and G. P. Agrawal, "Dispersion of silicon nonlinearities in the near-infrared region," Appl. Phys. Lett. 90, 021111 (2007).
[CrossRef]

Q. Lin, F. Yaman, and G. P. Agrawal, "Photon-pair generation by four-wave mixing in optical fibers," Opt. Lett. 31, 1286-1288 (2006).
[CrossRef] [PubMed]

Q. Lin, J. Zhang, P. M. Fauchet, and G. P. Agrawal, "Ultrabroadband parametric generation and wavelength conversion in silicon waveguides," Opt. Express 14, 4786-4799 (2006).
[CrossRef] [PubMed]

Q. Lin and G. P. Agrawal, "Silicon waveguides for creating quantum-correlated photon pairs," Opt. Lett. 31, 3140-3142 (2006).
[CrossRef] [PubMed]

L. Yin, Q. Lin, and G. P. Agrawal, "Dispersion tailoring and soliton propagation in silicon waveguides," Opt. Lett. 31, 1295-1297 (2006).
[CrossRef] [PubMed]

Akiyama, S.

F. Gan, F. J. Grawert, J. M. Schley, S. Akiyama, J. Michel, K. Wada, L. C. Kimerling, and F. X. K¨artner, "Design of all-optical switches based on carrier injection in Si/SiO2 split-ridge waveguides (SRWs)," IEEE J. Lightwave Technol. 24, 3454-3463 (2006).
[CrossRef]

Alibart, O.

Almeida, V. R.

Andrejco, M. J.

Andrekson, P.

T. Torounidis and P. Andrekson, "Broadband single-pumped fiber-optic parametric amplifiers," IEEE Photon. Technol. Lett. 19, 650-652 (2007).
[CrossRef]

Andrekson, P. A.

J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P. Hedekvist, "Fiber-based optical parametric amplifiers and their applications," IEEE J. Sel. Top. Quantum Electron. 8, 506-520 (2002).
[CrossRef]

Arakawa, Y.

H. Yamada, M. Shirane, T. Chu, H. Yokoyama, S. Ishida, and Y. Arakawa, "Nonlinear-optic silicon-nanowire waveguides," Jpn. J. Appl. Phys. 44, 6541-6545 (2005).
[CrossRef]

Asghari, M.

H. K. Tsang, C. S. Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake, and M. Asghari, "Optical dispersion, two-photon absorption, and self-phase modulation in silicon waveguides at 1.5 μm wavelength," Appl. Phys. Lett. 80, 416-418 (2002).
[CrossRef]

T. K. Liang, H. K. Tsang, T. E. Day, J. Drake, A. P. Knights, M. Asghari, "Silicon waveguide two-photon absorption detector at 1.5 μm wavelength for autocorrelation measurements," Appl. Phys. Lett. 81, 1323-1325 (2002).
[CrossRef]

Ayotte, S.

Baets, R.

T. K. Liang, L. R. Nunes, M. Tsuchiya, K. S. Abedin, T. Miyazaki, D. Van Thourhout, W. Bogaerts, P. Dumon, R. Baets, and H. K. Tsang, "High speed logic gate using two-photon absorption in silicon waveguides," Opt. Commun. 265, 171-174 (2006).
[CrossRef]

T. K. Liang, L. R. Nunes, T. Sakamoto, K. Sasagawa, T. Kawanishi, M. Tsuchiya, G. R. A. Priem, D. Van Thourhout, P. Dumon, R. Baets, and H. K. Tsang, "Ultrafast all-optical switching by cross-absorption modulation in silicon wire waveguides," Opt. Express 13, 7298-7303 (2005).
[CrossRef] [PubMed]

Barclay, P. E.

Barrios, C. A.

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, "All-optical control of light on a silicon chip," Nature 431, 1081-1084 (2004).
[CrossRef] [PubMed]

Bennett, B. R.

R. A. Soref and B. R. Bennett, "Electrooptical effects in silicon," IEEE J. Quantum Electron. 23, 123-129 (1987).
[CrossRef]

R. A. Soref and B. R. Bennett, "Kramers-Kronig analysis of electro-optical switching in silicon," Proc. SPIE 704, 32-37 (1987).

Bergman, K.

C. Xu, J. M. Roth, W. H. Knox, K. Bergman, "Ultra-sensitive autocorrelation of 1.5 μm light with single photon counting silicon avalanche photodiode," Electron. Lett. 38, 86-88 (2002).
[CrossRef]

Bickham, S. R.

Birks, T. A.

Blair, S.

Bloembergen, N.

M. D. Lvenson and N. Bloembergen, "Dispersion of the nonlinear optical susceptibility tensor in centrosymmetric media," Phys. Rev. B 10, 4447-4463 (1974).
[CrossRef]

M. D. Levenson, C. Flytzanis, and N. Bloembergen, "Interference of resonant and nonresonant three-wave mixing in diamond," Phys. Rev. B 6, 3962-3965 (1972).
[CrossRef]

W. K. Burns and N. Bloembergen, "Third-harmonic generation in absorbing media of cubic or isotropic symmetry," Phys. Rev. B 4, 3437-3450 (1971).
[CrossRef]

S. S. Jha and N. Bloembergen, "Nonlinear optical susceptibilities in group-IV and III-V semiconductors," Phys. Rev. 171, 891-898 (1968).
[CrossRef]

N. Bloembergen and P. Lallemand, "Complex intensity-dependent index of refraction, frequency broadening of stimulated Raman scattering, and stimulated Rayleigh scattering," Phys. Rev. Lett. 16, 81-84 (1966).
[CrossRef]

Y. R. Shen and N. Bloembergen, "Theory of stimulated Brillouin and Raman scattering," Phys. Rev. 137, A1787- A1805 (1965).
[CrossRef]

Bogaerts, W.

T. K. Liang, L. R. Nunes, M. Tsuchiya, K. S. Abedin, T. Miyazaki, D. Van Thourhout, W. Bogaerts, P. Dumon, R. Baets, and H. K. Tsang, "High speed logic gate using two-photon absorption in silicon waveguides," Opt. Commun. 265, 171-174 (2006).
[CrossRef]

Bolten, J.

Bomback, J.

C. C. Wang, J. Bomback, W. T. Donlon, C. R. Huo, and J. V. James, "Optical third-harmonic generation in reflection from crystalline and amorphous samples of silicon," Phys. Rev. Lett. 57, 1647-1650 (1986).
[CrossRef] [PubMed]

Borlaug, D.

Borselli, M.

Bourgeois, M.

A. Hache and M. Bourgeois, "Ultrafast all-optical switching in a silicon-based photonic crystal," Appl. Phys. Lett. 77, 4089-4091 (2000).
[CrossRef]

Boyd, R. W.

J. Zhang, Q. Lin, G. Piredda, R. W. Boyd, G. P. Agrawal, and P. M. Fauchet, "Optical solitons in a silicon waveguide," Opt. Express 15, 7682-7688 (2007).
[CrossRef] [PubMed]

J. Zhang, Q. Lin, G. Piredda, R. W. Boyd, G. P. Agrawal, and P. M. Fauchet, "Anisotropic nonlinear response of silicon in the near-infrared region," Appl. Phys. Lett. 90, 071113 (2007).
[CrossRef]

Boyd, R.W.

Q. Lin, J. Zhang, G. Piredda, R.W. Boyd, P. M. Fauchet, and G. P. Agrawal, "Dispersion of silicon nonlinearities in the near-infrared region," Appl. Phys. Lett. 90, 021111 (2007).
[CrossRef]

Boyraz, O.

Boyraz, Ö.

Brinkmeyer, E.

Bristow, A. D.

A. D. Bristow, N. Rotenberg, and H. M. van Driel, "Two-photon absorption and Kerr coefficients of silicon for 850-2200 nm," Appl. Phys. Lett. 90, 191104 (2007).
[CrossRef]

Buchwald, W. R.

R. A. Soref, S. J. Emelett, and W. R. Buchwald, "Silicon waveguided components for the long-wave infrared region," J. Opt. A: Pure Appl. Opt. 8, 840-848 (2006).
[CrossRef]

Buhleier, R.

R. Buhleier, G. Lüpke, G. Marowsky, Z. Gogolak, and J. Kuhl, "Anisotropic interference of degenerate four-wave mixing in crystalline silicon," Phys. Rev. B 50, 2425-2431 (1994).
[CrossRef]

Burns, W. K.

W. K. Burns and N. Bloembergen, "Third-harmonic generation in absorbing media of cubic or isotropic symmetry," Phys. Rev. B 4, 3437-3450 (1971).
[CrossRef]

Cardona, M.

J. B. Renucci, R. N. Tyte, and M. Cardona, "Resonant Raman scattering in silicon", Phys. Rev. B 11, 3885 (1975).
[CrossRef]

Carles, R.

A. Zwick and R. Carles, "Multiple-order Raman scattering in crystalline and amorphous silicon," Phys. Rev. B 48, 6024-6032 (1993).
[CrossRef]

Carter, G.M.

R. Salem, G. E. Tudury, T. U. Horton, G.M. Carter, T. E. Murphy, "Polarization-insensitive optical clock recovery at 80 Gb/s using a silicon photodiode," IEEE Photon. Technol. Lett. 17, 1968-1970 (2005).
[CrossRef]

Chang, R. K.

J. M. Ralston and R. K. Chang, "Spontaneous-Raman-scattering efficiency and stimulated scattering in silicon", Phys. Rev. B 2, 1858 (1970).
[CrossRef]

Chavez Boggio, J. M.

Chen, J.

Chen, X.

Chou, C-Y.

Chu, T.

H. Yamada, M. Shirane, T. Chu, H. Yokoyama, S. Ishida, and Y. Arakawa, "Nonlinear-optic silicon-nanowire waveguides," Jpn. J. Appl. Phys. 44, 6541-6545 (2005).
[CrossRef]

Claps, R.

D. Dimitropoulos, D. R. Solli, R. Claps, and B. Jalali, "Noise figure and photon statistics in coherent anti-Stokes Raman scattering," Opt. Express 14, 11418-11432 (2006).
[CrossRef] [PubMed]

D. Dimitropoulos, R. Jhaveri, R. Claps, J. C. S. Woo, and B. Jalali, "Lifetime of photogenerated carriers in silicon-on-insulator rib waveguides," Appl. Phys. Lett. 86, 071115 (2005).
[CrossRef]

V. Raghunathan, R. Claps, D. Dimitropoulos, and B. Jalali, "Parametric Raman wavelength conversion in scaled silicon waveguides," IEEE J. Lightwave Technol. 23, 2094-2102 (2005).
[CrossRef]

R. Claps, V. Raghunathan, D. Dimitropoulos, and B. Jalali, "Influence of nonlinear absorption on Raman amplification in silicon waveguides," Opt. Express 12, 2774-2780 (2004).
[CrossRef] [PubMed]

V. Raghunathan, R. Claps, D. Dimitropoulos, and B. Jalali, "Wavelength conversion in silicon using Raman induced four-wave mixing," Appl. Phys. Lett. 85, 34-36 (2004).
[CrossRef]

R. Claps, V. Raghunathan, D. Dimitropoulos, and B. Jalali, "Anti-Sotkes Raman conversion in silicon waveguides," Opt. Express 11, 2862-2872 (2003).
[CrossRef] [PubMed]

R. Claps, D. Dimitropoulos, V. Raghunathan, Y. Han, and B. Jalali, "Observation of stimulated Raman amplifi-cation in silicon waveguides," Opt. Express 11, 1731-1739 (2003).
[CrossRef] [PubMed]

D. Dimitropoulos, B. Houshmand, R. Claps, and B. Jalali, "Coupled-mode theory of the Raman effect in siliconon-insulator waveguides," Opt. Lett. 28, 1954-1956 (2003).
[CrossRef] [PubMed]

D. Dimitropoulos, V. Raghunathan, R. Claps, and B. Jalali, "Phase-matching and nonlinear optical processes in silicon waveguides," Opt. Express 12, 149-160 (2003).
[CrossRef]

R. Claps, D. Dimitropoulos, Y. Han, and B. Jalali, "Observation of Raman emission in silicon waveguide at 1.54 μm," Opt. Express 10, 1305-1313 (2002).
[PubMed]

Coen, S.

J. M. Dudley, G. Genty, and S. Coen, "Supercontinuum generation in photonic crystal fiber," Rev. Mod. Phys. 78, 1135-1184 (2006).
[CrossRef]

Cohen, O.

H. Rong, S. Xu, Y. Kuo, V. Sih, O. Cohen, O. Raday, and M. Paniccia, "Low-threshold continuous-wave Raman silicon laser," Nature Photon. 1, 232-237 (2007).
[CrossRef]

S. Ayotte, H. Rong, S. Xu, O. Cohen, and M. Paniccia, "Multichannel dispersion compensation using a silicon waveguide-based optical phase conjugator," Opt. Lett. 32, 2393-2395 (2007).
[CrossRef] [PubMed]

V. Sih, S. Xu, Y. Kuo, H. Rong, M. Paniccia, O. Cohen, and O. Raday, "Raman amplification of 40 Gb/s data in low-loss silicon waveguides," Opt. Express 15, 357-362 (2007).
[CrossRef] [PubMed]

H. Rong, Y. Kuo, A. Liu, M. Paniccia, and O. Cohen, "High efficiency wavelength conversion of 10 Gb/s data in silicon waveguides," Opt. Express 14, 1182-1188 (2006).
[CrossRef] [PubMed]

A. Liu, H. Rong, R. Jones, O. Cohen, D. Hak, and M. Paniccia, "Optical amplification and lasing by stimulated Raman scattering in silicon waveguides," IEEE J. Lightwave Technol. 24, 1440-1455 (2006).
[CrossRef]

Y. Kuo, H. Rong, V. Sih, S. Xu, M. Paniccia, and O. Cohen, "Demonstration of wavelength conversion at 40 Gb/s data rate in silicon waveguides," Opt. Express 14, 11721-11726 (2006).
[CrossRef] [PubMed]

R. Jones, A. Liu, H. Rong, M. Paniccia, O. Cohen, and D. Hak, "Lossless optical modulation in a silicon waveguide using stimulated Raman scattering," Opt. Express 13, 1716-1723 (2005).
[CrossRef] [PubMed]

H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, "An all-silicon Raman laser," Nature 433, 292-294 (2005).
[CrossRef] [PubMed]

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, "A continuous-wave Raman silicon laser," Nature 433, 725-728 (2005).
[CrossRef] [PubMed]

A. Liu, H. Rong, M. Paniccia, O. Cohen, and D. Hak, "Net optical gain in a low loss silicon-on-insulator waveguide by stimulated Raman scattering," Opt. Express 12, 4261-4268 (2004).
[CrossRef] [PubMed]

H. Rong, A. Liu, R. Nicolaescu, M. Paniccia, O. Cohen, and D. Hak, "Raman gain and nonlinear optical absorption measurement in a low-loss silicon waveguide," Appl. Phys. Lett. 85, 2196-2198 (2004).
[CrossRef]

Cowan, A. R.

Dadap, J. I.

Day, I. E.

H. K. Tsang, C. S. Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake, and M. Asghari, "Optical dispersion, two-photon absorption, and self-phase modulation in silicon waveguides at 1.5 μm wavelength," Appl. Phys. Lett. 80, 416-418 (2002).
[CrossRef]

Day, T. E.

T. K. Liang, H. K. Tsang, T. E. Day, J. Drake, A. P. Knights, M. Asghari, "Silicon waveguide two-photon absorption detector at 1.5 μm wavelength for autocorrelation measurements," Appl. Phys. Lett. 81, 1323-1325 (2002).
[CrossRef]

De Leonardis, F.

F. De Leonardis and V. M. N. Passaro, "Modeling and performance of a guided-wave optical angular-velocity sensor based on Raman effect in SOI," IEEE J. Lightwave Technol. 25, 2352-2366 (2007).
[CrossRef]

F. De Leonardis and V. M. N. Passaro, "Modelling of Raman amplification in silicon-on-insulator optical microcavities," New J. Phys. 9, 25 (2007).
[CrossRef]

Debaes, C.

N. Vermeulen, C. Debaes, and H. Thienpont, "Mitigating heat dissipation in near- and mid-infrared silicon-based Raman lasers using CARS," IEEE J. Sel. Top. Quantum Electron. 13, 770-787 (2007).
[CrossRef]

Dekker, R.

R. Dekker, N. Usechak, M. Först, and A. Driessen, "Ultrafast nonlinear all-optical processes in silicon-oninsulator waveguides," J. Phys. D: Appl. Phys. 40, R249-R271 (2007).
[CrossRef]

R. Dekker, A. Driessen, T. Wahlbrink, C. Moormann, J. Niehusmann, and M. Först, "Ultrafast Kerr-induced all-optical wavelength conversion in silicon waveguides using 1.55 μm femtosecond pulses," Opt. Express 14, 8336-8346 (2006).
[CrossRef] [PubMed]

DeLong, K. W.

Dimitropoulos, D.

D. Dimitropoulos, D. R. Solli, R. Claps, and B. Jalali, "Noise figure and photon statistics in coherent anti-Stokes Raman scattering," Opt. Express 14, 11418-11432 (2006).
[CrossRef] [PubMed]

B. Jalali, V. Raghunathan, D. Dimitropoulos, and O. Boyraz, "Raman-based silicon photonics," IEEE J. Sel. Top. Quantum Electron. 12, 412-421 (2006).
[CrossRef]

B. Jalali, V. Raghunathan, R. Shori, S. Fathpour, D. Dimitropoulos, and O. Stafsudd, "Prospects for silicon Mid-IR Raman Lasers," IEEE J. Sel. Top. Quantum Electron. 12, 1618-1627 (2006).
[CrossRef]

V. Raghunathan, R. Claps, D. Dimitropoulos, and B. Jalali, "Parametric Raman wavelength conversion in scaled silicon waveguides," IEEE J. Lightwave Technol. 23, 2094-2102 (2005).
[CrossRef]

D. Dimitropoulos, R. Jhaveri, R. Claps, J. C. S. Woo, and B. Jalali, "Lifetime of photogenerated carriers in silicon-on-insulator rib waveguides," Appl. Phys. Lett. 86, 071115 (2005).
[CrossRef]

D. Dimitropoulos, S. Fathpour, and B. Jalali, "Limitations of active carrier removal in silicon Raman amplifiers and lasers," Appl. Phys. Lett. 87, 261108 (2005).
[CrossRef]

V. Raghunathan, R. Claps, D. Dimitropoulos, and B. Jalali, "Wavelength conversion in silicon using Raman induced four-wave mixing," Appl. Phys. Lett. 85, 34-36 (2004).
[CrossRef]

R. Claps, V. Raghunathan, D. Dimitropoulos, and B. Jalali, "Influence of nonlinear absorption on Raman amplification in silicon waveguides," Opt. Express 12, 2774-2780 (2004).
[CrossRef] [PubMed]

D. Dimitropoulos, B. Houshmand, R. Claps, and B. Jalali, "Coupled-mode theory of the Raman effect in siliconon-insulator waveguides," Opt. Lett. 28, 1954-1956 (2003).
[CrossRef] [PubMed]

D. Dimitropoulos, V. Raghunathan, R. Claps, and B. Jalali, "Phase-matching and nonlinear optical processes in silicon waveguides," Opt. Express 12, 149-160 (2003).
[CrossRef]

R. Claps, V. Raghunathan, D. Dimitropoulos, and B. Jalali, "Anti-Sotkes Raman conversion in silicon waveguides," Opt. Express 11, 2862-2872 (2003).
[CrossRef] [PubMed]

R. Claps, D. Dimitropoulos, V. Raghunathan, Y. Han, and B. Jalali, "Observation of stimulated Raman amplifi-cation in silicon waveguides," Opt. Express 11, 1731-1739 (2003).
[CrossRef] [PubMed]

R. Claps, D. Dimitropoulos, Y. Han, and B. Jalali, "Observation of Raman emission in silicon waveguide at 1.54 μm," Opt. Express 10, 1305-1313 (2002).
[PubMed]

Dinu, M.

M. Dinu, D. C. Kilper, H. R. Stuart, "Optical performance monitoring using data stream intensity autocorrelation," IEEE J. Lightwave Technol. 24, 1194-1202 (2006).
[CrossRef]

M. Dinu, "Dispersion of phonon-assisted nonresonant third-order nonlinearities," IEEE J. Quantum Electron. 39, 1498-1503 (2003).
[CrossRef]

M. Dinu, F. Quochi, and H. Garcia, "Third-order nonlinearities in silicon at telecom wavelengths," Appl. Phys. Lett. 82, 2954-2956 (2003).
[CrossRef]

Donlon, W. T.

C. C. Wang, J. Bomback, W. T. Donlon, C. R. Huo, and J. V. James, "Optical third-harmonic generation in reflection from crystalline and amorphous samples of silicon," Phys. Rev. Lett. 57, 1647-1650 (1986).
[CrossRef] [PubMed]

Drake, J.

T. K. Liang, H. K. Tsang, T. E. Day, J. Drake, A. P. Knights, M. Asghari, "Silicon waveguide two-photon absorption detector at 1.5 μm wavelength for autocorrelation measurements," Appl. Phys. Lett. 81, 1323-1325 (2002).
[CrossRef]

H. K. Tsang, C. S. Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake, and M. Asghari, "Optical dispersion, two-photon absorption, and self-phase modulation in silicon waveguides at 1.5 μm wavelength," Appl. Phys. Lett. 80, 416-418 (2002).
[CrossRef]

Driessen, A.

R. Dekker, N. Usechak, M. Först, and A. Driessen, "Ultrafast nonlinear all-optical processes in silicon-oninsulator waveguides," J. Phys. D: Appl. Phys. 40, R249-R271 (2007).
[CrossRef]

R. Dekker, A. Driessen, T. Wahlbrink, C. Moormann, J. Niehusmann, and M. Först, "Ultrafast Kerr-induced all-optical wavelength conversion in silicon waveguides using 1.55 μm femtosecond pulses," Opt. Express 14, 8336-8346 (2006).
[CrossRef] [PubMed]

Dudley, J. M.

J. M. Dudley, G. Genty, and S. Coen, "Supercontinuum generation in photonic crystal fiber," Rev. Mod. Phys. 78, 1135-1184 (2006).
[CrossRef]

Dulkeith, E.

Dumon, P.

T. K. Liang, L. R. Nunes, M. Tsuchiya, K. S. Abedin, T. Miyazaki, D. Van Thourhout, W. Bogaerts, P. Dumon, R. Baets, and H. K. Tsang, "High speed logic gate using two-photon absorption in silicon waveguides," Opt. Commun. 265, 171-174 (2006).
[CrossRef]

T. K. Liang, L. R. Nunes, T. Sakamoto, K. Sasagawa, T. Kawanishi, M. Tsuchiya, G. R. A. Priem, D. Van Thourhout, P. Dumon, R. Baets, and H. K. Tsang, "Ultrafast all-optical switching by cross-absorption modulation in silicon wire waveguides," Opt. Express 13, 7298-7303 (2005).
[CrossRef] [PubMed]

Eggleton, B. J.

D. J. Moss, L. Fu, I. Littler, and B. J. Eggleton, "Ultrafast all-optical modulation via two-photon absorption in silicon-on-insulator waveguides," Electron. Lett. 41, 320-321 (2005).
[CrossRef]

Emelett, S. J.

R. A. Soref, S. J. Emelett, and W. R. Buchwald, "Silicon waveguided components for the long-wave infrared region," J. Opt. A: Pure Appl. Opt. 8, 840-848 (2006).
[CrossRef]

Espinola, R. L.

Eusera, T. G.

T. G. Eusera and W. L. Vos, "Spatial homogeneity of optically switched semiconductor photonic crystals and of bulk semiconductors," J. Appl. Phys. 97, 043102 (2005).
[CrossRef]

Fainman, Y.

Fan, J.

Fang, A.

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, "A continuous-wave Raman silicon laser," Nature 433, 725-728 (2005).
[CrossRef] [PubMed]

H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, "An all-silicon Raman laser," Nature 433, 292-294 (2005).
[CrossRef] [PubMed]

Fathpour, S.

B. Jalali, V. Raghunathan, R. Shori, S. Fathpour, D. Dimitropoulos, and O. Stafsudd, "Prospects for silicon Mid-IR Raman Lasers," IEEE J. Sel. Top. Quantum Electron. 12, 1618-1627 (2006).
[CrossRef]

S. Fathpour, K. K. Tsia, and B. Jalali, "Energy harvesting in silicon Raman amplifiers," Appl. Phys. Lett. 89, 061109 (2006).
[CrossRef]

K. K. Tsia, S. Fathpour, and B. Jalali, "Energy harvesting in silicon wavelength converters," Opt. Express 14, 12327-12333 (2006).
[CrossRef] [PubMed]

D. Dimitropoulos, S. Fathpour, and B. Jalali, "Limitations of active carrier removal in silicon Raman amplifiers and lasers," Appl. Phys. Lett. 87, 261108 (2005).
[CrossRef]

Fauchet, P. M.

Q. Lin, J. Zhang, G. Piredda, R.W. Boyd, P. M. Fauchet, and G. P. Agrawal, "Dispersion of silicon nonlinearities in the near-infrared region," Appl. Phys. Lett. 90, 021111 (2007).
[CrossRef]

J. Zhang, Q. Lin, G. Piredda, R. W. Boyd, G. P. Agrawal, and P. M. Fauchet, "Optical solitons in a silicon waveguide," Opt. Express 15, 7682-7688 (2007).
[CrossRef] [PubMed]

J. Zhang, Q. Lin, G. Piredda, R. W. Boyd, G. P. Agrawal, and P. M. Fauchet, "Anisotropic nonlinear response of silicon in the near-infrared region," Appl. Phys. Lett. 90, 071113 (2007).
[CrossRef]

Q. Lin, J. Zhang, P. M. Fauchet, and G. P. Agrawal, "Ultrabroadband parametric generation and wavelength conversion in silicon waveguides," Opt. Express 14, 4786-4799 (2006).
[CrossRef] [PubMed]

Flytzanis, C.

M. D. Levenson, C. Flytzanis, and N. Bloembergen, "Interference of resonant and nonresonant three-wave mixing in diamond," Phys. Rev. B 6, 3962-3965 (1972).
[CrossRef]

Först, M.

Foster, M. A.

Fragnito, H. L.

Fu, L.

D. J. Moss, L. Fu, I. Littler, and B. J. Eggleton, "Ultrafast all-optical modulation via two-photon absorption in silicon-on-insulator waveguides," Electron. Lett. 41, 320-321 (2005).
[CrossRef]

Fukuchi, Y.

K. Taira, Y. Fukuchi, R. Ohta, K. Katoh, and K. Kikuchi, "Background-free intensity autocorrelator employing Si avalanche photodiode as two-photon absorber," Electron. Lett. 38, 1465-1466 (2002).
[CrossRef]

Fukuda, H.

K. Yamada, H. Fukuda, T. Tsuchizawa, T. Watanabe, T. Shoji, and S. Itabashi, "All-optical efficient wavelength conversion using silicon photonic wire waveguide," IEEE Photon. Technol. Lett. 18, 1046-1048 (2006).
[CrossRef]

H. Fukuda, K. Yamada, T. Shoji, M. Takahashi, T. Tsuchizawa, T. Watanabe, J. Takahashi, and S. Itabashi, "Four-wave mixing in silicon wire waveguides," Opt. Express 13, 4629-4637 (2005).
[CrossRef] [PubMed]

Fulconis, J.

Gaeta, A. L.

Gan, F.

F. Gan, F. J. Grawert, J. M. Schley, S. Akiyama, J. Michel, K. Wada, L. C. Kimerling, and F. X. K¨artner, "Design of all-optical switches based on carrier injection in Si/SiO2 split-ridge waveguides (SRWs)," IEEE J. Lightwave Technol. 24, 3454-3463 (2006).
[CrossRef]

Garcia, H.

H. Garcia and R. Kalyanaraman, "Phonon-assisted two-photon absorption in the presence of a dc-field: the nonlinear Franz-Keldysh effect in indirect gap semiconductor," J. Phys. B 39, 2737-2746 (2006).
[CrossRef]

M. Dinu, F. Quochi, and H. Garcia, "Third-order nonlinearities in silicon at telecom wavelengths," Appl. Phys. Lett. 82, 2954-2956 (2003).
[CrossRef]

Genty, G.

J. M. Dudley, G. Genty, and S. Coen, "Supercontinuum generation in photonic crystal fiber," Rev. Mod. Phys. 78, 1135-1184 (2006).
[CrossRef]

Geraghty, D. F.

Ghahramani, E.

D. J. Moss, E. Ghahramani, J. E. Sipe, and H. M. van Driel, "Band-structure calculation of dispersion and anisotropy in χ(3) for third-harmonic generation in Si, Ge, and GaAs," Phys. Rev. B 41, 1542-1560 (1990).
[CrossRef]

Gogolak, Z.

R. Buhleier, G. Lüpke, G. Marowsky, Z. Gogolak, and J. Kuhl, "Anisotropic interference of degenerate four-wave mixing in crystalline silicon," Phys. Rev. B 50, 2425-2431 (1994).
[CrossRef]

Gordon, J. P.

Grawert, F. J.

F. Gan, F. J. Grawert, J. M. Schley, S. Akiyama, J. Michel, K. Wada, L. C. Kimerling, and F. X. K¨artner, "Design of all-optical switches based on carrier injection in Si/SiO2 split-ridge waveguides (SRWs)," IEEE J. Lightwave Technol. 24, 3454-3463 (2006).
[CrossRef]

Green, W. M.

Hache, A.

A. Hache and M. Bourgeois, "Ultrafast all-optical switching in a silicon-based photonic crystal," Appl. Phys. Lett. 77, 4089-4091 (2000).
[CrossRef]

Hagan, D. J.

M. Sheik-Bahae, D. C. Hutchings, D. J. Hagan, and E. W. Van Stryland, "Dispersion of bound electronic nonlinear refraction in solids," IEEE J. Quantum Electron. 27, 1296-1309 (1991).
[CrossRef]

Hak, D.

A. Liu, H. Rong, R. Jones, O. Cohen, D. Hak, and M. Paniccia, "Optical amplification and lasing by stimulated Raman scattering in silicon waveguides," IEEE J. Lightwave Technol. 24, 1440-1455 (2006).
[CrossRef]

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, "A continuous-wave Raman silicon laser," Nature 433, 725-728 (2005).
[CrossRef] [PubMed]

R. Jones, A. Liu, H. Rong, M. Paniccia, O. Cohen, and D. Hak, "Lossless optical modulation in a silicon waveguide using stimulated Raman scattering," Opt. Express 13, 1716-1723 (2005).
[CrossRef] [PubMed]

H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, "An all-silicon Raman laser," Nature 433, 292-294 (2005).
[CrossRef] [PubMed]

A. Liu, H. Rong, M. Paniccia, O. Cohen, and D. Hak, "Net optical gain in a low loss silicon-on-insulator waveguide by stimulated Raman scattering," Opt. Express 12, 4261-4268 (2004).
[CrossRef] [PubMed]

H. Rong, A. Liu, R. Nicolaescu, M. Paniccia, O. Cohen, and D. Hak, "Raman gain and nonlinear optical absorption measurement in a low-loss silicon waveguide," Appl. Phys. Lett. 85, 2196-2198 (2004).
[CrossRef]

Han, Y.

Hansryd, J.

J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P. Hedekvist, "Fiber-based optical parametric amplifiers and their applications," IEEE J. Sel. Top. Quantum Electron. 8, 506-520 (2002).
[CrossRef]

Harpin, A.

H. K. Tsang, C. S. Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake, and M. Asghari, "Optical dispersion, two-photon absorption, and self-phase modulation in silicon waveguides at 1.5 μm wavelength," Appl. Phys. Lett. 80, 416-418 (2002).
[CrossRef]

Hart, T. R.

T. R. Hart, R. L. Aggarwal, and B. Lax, "Temperature dependence of Raman scattering in silicon," Phys. Rev. B 1, 638-642 (1970).
[CrossRef]

Hathaway, C. E.

P. A. Temple and C. E. Hathaway, "Multiphonon Raman spectrum of silicon," Phys. Rev. B 7, 3685-3697 (1973).
[CrossRef]

Haus, H. A.

Hedekvist, P.

J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P. Hedekvist, "Fiber-based optical parametric amplifiers and their applications," IEEE J. Sel. Top. Quantum Electron. 8, 506-520 (2002).
[CrossRef]

Hellwarth, R. W.

R. W. Hellwarth, "Third-order optical susceptibilities of liquids and solids," Prog. Quantum Electron. 5, 1-68 (1977).
[CrossRef]

Horton, T. U.

R. Salem, G. E. Tudury, T. U. Horton, G.M. Carter, T. E. Murphy, "Polarization-insensitive optical clock recovery at 80 Gb/s using a silicon photodiode," IEEE Photon. Technol. Lett. 17, 1968-1970 (2005).
[CrossRef]

Houshmand, B.

Hsieh, I-W.

Huo, C. R.

C. C. Wang, J. Bomback, W. T. Donlon, C. R. Huo, and J. V. James, "Optical third-harmonic generation in reflection from crystalline and amorphous samples of silicon," Phys. Rev. Lett. 57, 1647-1650 (1986).
[CrossRef] [PubMed]

Hutchings, D. C.

M. Sheik-Bahae, D. C. Hutchings, D. J. Hagan, and E. W. Van Stryland, "Dispersion of bound electronic nonlinear refraction in solids," IEEE J. Quantum Electron. 27, 1296-1309 (1991).
[CrossRef]

Ikeda, K.

Indukuri, T.

Inokawa, H.

T. Tanabe, K. Nishiguchi, A. Shinya, E. Kuramochi, H. Inokawa, and M. Notomi, "Fast all-optical switching using ion-implanted silicon photonic crystal nanocavities," Appl. Phys. Lett. 90, 031115 (2007).
[CrossRef]

Inoue, K.

H. Takesue and K. Inoue, "1.5- μm band quantum-correlated photon pair generation in dispersion-shifted fibers: suppression of noise photons by cooling fiber," Opt. Express 13, 7832-7839 (2005).
[CrossRef] [PubMed]

H. Takesue and K. Inoue, "Generation of polarization-entangled photon pairs and violation of Bell’s inequality using spontaneous four-wave mixing in a fiber loop," Phys. Rev. A 70, 031802(R) (2004).
[CrossRef]

Ishida, S.

H. Yamada, M. Shirane, T. Chu, H. Yokoyama, S. Ishida, and Y. Arakawa, "Nonlinear-optic silicon-nanowire waveguides," Jpn. J. Appl. Phys. 44, 6541-6545 (2005).
[CrossRef]

Itabashi, S.

K. Yamada, H. Fukuda, T. Tsuchizawa, T. Watanabe, T. Shoji, and S. Itabashi, "All-optical efficient wavelength conversion using silicon photonic wire waveguide," IEEE Photon. Technol. Lett. 18, 1046-1048 (2006).
[CrossRef]

H. Fukuda, K. Yamada, T. Shoji, M. Takahashi, T. Tsuchizawa, T. Watanabe, J. Takahashi, and S. Itabashi, "Four-wave mixing in silicon wire waveguides," Opt. Express 13, 4629-4637 (2005).
[CrossRef] [PubMed]

Jalali, B.

V. Raghunathan, D. Borlaug, R. R. Rice, and B. Jalali, "Demonstration of a mid-infrared silicon Raman ampli-fier," Opt. Express 15, 14355-14362 (2007).
[CrossRef] [PubMed]

P. Koonath, D. R. Solli, and B. Jalali, "Continuum generation and carving on a silicon chip," Appl. Phys. Lett. 91, 061111 (2007).
[CrossRef]

V. Raghunathan, H. Renner, R. R. Rice, and B. Jalali, "Self-imaging silicon Raman amplifier," Opt. Express 15, 3396-3408 (2007).
[CrossRef] [PubMed]

V. Raghunathan, R. Shori, O. M. Stafsudd, B. Jalali, "Nonlinear absorption in silicon and the prospects of midinfrared silicon Raman lasers," Physica Status Solidi A 203, R38-R40 (2006).
[CrossRef]

K. K. Tsia, S. Fathpour, and B. Jalali, "Energy harvesting in silicon wavelength converters," Opt. Express 14, 12327-12333 (2006).
[CrossRef] [PubMed]

D. Dimitropoulos, D. R. Solli, R. Claps, and B. Jalali, "Noise figure and photon statistics in coherent anti-Stokes Raman scattering," Opt. Express 14, 11418-11432 (2006).
[CrossRef] [PubMed]

B. Jalali, V. Raghunathan, D. Dimitropoulos, and O. Boyraz, "Raman-based silicon photonics," IEEE J. Sel. Top. Quantum Electron. 12, 412-421 (2006).
[CrossRef]

S. Fathpour, K. K. Tsia, and B. Jalali, "Energy harvesting in silicon Raman amplifiers," Appl. Phys. Lett. 89, 061109 (2006).
[CrossRef]

B. Jalali, V. Raghunathan, R. Shori, S. Fathpour, D. Dimitropoulos, and O. Stafsudd, "Prospects for silicon Mid-IR Raman Lasers," IEEE J. Sel. Top. Quantum Electron. 12, 1618-1627 (2006).
[CrossRef]

O. Boyraz and B. Jalali, "Demonstration of directly modulated silicon Raman laser," Opt. Express 13, 796-800 (2005).
[CrossRef] [PubMed]

V. Raghunathan, R. Claps, D. Dimitropoulos, and B. Jalali, "Parametric Raman wavelength conversion in scaled silicon waveguides," IEEE J. Lightwave Technol. 23, 2094-2102 (2005).
[CrossRef]

D. Dimitropoulos, R. Jhaveri, R. Claps, J. C. S. Woo, and B. Jalali, "Lifetime of photogenerated carriers in silicon-on-insulator rib waveguides," Appl. Phys. Lett. 86, 071115 (2005).
[CrossRef]

D. Dimitropoulos, S. Fathpour, and B. Jalali, "Limitations of active carrier removal in silicon Raman amplifiers and lasers," Appl. Phys. Lett. 87, 261108 (2005).
[CrossRef]

V. Raghunathan, R. Claps, D. Dimitropoulos, and B. Jalali, "Wavelength conversion in silicon using Raman induced four-wave mixing," Appl. Phys. Lett. 85, 34-36 (2004).
[CrossRef]

Ö. Boyraz, P. Koonath, V. Raghunathan, and B. Jalali, "All optical switching and continuum generation in silicon waveguides," Opt. Express 12, 4094-4102 (2004).
[CrossRef] [PubMed]

O. Boyraz and B. Jalali, "Demonstration of a silicon Raman laser," Opt. Express 12, 5269-5273 (2004).
[CrossRef] [PubMed]

O. Boyraz, T. Indukuri, and B. Jalali, "Self-phase-modulation induced spectral broadening in silicon waveguides," Opt. Express 12, 829-834 (2004).
[CrossRef] [PubMed]

R. Claps, V. Raghunathan, D. Dimitropoulos, and B. Jalali, "Influence of nonlinear absorption on Raman amplification in silicon waveguides," Opt. Express 12, 2774-2780 (2004).
[CrossRef] [PubMed]

D. Dimitropoulos, B. Houshmand, R. Claps, and B. Jalali, "Coupled-mode theory of the Raman effect in siliconon-insulator waveguides," Opt. Lett. 28, 1954-1956 (2003).
[CrossRef] [PubMed]

D. Dimitropoulos, V. Raghunathan, R. Claps, and B. Jalali, "Phase-matching and nonlinear optical processes in silicon waveguides," Opt. Express 12, 149-160 (2003).
[CrossRef]

R. Claps, D. Dimitropoulos, V. Raghunathan, Y. Han, and B. Jalali, "Observation of stimulated Raman amplifi-cation in silicon waveguides," Opt. Express 11, 1731-1739 (2003).
[CrossRef] [PubMed]

R. Claps, V. Raghunathan, D. Dimitropoulos, and B. Jalali, "Anti-Sotkes Raman conversion in silicon waveguides," Opt. Express 11, 2862-2872 (2003).
[CrossRef] [PubMed]

R. Claps, D. Dimitropoulos, Y. Han, and B. Jalali, "Observation of Raman emission in silicon waveguide at 1.54 μm," Opt. Express 10, 1305-1313 (2002).
[PubMed]

James, J. V.

C. C. Wang, J. Bomback, W. T. Donlon, C. R. Huo, and J. V. James, "Optical third-harmonic generation in reflection from crystalline and amorphous samples of silicon," Phys. Rev. Lett. 57, 1647-1650 (1986).
[CrossRef] [PubMed]

Jha, S. S.

S. S. Jha and N. Bloembergen, "Nonlinear optical susceptibilities in group-IV and III-V semiconductors," Phys. Rev. 171, 891-898 (1968).
[CrossRef]

Jhaveri, R.

D. Dimitropoulos, R. Jhaveri, R. Claps, J. C. S. Woo, and B. Jalali, "Lifetime of photogenerated carriers in silicon-on-insulator rib waveguides," Appl. Phys. Lett. 86, 071115 (2005).
[CrossRef]

Johnson, T. J.

Jones, R.

A. Liu, H. Rong, R. Jones, O. Cohen, D. Hak, and M. Paniccia, "Optical amplification and lasing by stimulated Raman scattering in silicon waveguides," IEEE J. Lightwave Technol. 24, 1440-1455 (2006).
[CrossRef]

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, "A continuous-wave Raman silicon laser," Nature 433, 725-728 (2005).
[CrossRef] [PubMed]

R. Jones, A. Liu, H. Rong, M. Paniccia, O. Cohen, and D. Hak, "Lossless optical modulation in a silicon waveguide using stimulated Raman scattering," Opt. Express 13, 1716-1723 (2005).
[CrossRef] [PubMed]

H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, "An all-silicon Raman laser," Nature 433, 292-294 (2005).
[CrossRef] [PubMed]

K¨artner, F. X.

F. Gan, F. J. Grawert, J. M. Schley, S. Akiyama, J. Michel, K. Wada, L. C. Kimerling, and F. X. K¨artner, "Design of all-optical switches based on carrier injection in Si/SiO2 split-ridge waveguides (SRWs)," IEEE J. Lightwave Technol. 24, 3454-3463 (2006).
[CrossRef]

Kagawa, T.

T. Kagawa and S. Ooami, "Polarization dependence of two-photon absorption in Si avalanche photodiodes," Jpn. J. Appl. Phys. 46, 664-668 (2007).
[CrossRef]

Kalyanaraman, R.

H. Garcia and R. Kalyanaraman, "Phonon-assisted two-photon absorption in the presence of a dc-field: the nonlinear Franz-Keldysh effect in indirect gap semiconductor," J. Phys. B 39, 2737-2746 (2006).
[CrossRef]

Katoh, K.

K. Taira, Y. Fukuchi, R. Ohta, K. Katoh, and K. Kikuchi, "Background-free intensity autocorrelator employing Si avalanche photodiode as two-photon absorber," Electron. Lett. 38, 1465-1466 (2002).
[CrossRef]

Kawanishi, T.

Kikuchi, K.

K. Taira, Y. Fukuchi, R. Ohta, K. Katoh, and K. Kikuchi, "Background-free intensity autocorrelator employing Si avalanche photodiode as two-photon absorber," Electron. Lett. 38, 1465-1466 (2002).
[CrossRef]

K. Kikuchi, "Highly sensitive interferometric autocorrelator using Si avalanche photodiode as two-photon absorber," Electron. Lett. 34, 123-125 (1998).
[CrossRef]

Kilper, D. C.

M. Dinu, D. C. Kilper, H. R. Stuart, "Optical performance monitoring using data stream intensity autocorrelation," IEEE J. Lightwave Technol. 24, 1194-1202 (2006).
[CrossRef]

Kimerling, L. C.

F. Gan, F. J. Grawert, J. M. Schley, S. Akiyama, J. Michel, K. Wada, L. C. Kimerling, and F. X. K¨artner, "Design of all-optical switches based on carrier injection in Si/SiO2 split-ridge waveguides (SRWs)," IEEE J. Lightwave Technol. 24, 3454-3463 (2006).
[CrossRef]

Kippenberg, T. J.

T. J. Kippenberg, S. M. Spillane, B. Min, and K. J. Vahala, "Theoretical and Experimental Study of Stimulated and Cascaded Raman Scattering in Ultrahigh-Q Optical Microcavities," IEEE J. Sel. Top. Quantum Electron. 10, 1219-1228 (2004).
[CrossRef]

Knights, A. P.

T. K. Liang, H. K. Tsang, T. E. Day, J. Drake, A. P. Knights, M. Asghari, "Silicon waveguide two-photon absorption detector at 1.5 μm wavelength for autocorrelation measurements," Appl. Phys. Lett. 81, 1323-1325 (2002).
[CrossRef]

Knox, W. H.

C. Xu, J. M. Roth, W. H. Knox, K. Bergman, "Ultra-sensitive autocorrelation of 1.5 μm light with single photon counting silicon avalanche photodiode," Electron. Lett. 38, 86-88 (2002).
[CrossRef]

Koonath, P.

P. Koonath, D. R. Solli, and B. Jalali, "Continuum generation and carving on a silicon chip," Appl. Phys. Lett. 91, 061111 (2007).
[CrossRef]

Ö. Boyraz, P. Koonath, V. Raghunathan, and B. Jalali, "All optical switching and continuum generation in silicon waveguides," Opt. Express 12, 4094-4102 (2004).
[CrossRef] [PubMed]

Krause, M.

Kuhl, J.

R. Buhleier, G. Lüpke, G. Marowsky, Z. Gogolak, and J. Kuhl, "Anisotropic interference of degenerate four-wave mixing in crystalline silicon," Phys. Rev. B 50, 2425-2431 (1994).
[CrossRef]

Kumar, P.

Kuo, Y.

Kuramochi, E.

T. Tanabe, K. Nishiguchi, A. Shinya, E. Kuramochi, H. Inokawa, and M. Notomi, "Fast all-optical switching using ion-implanted silicon photonic crystal nanocavities," Appl. Phys. Lett. 90, 031115 (2007).
[CrossRef]

T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya, and E. Kuramochi, "All-optical switches on a silicon chip realized using photonic crystal nanocavities," Appl. Phys. Lett. 87, 151112 (2005).
[CrossRef]

Kurz, H.

Lallemand, P.

N. Bloembergen and P. Lallemand, "Complex intensity-dependent index of refraction, frequency broadening of stimulated Raman scattering, and stimulated Rayleigh scattering," Phys. Rev. Lett. 16, 81-84 (1966).
[CrossRef]

Lax, B.

T. R. Hart, R. L. Aggarwal, and B. Lax, "Temperature dependence of Raman scattering in silicon," Phys. Rev. B 1, 638-642 (1970).
[CrossRef]

Lee, K. F.

Leonardis, F. D.

V. M. N. Passaro and F. D. Leonardis, "Space-time modeling of Raman pulses in silicon-on-insulator optical waveguides," IEEE J. Lightwave Technol. 24, 2920-2931 (2006).
[CrossRef]

Levenson, M. D.

M. D. Levenson, C. Flytzanis, and N. Bloembergen, "Interference of resonant and nonresonant three-wave mixing in diamond," Phys. Rev. B 6, 3962-3965 (1972).
[CrossRef]

Li, J.

J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P. Hedekvist, "Fiber-based optical parametric amplifiers and their applications," IEEE J. Sel. Top. Quantum Electron. 8, 506-520 (2002).
[CrossRef]

Li, X.

Liang, C.

Liang, T. K.

T. K. Liang, L. R. Nunes, M. Tsuchiya, K. S. Abedin, T. Miyazaki, D. Van Thourhout, W. Bogaerts, P. Dumon, R. Baets, and H. K. Tsang, "High speed logic gate using two-photon absorption in silicon waveguides," Opt. Commun. 265, 171-174 (2006).
[CrossRef]

T. K. Liang, L. R. Nunes, T. Sakamoto, K. Sasagawa, T. Kawanishi, M. Tsuchiya, G. R. A. Priem, D. Van Thourhout, P. Dumon, R. Baets, and H. K. Tsang, "Ultrafast all-optical switching by cross-absorption modulation in silicon wire waveguides," Opt. Express 13, 7298-7303 (2005).
[CrossRef] [PubMed]

T. K. Liang and H. K. Tsang, "Efficient Raman amplificationin silicon-on-insulator waveguides," Appl. Phys. Lett. 85, 3343-3345 (2004).
[CrossRef]

T. K. Liang and H. K. Tsang, "Nonlinear absorption and Raman scattering in silicon-on-insulator optical waveguides," IEEE J. Quantum Electron. 10, 1149-1153 (2004).
[CrossRef]

T. K. Liang and H. K. Tsang, "Role of free carriers from two-photon absorption in Raman amplification in silicon-on-insulator waveguides," Appl. Phys. Lett. 84, 2745-2747 (2004).
[CrossRef]

T. K. Liang, H. K. Tsang, T. E. Day, J. Drake, A. P. Knights, M. Asghari, "Silicon waveguide two-photon absorption detector at 1.5 μm wavelength for autocorrelation measurements," Appl. Phys. Lett. 81, 1323-1325 (2002).
[CrossRef]

H. K. Tsang, C. S. Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake, and M. Asghari, "Optical dispersion, two-photon absorption, and self-phase modulation in silicon waveguides at 1.5 μm wavelength," Appl. Phys. Lett. 80, 416-418 (2002).
[CrossRef]

Lin, Q.

Q. Lin, F. Yaman, and G. P. Agrawal, "Photon-pair generation in optical fibers through four-wave mixing: Role of Raman scattering and pump polarization," Phys. Rev. A 75, 023803 (2007).
[CrossRef]

J. Zhang, Q. Lin, G. Piredda, R. W. Boyd, G. P. Agrawal, and P. M. Fauchet, "Anisotropic nonlinear response of silicon in the near-infrared region," Appl. Phys. Lett. 90, 071113 (2007).
[CrossRef]

J. Zhang, Q. Lin, G. Piredda, R. W. Boyd, G. P. Agrawal, and P. M. Fauchet, "Optical solitons in a silicon waveguide," Opt. Express 15, 7682-7688 (2007).
[CrossRef] [PubMed]

Q. Lin, J. Zhang, G. Piredda, R.W. Boyd, P. M. Fauchet, and G. P. Agrawal, "Dispersion of silicon nonlinearities in the near-infrared region," Appl. Phys. Lett. 90, 021111 (2007).
[CrossRef]

L. Yin, Q. Lin, and G. P. Agrawal, "Soliton fission and supercontinuum generation in silicon waveguides," Opt. Lett. 32, 391-393 (2007).
[CrossRef] [PubMed]

Q. Lin, F. Yaman, and G. P. Agrawal, "Photon-pair generation by four-wave mixing in optical fibers," Opt. Lett. 31, 1286-1288 (2006).
[CrossRef] [PubMed]

Q. Lin, J. Zhang, P. M. Fauchet, and G. P. Agrawal, "Ultrabroadband parametric generation and wavelength conversion in silicon waveguides," Opt. Express 14, 4786-4799 (2006).
[CrossRef] [PubMed]

Q. Lin and G. P. Agrawal, "Silicon waveguides for creating quantum-correlated photon pairs," Opt. Lett. 31, 3140-3142 (2006).
[CrossRef] [PubMed]

L. Yin, Q. Lin, and G. P. Agrawal, "Dispersion tailoring and soliton propagation in silicon waveguides," Opt. Lett. 31, 1295-1297 (2006).
[CrossRef] [PubMed]

Lipson, M.

M. A. Foster, A. C. Turner, R. Salem, M. Lipson, and A. L. Gaeta, "Broad-band continuous-wave parametric wavelength conversion in silicon nanowaveguides," Opt. Express 15, 12949-12958 (2007).
[CrossRef] [PubMed]

R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, "All-optical regeneration on a silicon chip," Opt. Express 15, 7802-7809 (2007).
[CrossRef] [PubMed]

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, "Broad-band optical parametric gain on a silicon photonic chip," Nature 441, 960-963 (2006).
[CrossRef] [PubMed]

Y. Okawachi, M. A. Foster, J. E. Sharping, A. L. Gaeta, Q. Xu, and M. Lipson, "All-optical slow-light on a photonic chip," Opt. Express 14, 2317-2322 (2006).
[CrossRef] [PubMed]

C. Manolatou and M. Lipson, "All-optical silicon modulators based on carrier injection by two-photon absorption," IEEE J. Lightwave Technol. 24, 1433-1439 (2006).
[CrossRef]

J. E. Sharping, K. F. Lee, M. A. Foster, A. C. Turner, B. S. Schmidt, M. Lipson, A. L. Gaeta, and P. Kumar, "Generation of correlated photons in nanoscale silicon waveguides," Opt. Express 14, 12388-12393 (2006).
[CrossRef] [PubMed]

A. C. Turner, C. Manolatou, B. S. Schmidt, M. Lipson, M. A. Foster, J. E. Sharping, and A. L. Gaeta, "Tailored anomalous group-velocity dispersion in silicon channel waveguides," Opt. Express 14, 4357-4362 (2006).
[CrossRef] [PubMed]

S. F. Preble, Q. Xu, B. S. Schmidt, and M. Lipson, "Ultrafast all-optical modulation on a silicon chip," Opt. Lett. 30, 2891-2893 (2005).
[CrossRef] [PubMed]

Q. Xu, V. R. Almeida, and M. Lipson, "Demonstration of high Raman gain in a submicrometer-size silicon-oninsulator waveguide," Opt. Lett. 30, 35-37 (2005).
[CrossRef] [PubMed]

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, "All-optical control of light on a silicon chip," Nature 431, 1081-1084 (2004).
[CrossRef] [PubMed]

Q. Xu, V. R. Almeida, and M. Lipson, "Time-resolved study of Raman gain in highly confined silicon-oninsulator waveguides," Opt. Express 12, 4437-4442 (2004).
[CrossRef] [PubMed]

Littler, I.

D. J. Moss, L. Fu, I. Littler, and B. J. Eggleton, "Ultrafast all-optical modulation via two-photon absorption in silicon-on-insulator waveguides," Electron. Lett. 41, 320-321 (2005).
[CrossRef]

Liu, A.

H. Rong, Y. Kuo, A. Liu, M. Paniccia, and O. Cohen, "High efficiency wavelength conversion of 10 Gb/s data in silicon waveguides," Opt. Express 14, 1182-1188 (2006).
[CrossRef] [PubMed]

A. Liu, H. Rong, R. Jones, O. Cohen, D. Hak, and M. Paniccia, "Optical amplification and lasing by stimulated Raman scattering in silicon waveguides," IEEE J. Lightwave Technol. 24, 1440-1455 (2006).
[CrossRef]

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, "A continuous-wave Raman silicon laser," Nature 433, 725-728 (2005).
[CrossRef] [PubMed]

H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, "An all-silicon Raman laser," Nature 433, 292-294 (2005).
[CrossRef] [PubMed]

R. Jones, A. Liu, H. Rong, M. Paniccia, O. Cohen, and D. Hak, "Lossless optical modulation in a silicon waveguide using stimulated Raman scattering," Opt. Express 13, 1716-1723 (2005).
[CrossRef] [PubMed]

A. Liu, H. Rong, M. Paniccia, O. Cohen, and D. Hak, "Net optical gain in a low loss silicon-on-insulator waveguide by stimulated Raman scattering," Opt. Express 12, 4261-4268 (2004).
[CrossRef] [PubMed]

H. Rong, A. Liu, R. Nicolaescu, M. Paniccia, O. Cohen, and D. Hak, "Raman gain and nonlinear optical absorption measurement in a low-loss silicon waveguide," Appl. Phys. Lett. 85, 2196-2198 (2004).
[CrossRef]

Liu, X.

Liu, Y.

Y. Liu and H. K. Tsang, "Time dependent density of free carriers generated by two photon absorption in silicon waveguides," Appl. Phys. Lett. 90, 211105 (2007).
[CrossRef]

Y. Liu and H. K. Tsang, "Nonlinear absorption and Raman gain in helium-ion-implanted silicon waveguides," Opt. Lett. 31, 1714-1716 (2006).
[CrossRef] [PubMed]

Loudon, R.

R. Loudon, "The Raman effect in crystals," Adv. Phys. 50, 813-864 (2001).
[CrossRef]

Lüpke, G.

R. Buhleier, G. Lüpke, G. Marowsky, Z. Gogolak, and J. Kuhl, "Anisotropic interference of degenerate four-wave mixing in crystalline silicon," Phys. Rev. B 50, 2425-2431 (1994).
[CrossRef]

Lvenson, M. D.

M. D. Lvenson and N. Bloembergen, "Dispersion of the nonlinear optical susceptibility tensor in centrosymmetric media," Phys. Rev. B 10, 4447-4463 (1974).
[CrossRef]

Maker, P. D.

P. D. Maker and R.W. Terhune, "Study of optical effects due to an induced polarization third order in the electric field strength," Phys. Rev. 137, A801-A818 (1965).
[CrossRef]

Manolatou, C.

A. C. Turner, C. Manolatou, B. S. Schmidt, M. Lipson, M. A. Foster, J. E. Sharping, and A. L. Gaeta, "Tailored anomalous group-velocity dispersion in silicon channel waveguides," Opt. Express 14, 4357-4362 (2006).
[CrossRef] [PubMed]

C. Manolatou and M. Lipson, "All-optical silicon modulators based on carrier injection by two-photon absorption," IEEE J. Lightwave Technol. 24, 1433-1439 (2006).
[CrossRef]

Marconi, J. D.

Marowsky, G.

R. Buhleier, G. Lüpke, G. Marowsky, Z. Gogolak, and J. Kuhl, "Anisotropic interference of degenerate four-wave mixing in crystalline silicon," Phys. Rev. B 50, 2425-2431 (1994).
[CrossRef]

McGroddy, J. C.

J. F. Reintjes and J. C. McGroddy, "Indirect two-photon transition in Si at 1.06 μm", Phys. Rev. Lett. 30, 901-903 (1973).
[CrossRef]

McMillan, J. F.

McNab, S. J.

Michel, J.

F. Gan, F. J. Grawert, J. M. Schley, S. Akiyama, J. Michel, K. Wada, L. C. Kimerling, and F. X. K¨artner, "Design of all-optical switches based on carrier injection in Si/SiO2 split-ridge waveguides (SRWs)," IEEE J. Lightwave Technol. 24, 3454-3463 (2006).
[CrossRef]

Migdall, A.

Min, B.

T. J. Kippenberg, S. M. Spillane, B. Min, and K. J. Vahala, "Theoretical and Experimental Study of Stimulated and Cascaded Raman Scattering in Ultrahigh-Q Optical Microcavities," IEEE J. Sel. Top. Quantum Electron. 10, 1219-1228 (2004).
[CrossRef]

Mitsugi, S.

T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya, and E. Kuramochi, "All-optical switches on a silicon chip realized using photonic crystal nanocavities," Appl. Phys. Lett. 87, 151112 (2005).
[CrossRef]

Miyazaki, T.

T. K. Liang, L. R. Nunes, M. Tsuchiya, K. S. Abedin, T. Miyazaki, D. Van Thourhout, W. Bogaerts, P. Dumon, R. Baets, and H. K. Tsang, "High speed logic gate using two-photon absorption in silicon waveguides," Opt. Commun. 265, 171-174 (2006).
[CrossRef]

Mizrahi, V.

Moormann, C.

Moss, D. J.

D. J. Moss, L. Fu, I. Littler, and B. J. Eggleton, "Ultrafast all-optical modulation via two-photon absorption in silicon-on-insulator waveguides," Electron. Lett. 41, 320-321 (2005).
[CrossRef]

D. J. Moss, E. Ghahramani, J. E. Sipe, and H. M. van Driel, "Band-structure calculation of dispersion and anisotropy in χ(3) for third-harmonic generation in Si, Ge, and GaAs," Phys. Rev. B 41, 1542-1560 (1990).
[CrossRef]

D. J. Moss, H. M. van Driel, and J. E. Sipe, "Dispersion in the anisotropy of optical third-harmonic generation in silicon," Opt. Lett. 14, 57-59 (1989).
[CrossRef] [PubMed]

D. J. Moss, H. M. van Driel, and J. E. Sipe, "Third harmonic generation as a structure diagonostic of ionimplanted amorphous and crystalline silicon," Appl. Phys. Lett. 48, 1150-1152 (1986).
[CrossRef]

Murphy, T. E.

R. Salem, G. E. Tudury, T. U. Horton, G.M. Carter, T. E. Murphy, "Polarization-insensitive optical clock recovery at 80 Gb/s using a silicon photodiode," IEEE Photon. Technol. Lett. 17, 1968-1970 (2005).
[CrossRef]

R. Salem and T. E. Murphy, "Polarization-insensitive cross correlation using two-photon absorption in a silicon photodiode," Opt. Lett. 29, 1524-1526 (2004).
[CrossRef] [PubMed]

Nicolaescu, R.

H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, "An all-silicon Raman laser," Nature 433, 292-294 (2005).
[CrossRef] [PubMed]

H. Rong, A. Liu, R. Nicolaescu, M. Paniccia, O. Cohen, and D. Hak, "Raman gain and nonlinear optical absorption measurement in a low-loss silicon waveguide," Appl. Phys. Lett. 85, 2196-2198 (2004).
[CrossRef]

Niehusmann, J.

Nishiguchi, K.

T. Tanabe, K. Nishiguchi, A. Shinya, E. Kuramochi, H. Inokawa, and M. Notomi, "Fast all-optical switching using ion-implanted silicon photonic crystal nanocavities," Appl. Phys. Lett. 90, 031115 (2007).
[CrossRef]

Notomi, M.

T. Tanabe, K. Nishiguchi, A. Shinya, E. Kuramochi, H. Inokawa, and M. Notomi, "Fast all-optical switching using ion-implanted silicon photonic crystal nanocavities," Appl. Phys. Lett. 90, 031115 (2007).
[CrossRef]

T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya, and E. Kuramochi, "All-optical switches on a silicon chip realized using photonic crystal nanocavities," Appl. Phys. Lett. 87, 151112 (2005).
[CrossRef]

Nunes, L. R.

T. K. Liang, L. R. Nunes, M. Tsuchiya, K. S. Abedin, T. Miyazaki, D. Van Thourhout, W. Bogaerts, P. Dumon, R. Baets, and H. K. Tsang, "High speed logic gate using two-photon absorption in silicon waveguides," Opt. Commun. 265, 171-174 (2006).
[CrossRef]

T. K. Liang, L. R. Nunes, T. Sakamoto, K. Sasagawa, T. Kawanishi, M. Tsuchiya, G. R. A. Priem, D. Van Thourhout, P. Dumon, R. Baets, and H. K. Tsang, "Ultrafast all-optical switching by cross-absorption modulation in silicon wire waveguides," Opt. Express 13, 7298-7303 (2005).
[CrossRef] [PubMed]

Ohta, R.

K. Taira, Y. Fukuchi, R. Ohta, K. Katoh, and K. Kikuchi, "Background-free intensity autocorrelator employing Si avalanche photodiode as two-photon absorber," Electron. Lett. 38, 1465-1466 (2002).
[CrossRef]

Okawachi, Y.

Ooami, S.

T. Kagawa and S. Ooami, "Polarization dependence of two-photon absorption in Si avalanche photodiodes," Jpn. J. Appl. Phys. 46, 664-668 (2007).
[CrossRef]

Osgood, R. M.

Osgood, R.M.

Othonos, A.

A. Othonos, "Probing ultrafast carrier and phonon dynamics in semiconductors," J. Appl. Phys. 83, 1789-1830 (1998), and references therein.
[CrossRef]

Painter, O.

Panasenko, D.

Panepucci, R. R.

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, "All-optical control of light on a silicon chip," Nature 431, 1081-1084 (2004).
[CrossRef] [PubMed]

Paniccia, M.

H. Rong, S. Xu, Y. Kuo, V. Sih, O. Cohen, O. Raday, and M. Paniccia, "Low-threshold continuous-wave Raman silicon laser," Nature Photon. 1, 232-237 (2007).
[CrossRef]

V. Sih, S. Xu, Y. Kuo, H. Rong, M. Paniccia, O. Cohen, and O. Raday, "Raman amplification of 40 Gb/s data in low-loss silicon waveguides," Opt. Express 15, 357-362 (2007).
[CrossRef] [PubMed]

S. Ayotte, H. Rong, S. Xu, O. Cohen, and M. Paniccia, "Multichannel dispersion compensation using a silicon waveguide-based optical phase conjugator," Opt. Lett. 32, 2393-2395 (2007).
[CrossRef] [PubMed]

H. Rong, Y. Kuo, A. Liu, M. Paniccia, and O. Cohen, "High efficiency wavelength conversion of 10 Gb/s data in silicon waveguides," Opt. Express 14, 1182-1188 (2006).
[CrossRef] [PubMed]

A. Liu, H. Rong, R. Jones, O. Cohen, D. Hak, and M. Paniccia, "Optical amplification and lasing by stimulated Raman scattering in silicon waveguides," IEEE J. Lightwave Technol. 24, 1440-1455 (2006).
[CrossRef]

Y. Kuo, H. Rong, V. Sih, S. Xu, M. Paniccia, and O. Cohen, "Demonstration of wavelength conversion at 40 Gb/s data rate in silicon waveguides," Opt. Express 14, 11721-11726 (2006).
[CrossRef] [PubMed]

H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, "An all-silicon Raman laser," Nature 433, 292-294 (2005).
[CrossRef] [PubMed]

R. Jones, A. Liu, H. Rong, M. Paniccia, O. Cohen, and D. Hak, "Lossless optical modulation in a silicon waveguide using stimulated Raman scattering," Opt. Express 13, 1716-1723 (2005).
[CrossRef] [PubMed]

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, "A continuous-wave Raman silicon laser," Nature 433, 725-728 (2005).
[CrossRef] [PubMed]

A. Liu, H. Rong, M. Paniccia, O. Cohen, and D. Hak, "Net optical gain in a low loss silicon-on-insulator waveguide by stimulated Raman scattering," Opt. Express 12, 4261-4268 (2004).
[CrossRef] [PubMed]

H. Rong, A. Liu, R. Nicolaescu, M. Paniccia, O. Cohen, and D. Hak, "Raman gain and nonlinear optical absorption measurement in a low-loss silicon waveguide," Appl. Phys. Lett. 85, 2196-2198 (2004).
[CrossRef]

Panoiu, N. C.

I-W. Hsieh, X. Chen, J. I. Dadap, N. C. Panoiu, R. M. Osgood, Jr., S. J. McNab, and Y. A. Vlasov, "Crossphase modulation-induced spectral and temporal effects on co-propagating femtosecond pulses in silicon photonic wires," Opt. Express 15, 1135-1146 (2007).
[CrossRef] [PubMed]

I-W. Hsieh, X. Chen, X. Liu, J. I. Dadap, N. C. Panoiu, C-Y. Chou, F. Xia,W. M. Green, Y. A. Vlasov, and R. M. Osgood, Jr., "Supercontinuum generation in silicon photonic wires," Opt. Express 15, 15242-15248 (2007).
[CrossRef] [PubMed]

E. Dulkeith, Y. A. Vlasov, X. Chen, N. C. Panoiu, and R. M. Osgood, Jr., "Self-phase-modulation in submicron silicon-on-insulator photonic wires," Opt. Express 14, 5524-5534 (2006).
[CrossRef] [PubMed]

J. F. McMillan, X. Yang, N. C. Panoiu, R. M. Osgood, and C.W. Wong, "Enhanced stimulated Raman scattering in slow-light photonic crystal waveguides," Opt. Lett. 31, 1235-1237 (2006).
[CrossRef] [PubMed]

N. C. Panoiu, X. Chen, and R. M. Osgood, Jr., "Modulation instability in silicon photonic nanowires," Opt. Lett. 31, 3609-3611 (2006).
[CrossRef] [PubMed]

I-W. Hsieh, X. Chen, J. I. Dadap, N. C. Panoiu, R.M. Osgood, Jr., S. J. McNab, and Y. A. Vlasov, "Ultrafast-pulse self-phase modulation and third-order dispersion in Si photonic wire-waveguides," Opt. Express 14, 12380-12387 (2006).
[CrossRef] [PubMed]

X. Chen, N. C. Panoiu, R. M. Osgood, Jr., "Theory of Raman-mediated pulsed amplification in silicon-wire waveguides," IEEE J. Quantum Electron. 42, 160-170 (2006).
[CrossRef]

Passaro, V. M. N.

F. De Leonardis and V. M. N. Passaro, "Modelling of Raman amplification in silicon-on-insulator optical microcavities," New J. Phys. 9, 25 (2007).
[CrossRef]

F. De Leonardis and V. M. N. Passaro, "Modeling and performance of a guided-wave optical angular-velocity sensor based on Raman effect in SOI," IEEE J. Lightwave Technol. 25, 2352-2366 (2007).
[CrossRef]

V. M. N. Passaro and F. D. Leonardis, "Space-time modeling of Raman pulses in silicon-on-insulator optical waveguides," IEEE J. Lightwave Technol. 24, 2920-2931 (2006).
[CrossRef]

Piredda, G.

Q. Lin, J. Zhang, G. Piredda, R.W. Boyd, P. M. Fauchet, and G. P. Agrawal, "Dispersion of silicon nonlinearities in the near-infrared region," Appl. Phys. Lett. 90, 021111 (2007).
[CrossRef]

J. Zhang, Q. Lin, G. Piredda, R. W. Boyd, G. P. Agrawal, and P. M. Fauchet, "Optical solitons in a silicon waveguide," Opt. Express 15, 7682-7688 (2007).
[CrossRef] [PubMed]

J. Zhang, Q. Lin, G. Piredda, R. W. Boyd, G. P. Agrawal, and P. M. Fauchet, "Anisotropic nonlinear response of silicon in the near-infrared region," Appl. Phys. Lett. 90, 071113 (2007).
[CrossRef]

Plötzing, T.

Preble, S. F.

Priem, G. R. A.

Qian, F.

Quochi, F.

M. Dinu, F. Quochi, and H. Garcia, "Third-order nonlinearities in silicon at telecom wavelengths," Appl. Phys. Lett. 82, 2954-2956 (2003).
[CrossRef]

Raday, O.

H. Rong, S. Xu, Y. Kuo, V. Sih, O. Cohen, O. Raday, and M. Paniccia, "Low-threshold continuous-wave Raman silicon laser," Nature Photon. 1, 232-237 (2007).
[CrossRef]

V. Sih, S. Xu, Y. Kuo, H. Rong, M. Paniccia, O. Cohen, and O. Raday, "Raman amplification of 40 Gb/s data in low-loss silicon waveguides," Opt. Express 15, 357-362 (2007).
[CrossRef] [PubMed]

Raghunathan, V.

V. Raghunathan, H. Renner, R. R. Rice, and B. Jalali, "Self-imaging silicon Raman amplifier," Opt. Express 15, 3396-3408 (2007).
[CrossRef] [PubMed]

V. Raghunathan, D. Borlaug, R. R. Rice, and B. Jalali, "Demonstration of a mid-infrared silicon Raman ampli-fier," Opt. Express 15, 14355-14362 (2007).
[CrossRef] [PubMed]

B. Jalali, V. Raghunathan, R. Shori, S. Fathpour, D. Dimitropoulos, and O. Stafsudd, "Prospects for silicon Mid-IR Raman Lasers," IEEE J. Sel. Top. Quantum Electron. 12, 1618-1627 (2006).
[CrossRef]

V. Raghunathan, R. Shori, O. M. Stafsudd, B. Jalali, "Nonlinear absorption in silicon and the prospects of midinfrared silicon Raman lasers," Physica Status Solidi A 203, R38-R40 (2006).
[CrossRef]

B. Jalali, V. Raghunathan, D. Dimitropoulos, and O. Boyraz, "Raman-based silicon photonics," IEEE J. Sel. Top. Quantum Electron. 12, 412-421 (2006).
[CrossRef]

V. Raghunathan, R. Claps, D. Dimitropoulos, and B. Jalali, "Parametric Raman wavelength conversion in scaled silicon waveguides," IEEE J. Lightwave Technol. 23, 2094-2102 (2005).
[CrossRef]

R. Claps, V. Raghunathan, D. Dimitropoulos, and B. Jalali, "Influence of nonlinear absorption on Raman amplification in silicon waveguides," Opt. Express 12, 2774-2780 (2004).
[CrossRef] [PubMed]

Ö. Boyraz, P. Koonath, V. Raghunathan, and B. Jalali, "All optical switching and continuum generation in silicon waveguides," Opt. Express 12, 4094-4102 (2004).
[CrossRef] [PubMed]

V. Raghunathan, R. Claps, D. Dimitropoulos, and B. Jalali, "Wavelength conversion in silicon using Raman induced four-wave mixing," Appl. Phys. Lett. 85, 34-36 (2004).
[CrossRef]

R. Claps, V. Raghunathan, D. Dimitropoulos, and B. Jalali, "Anti-Sotkes Raman conversion in silicon waveguides," Opt. Express 11, 2862-2872 (2003).
[CrossRef] [PubMed]

R. Claps, D. Dimitropoulos, V. Raghunathan, Y. Han, and B. Jalali, "Observation of stimulated Raman amplifi-cation in silicon waveguides," Opt. Express 11, 1731-1739 (2003).
[CrossRef] [PubMed]

D. Dimitropoulos, V. Raghunathan, R. Claps, and B. Jalali, "Phase-matching and nonlinear optical processes in silicon waveguides," Opt. Express 12, 149-160 (2003).
[CrossRef]

Ralston, J. M.

J. M. Ralston and R. K. Chang, "Spontaneous-Raman-scattering efficiency and stimulated scattering in silicon", Phys. Rev. B 2, 1858 (1970).
[CrossRef]

Rarity, J. G.

Reintjes, J. F.

J. F. Reintjes and J. C. McGroddy, "Indirect two-photon transition in Si at 1.06 μm", Phys. Rev. Lett. 30, 901-903 (1973).
[CrossRef]

Renner, H.

Renucci, J. B.

J. B. Renucci, R. N. Tyte, and M. Cardona, "Resonant Raman scattering in silicon", Phys. Rev. B 11, 3885 (1975).
[CrossRef]

Rice, R. R.

Rieger, G. W.

Rieger, G.W.

G.W. Rieger, K. S. Virk, and J. F. Yong, "Nonlinear propagation of ultrafast 1.5 μm pulses in high-index-contrast silicon-on-insulator waveguides," Appl. Phys. Lett. 84, 900-902 (2004).
[CrossRef]

Riffe, D. M.

A. J. Sabbah and D. M. Riffe, "Femtosecond pump-probe reflectivity study of silicon carrier dynamics," Phys. Rev. B 66, 165217 (2002).
[CrossRef]

Ritchie, S.

M. J. Adams, S. Ritchie, and M. J. Robertson, "Optimum overlap of electric and optical fields in semiconductor waveguide devices," Appl. Phys. Lett. 18, 820-822 (1986).
[CrossRef]

Roberts, S. W.

H. K. Tsang, C. S. Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake, and M. Asghari, "Optical dispersion, two-photon absorption, and self-phase modulation in silicon waveguides at 1.5 μm wavelength," Appl. Phys. Lett. 80, 416-418 (2002).
[CrossRef]

Robertson, M. J.

M. J. Adams, S. Ritchie, and M. J. Robertson, "Optimum overlap of electric and optical fields in semiconductor waveguide devices," Appl. Phys. Lett. 18, 820-822 (1986).
[CrossRef]

Rong, H.

V. Sih, S. Xu, Y. Kuo, H. Rong, M. Paniccia, O. Cohen, and O. Raday, "Raman amplification of 40 Gb/s data in low-loss silicon waveguides," Opt. Express 15, 357-362 (2007).
[CrossRef] [PubMed]

S. Ayotte, H. Rong, S. Xu, O. Cohen, and M. Paniccia, "Multichannel dispersion compensation using a silicon waveguide-based optical phase conjugator," Opt. Lett. 32, 2393-2395 (2007).
[CrossRef] [PubMed]

H. Rong, S. Xu, Y. Kuo, V. Sih, O. Cohen, O. Raday, and M. Paniccia, "Low-threshold continuous-wave Raman silicon laser," Nature Photon. 1, 232-237 (2007).
[CrossRef]

Y. Kuo, H. Rong, V. Sih, S. Xu, M. Paniccia, and O. Cohen, "Demonstration of wavelength conversion at 40 Gb/s data rate in silicon waveguides," Opt. Express 14, 11721-11726 (2006).
[CrossRef] [PubMed]

H. Rong, Y. Kuo, A. Liu, M. Paniccia, and O. Cohen, "High efficiency wavelength conversion of 10 Gb/s data in silicon waveguides," Opt. Express 14, 1182-1188 (2006).
[CrossRef] [PubMed]

A. Liu, H. Rong, R. Jones, O. Cohen, D. Hak, and M. Paniccia, "Optical amplification and lasing by stimulated Raman scattering in silicon waveguides," IEEE J. Lightwave Technol. 24, 1440-1455 (2006).
[CrossRef]

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, "A continuous-wave Raman silicon laser," Nature 433, 725-728 (2005).
[CrossRef] [PubMed]

H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, "An all-silicon Raman laser," Nature 433, 292-294 (2005).
[CrossRef] [PubMed]

R. Jones, A. Liu, H. Rong, M. Paniccia, O. Cohen, and D. Hak, "Lossless optical modulation in a silicon waveguide using stimulated Raman scattering," Opt. Express 13, 1716-1723 (2005).
[CrossRef] [PubMed]

A. Liu, H. Rong, M. Paniccia, O. Cohen, and D. Hak, "Net optical gain in a low loss silicon-on-insulator waveguide by stimulated Raman scattering," Opt. Express 12, 4261-4268 (2004).
[CrossRef] [PubMed]

H. Rong, A. Liu, R. Nicolaescu, M. Paniccia, O. Cohen, and D. Hak, "Raman gain and nonlinear optical absorption measurement in a low-loss silicon waveguide," Appl. Phys. Lett. 85, 2196-2198 (2004).
[CrossRef]

Rotenberg, N.

A. D. Bristow, N. Rotenberg, and H. M. van Driel, "Two-photon absorption and Kerr coefficients of silicon for 850-2200 nm," Appl. Phys. Lett. 90, 191104 (2007).
[CrossRef]

Roth, J. M.

C. Xu, J. M. Roth, W. H. Knox, K. Bergman, "Ultra-sensitive autocorrelation of 1.5 μm light with single photon counting silicon avalanche photodiode," Electron. Lett. 38, 86-88 (2002).
[CrossRef]

Russell, P. St. J.

Sabbah, A. J.

A. J. Sabbah and D. M. Riffe, "Femtosecond pump-probe reflectivity study of silicon carrier dynamics," Phys. Rev. B 66, 165217 (2002).
[CrossRef]

Saifi, M. A.

Sakamoto, T.

Salem, R.

Sandercock, J. R.

J. R. Sandercock, "Brillouin-scattering measurements on silicon and germanium," Phys. Rev. Lett. 28, 237-240 (1972).
[CrossRef]

Sasagawa, K.

Schley, J. M.

F. Gan, F. J. Grawert, J. M. Schley, S. Akiyama, J. Michel, K. Wada, L. C. Kimerling, and F. X. K¨artner, "Design of all-optical switches based on carrier injection in Si/SiO2 split-ridge waveguides (SRWs)," IEEE J. Lightwave Technol. 24, 3454-3463 (2006).
[CrossRef]

Schmidt, B. S.

Sharping, J.

Sharping, J. E.

Sheik-Bahae, M.

M. Sheik-Bahae, D. C. Hutchings, D. J. Hagan, and E. W. Van Stryland, "Dispersion of bound electronic nonlinear refraction in solids," IEEE J. Quantum Electron. 27, 1296-1309 (1991).
[CrossRef]

Shen, Y. R.

Y. R. Shen and N. Bloembergen, "Theory of stimulated Brillouin and Raman scattering," Phys. Rev. 137, A1787- A1805 (1965).
[CrossRef]

Shinya, A.

T. Tanabe, K. Nishiguchi, A. Shinya, E. Kuramochi, H. Inokawa, and M. Notomi, "Fast all-optical switching using ion-implanted silicon photonic crystal nanocavities," Appl. Phys. Lett. 90, 031115 (2007).
[CrossRef]

T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya, and E. Kuramochi, "All-optical switches on a silicon chip realized using photonic crystal nanocavities," Appl. Phys. Lett. 87, 151112 (2005).
[CrossRef]

Shirane, M.

H. Yamada, M. Shirane, T. Chu, H. Yokoyama, S. Ishida, and Y. Arakawa, "Nonlinear-optic silicon-nanowire waveguides," Jpn. J. Appl. Phys. 44, 6541-6545 (2005).
[CrossRef]

Shoji, T.

K. Yamada, H. Fukuda, T. Tsuchizawa, T. Watanabe, T. Shoji, and S. Itabashi, "All-optical efficient wavelength conversion using silicon photonic wire waveguide," IEEE Photon. Technol. Lett. 18, 1046-1048 (2006).
[CrossRef]

H. Fukuda, K. Yamada, T. Shoji, M. Takahashi, T. Tsuchizawa, T. Watanabe, J. Takahashi, and S. Itabashi, "Four-wave mixing in silicon wire waveguides," Opt. Express 13, 4629-4637 (2005).
[CrossRef] [PubMed]

Shori, R.

B. Jalali, V. Raghunathan, R. Shori, S. Fathpour, D. Dimitropoulos, and O. Stafsudd, "Prospects for silicon Mid-IR Raman Lasers," IEEE J. Sel. Top. Quantum Electron. 12, 1618-1627 (2006).
[CrossRef]

V. Raghunathan, R. Shori, O. M. Stafsudd, B. Jalali, "Nonlinear absorption in silicon and the prospects of midinfrared silicon Raman lasers," Physica Status Solidi A 203, R38-R40 (2006).
[CrossRef]

Sih, V.

Sipe, J. E.

D. J. Moss, E. Ghahramani, J. E. Sipe, and H. M. van Driel, "Band-structure calculation of dispersion and anisotropy in χ(3) for third-harmonic generation in Si, Ge, and GaAs," Phys. Rev. B 41, 1542-1560 (1990).
[CrossRef]

D. J. Moss, H. M. van Driel, and J. E. Sipe, "Dispersion in the anisotropy of optical third-harmonic generation in silicon," Opt. Lett. 14, 57-59 (1989).
[CrossRef] [PubMed]

D. J. Moss, H. M. van Driel, and J. E. Sipe, "Third harmonic generation as a structure diagonostic of ionimplanted amorphous and crystalline silicon," Appl. Phys. Lett. 48, 1150-1152 (1986).
[CrossRef]

Solli, D. R.

Soref, R. A.

R. A. Soref, "The Past, Present, and Future of Silicon Photonics," IEEE J. Sel. Top. Quantum Electron. 12, 1678-1687 (2006).
[CrossRef]

R. A. Soref, S. J. Emelett, and W. R. Buchwald, "Silicon waveguided components for the long-wave infrared region," J. Opt. A: Pure Appl. Opt. 8, 840-848 (2006).
[CrossRef]

R. A. Soref and B. R. Bennett, "Kramers-Kronig analysis of electro-optical switching in silicon," Proc. SPIE 704, 32-37 (1987).

R. A. Soref and B. R. Bennett, "Electrooptical effects in silicon," IEEE J. Quantum Electron. 23, 123-129 (1987).
[CrossRef]

Spillane, S. M.

T. J. Kippenberg, S. M. Spillane, B. Min, and K. J. Vahala, "Theoretical and Experimental Study of Stimulated and Cascaded Raman Scattering in Ultrahigh-Q Optical Microcavities," IEEE J. Sel. Top. Quantum Electron. 10, 1219-1228 (2004).
[CrossRef]

Srinivasan, K.

Stafsudd, O.

B. Jalali, V. Raghunathan, R. Shori, S. Fathpour, D. Dimitropoulos, and O. Stafsudd, "Prospects for silicon Mid-IR Raman Lasers," IEEE J. Sel. Top. Quantum Electron. 12, 1618-1627 (2006).
[CrossRef]

Stafsudd, O. M.

V. Raghunathan, R. Shori, O. M. Stafsudd, B. Jalali, "Nonlinear absorption in silicon and the prospects of midinfrared silicon Raman lasers," Physica Status Solidi A 203, R38-R40 (2006).
[CrossRef]

Stegeman, G. I.

Stolen, R. H.

Stuart, H. R.

M. Dinu, D. C. Kilper, H. R. Stuart, "Optical performance monitoring using data stream intensity autocorrelation," IEEE J. Lightwave Technol. 24, 1194-1202 (2006).
[CrossRef]

Suzuki, N.

Taira, K.

K. Taira, Y. Fukuchi, R. Ohta, K. Katoh, and K. Kikuchi, "Background-free intensity autocorrelator employing Si avalanche photodiode as two-photon absorber," Electron. Lett. 38, 1465-1466 (2002).
[CrossRef]

Takahashi, J.

Takahashi, M.

Takesue, H.

H. Takesue and K. Inoue, "1.5- μm band quantum-correlated photon pair generation in dispersion-shifted fibers: suppression of noise photons by cooling fiber," Opt. Express 13, 7832-7839 (2005).
[CrossRef] [PubMed]

H. Takesue and K. Inoue, "Generation of polarization-entangled photon pairs and violation of Bell’s inequality using spontaneous four-wave mixing in a fiber loop," Phys. Rev. A 70, 031802(R) (2004).
[CrossRef]

Tanabe, T.

T. Tanabe, K. Nishiguchi, A. Shinya, E. Kuramochi, H. Inokawa, and M. Notomi, "Fast all-optical switching using ion-implanted silicon photonic crystal nanocavities," Appl. Phys. Lett. 90, 031115 (2007).
[CrossRef]

T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya, and E. Kuramochi, "All-optical switches on a silicon chip realized using photonic crystal nanocavities," Appl. Phys. Lett. 87, 151112 (2005).
[CrossRef]

Temple, P. A.

P. A. Temple and C. E. Hathaway, "Multiphonon Raman spectrum of silicon," Phys. Rev. B 7, 3685-3697 (1973).
[CrossRef]

Terhune, R.W.

P. D. Maker and R.W. Terhune, "Study of optical effects due to an induced polarization third order in the electric field strength," Phys. Rev. 137, A801-A818 (1965).
[CrossRef]

Thienpont, H.

N. Vermeulen, C. Debaes, and H. Thienpont, "Mitigating heat dissipation in near- and mid-infrared silicon-based Raman lasers using CARS," IEEE J. Sel. Top. Quantum Electron. 13, 770-787 (2007).
[CrossRef]

Tien, E.

Tomlinson, W. J.

Torounidis, T.

T. Torounidis and P. Andrekson, "Broadband single-pumped fiber-optic parametric amplifiers," IEEE Photon. Technol. Lett. 19, 650-652 (2007).
[CrossRef]

Tsang, H. K.

Y. Liu and H. K. Tsang, "Time dependent density of free carriers generated by two photon absorption in silicon waveguides," Appl. Phys. Lett. 90, 211105 (2007).
[CrossRef]

T. K. Liang, L. R. Nunes, M. Tsuchiya, K. S. Abedin, T. Miyazaki, D. Van Thourhout, W. Bogaerts, P. Dumon, R. Baets, and H. K. Tsang, "High speed logic gate using two-photon absorption in silicon waveguides," Opt. Commun. 265, 171-174 (2006).
[CrossRef]

Y. Liu and H. K. Tsang, "Nonlinear absorption and Raman gain in helium-ion-implanted silicon waveguides," Opt. Lett. 31, 1714-1716 (2006).
[CrossRef] [PubMed]

T. K. Liang, L. R. Nunes, T. Sakamoto, K. Sasagawa, T. Kawanishi, M. Tsuchiya, G. R. A. Priem, D. Van Thourhout, P. Dumon, R. Baets, and H. K. Tsang, "Ultrafast all-optical switching by cross-absorption modulation in silicon wire waveguides," Opt. Express 13, 7298-7303 (2005).
[CrossRef] [PubMed]

T. K. Liang and H. K. Tsang, "Efficient Raman amplificationin silicon-on-insulator waveguides," Appl. Phys. Lett. 85, 3343-3345 (2004).
[CrossRef]

T. K. Liang and H. K. Tsang, "Nonlinear absorption and Raman scattering in silicon-on-insulator optical waveguides," IEEE J. Quantum Electron. 10, 1149-1153 (2004).
[CrossRef]

T. K. Liang and H. K. Tsang, "Role of free carriers from two-photon absorption in Raman amplification in silicon-on-insulator waveguides," Appl. Phys. Lett. 84, 2745-2747 (2004).
[CrossRef]

T. K. Liang, H. K. Tsang, T. E. Day, J. Drake, A. P. Knights, M. Asghari, "Silicon waveguide two-photon absorption detector at 1.5 μm wavelength for autocorrelation measurements," Appl. Phys. Lett. 81, 1323-1325 (2002).
[CrossRef]

H. K. Tsang, C. S. Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake, and M. Asghari, "Optical dispersion, two-photon absorption, and self-phase modulation in silicon waveguides at 1.5 μm wavelength," Appl. Phys. Lett. 80, 416-418 (2002).
[CrossRef]

Tsia, K. K.

S. Fathpour, K. K. Tsia, and B. Jalali, "Energy harvesting in silicon Raman amplifiers," Appl. Phys. Lett. 89, 061109 (2006).
[CrossRef]

K. K. Tsia, S. Fathpour, and B. Jalali, "Energy harvesting in silicon wavelength converters," Opt. Express 14, 12327-12333 (2006).
[CrossRef] [PubMed]

Tsuchiya, M.

T. K. Liang, L. R. Nunes, M. Tsuchiya, K. S. Abedin, T. Miyazaki, D. Van Thourhout, W. Bogaerts, P. Dumon, R. Baets, and H. K. Tsang, "High speed logic gate using two-photon absorption in silicon waveguides," Opt. Commun. 265, 171-174 (2006).
[CrossRef]

T. K. Liang, L. R. Nunes, T. Sakamoto, K. Sasagawa, T. Kawanishi, M. Tsuchiya, G. R. A. Priem, D. Van Thourhout, P. Dumon, R. Baets, and H. K. Tsang, "Ultrafast all-optical switching by cross-absorption modulation in silicon wire waveguides," Opt. Express 13, 7298-7303 (2005).
[CrossRef] [PubMed]

Tsuchizawa, T.

K. Yamada, H. Fukuda, T. Tsuchizawa, T. Watanabe, T. Shoji, and S. Itabashi, "All-optical efficient wavelength conversion using silicon photonic wire waveguide," IEEE Photon. Technol. Lett. 18, 1046-1048 (2006).
[CrossRef]

H. Fukuda, K. Yamada, T. Shoji, M. Takahashi, T. Tsuchizawa, T. Watanabe, J. Takahashi, and S. Itabashi, "Four-wave mixing in silicon wire waveguides," Opt. Express 13, 4629-4637 (2005).
[CrossRef] [PubMed]

Tudury, G. E.

R. Salem, G. E. Tudury, T. U. Horton, G.M. Carter, T. E. Murphy, "Polarization-insensitive optical clock recovery at 80 Gb/s using a silicon photodiode," IEEE Photon. Technol. Lett. 17, 1968-1970 (2005).
[CrossRef]

Turner, A. C.

Tyte, R. N.

J. B. Renucci, R. N. Tyte, and M. Cardona, "Resonant Raman scattering in silicon", Phys. Rev. B 11, 3885 (1975).
[CrossRef]

Usechak, N.

R. Dekker, N. Usechak, M. Först, and A. Driessen, "Ultrafast nonlinear all-optical processes in silicon-oninsulator waveguides," J. Phys. D: Appl. Phys. 40, R249-R271 (2007).
[CrossRef]

Vahala, K. J.

T. J. Kippenberg, S. M. Spillane, B. Min, and K. J. Vahala, "Theoretical and Experimental Study of Stimulated and Cascaded Raman Scattering in Ultrahigh-Q Optical Microcavities," IEEE J. Sel. Top. Quantum Electron. 10, 1219-1228 (2004).
[CrossRef]

van Driel, H. M.

A. D. Bristow, N. Rotenberg, and H. M. van Driel, "Two-photon absorption and Kerr coefficients of silicon for 850-2200 nm," Appl. Phys. Lett. 90, 191104 (2007).
[CrossRef]

D. J. Moss, E. Ghahramani, J. E. Sipe, and H. M. van Driel, "Band-structure calculation of dispersion and anisotropy in χ(3) for third-harmonic generation in Si, Ge, and GaAs," Phys. Rev. B 41, 1542-1560 (1990).
[CrossRef]

D. J. Moss, H. M. van Driel, and J. E. Sipe, "Dispersion in the anisotropy of optical third-harmonic generation in silicon," Opt. Lett. 14, 57-59 (1989).
[CrossRef] [PubMed]

D. J. Moss, H. M. van Driel, and J. E. Sipe, "Third harmonic generation as a structure diagonostic of ionimplanted amorphous and crystalline silicon," Appl. Phys. Lett. 48, 1150-1152 (1986).
[CrossRef]

Van Stryland, E. W.

M. Sheik-Bahae, D. C. Hutchings, D. J. Hagan, and E. W. Van Stryland, "Dispersion of bound electronic nonlinear refraction in solids," IEEE J. Quantum Electron. 27, 1296-1309 (1991).
[CrossRef]

Van Thourhout, D.

T. K. Liang, L. R. Nunes, M. Tsuchiya, K. S. Abedin, T. Miyazaki, D. Van Thourhout, W. Bogaerts, P. Dumon, R. Baets, and H. K. Tsang, "High speed logic gate using two-photon absorption in silicon waveguides," Opt. Commun. 265, 171-174 (2006).
[CrossRef]

T. K. Liang, L. R. Nunes, T. Sakamoto, K. Sasagawa, T. Kawanishi, M. Tsuchiya, G. R. A. Priem, D. Van Thourhout, P. Dumon, R. Baets, and H. K. Tsang, "Ultrafast all-optical switching by cross-absorption modulation in silicon wire waveguides," Opt. Express 13, 7298-7303 (2005).
[CrossRef] [PubMed]

Vermeulen, N.

N. Vermeulen, C. Debaes, and H. Thienpont, "Mitigating heat dissipation in near- and mid-infrared silicon-based Raman lasers using CARS," IEEE J. Sel. Top. Quantum Electron. 13, 770-787 (2007).
[CrossRef]

Virk, K. S.

G.W. Rieger, K. S. Virk, and J. F. Yong, "Nonlinear propagation of ultrafast 1.5 μm pulses in high-index-contrast silicon-on-insulator waveguides," Appl. Phys. Lett. 84, 900-902 (2004).
[CrossRef]

Vlasov, Y. A.

Vos, W. L.

T. G. Eusera and W. L. Vos, "Spatial homogeneity of optically switched semiconductor photonic crystals and of bulk semiconductors," J. Appl. Phys. 97, 043102 (2005).
[CrossRef]

Voss, P.

Voss, P. L.

K. F. Lee, J. Chen, C. Liang, X. Li, P. L. Voss, and P. Kumar, "Generation of high-purity telecom-band entangled photon pairs in dispersion-shifted fiber," Opt. Lett. 31, 1905-1907 (2006).
[CrossRef] [PubMed]

X. Li, P. L. Voss, J. E. Sharping, and P. Kumar, "Optical-Fiber Source of Polarization-Entangled Photons in the 1550 nm Telecom Band," Phys. Rev. Lett. 94, 053601 (2005).
[CrossRef] [PubMed]

Wada, K.

F. Gan, F. J. Grawert, J. M. Schley, S. Akiyama, J. Michel, K. Wada, L. C. Kimerling, and F. X. K¨artner, "Design of all-optical switches based on carrier injection in Si/SiO2 split-ridge waveguides (SRWs)," IEEE J. Lightwave Technol. 24, 3454-3463 (2006).
[CrossRef]

Wadsworth, W. J.

Wahlbrink, T.

Wang, C. C.

C. C. Wang, J. Bomback, W. T. Donlon, C. R. Huo, and J. V. James, "Optical third-harmonic generation in reflection from crystalline and amorphous samples of silicon," Phys. Rev. Lett. 57, 1647-1650 (1986).
[CrossRef] [PubMed]

Wang, L. J.

Watanabe, T.

K. Yamada, H. Fukuda, T. Tsuchizawa, T. Watanabe, T. Shoji, and S. Itabashi, "All-optical efficient wavelength conversion using silicon photonic wire waveguide," IEEE Photon. Technol. Lett. 18, 1046-1048 (2006).
[CrossRef]

H. Fukuda, K. Yamada, T. Shoji, M. Takahashi, T. Tsuchizawa, T. Watanabe, J. Takahashi, and S. Itabashi, "Four-wave mixing in silicon wire waveguides," Opt. Express 13, 4629-4637 (2005).
[CrossRef] [PubMed]

Westlund, M.

J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P. Hedekvist, "Fiber-based optical parametric amplifiers and their applications," IEEE J. Sel. Top. Quantum Electron. 8, 506-520 (2002).
[CrossRef]

Wong, C. S.

H. K. Tsang, C. S. Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake, and M. Asghari, "Optical dispersion, two-photon absorption, and self-phase modulation in silicon waveguides at 1.5 μm wavelength," Appl. Phys. Lett. 80, 416-418 (2002).
[CrossRef]

Wong, C. W.

Wong, C.W.

Woo, J. C. S.

D. Dimitropoulos, R. Jhaveri, R. Claps, J. C. S. Woo, and B. Jalali, "Lifetime of photogenerated carriers in silicon-on-insulator rib waveguides," Appl. Phys. Lett. 86, 071115 (2005).
[CrossRef]

Wynne, J. J.

J. J. Wynne, "Optical third-order mixing in GaAs, Ge, Si, and InAs," Phys. Rev. 178, 1295-1303 (1969).
[CrossRef]

Xia, F.

Xu, C.

C. Xu, J. M. Roth, W. H. Knox, K. Bergman, "Ultra-sensitive autocorrelation of 1.5 μm light with single photon counting silicon avalanche photodiode," Electron. Lett. 38, 86-88 (2002).
[CrossRef]

Xu, Q.

Xu, S.

Yamada, H.

H. Yamada, M. Shirane, T. Chu, H. Yokoyama, S. Ishida, and Y. Arakawa, "Nonlinear-optic silicon-nanowire waveguides," Jpn. J. Appl. Phys. 44, 6541-6545 (2005).
[CrossRef]

Yamada, K.

K. Yamada, H. Fukuda, T. Tsuchizawa, T. Watanabe, T. Shoji, and S. Itabashi, "All-optical efficient wavelength conversion using silicon photonic wire waveguide," IEEE Photon. Technol. Lett. 18, 1046-1048 (2006).
[CrossRef]

H. Fukuda, K. Yamada, T. Shoji, M. Takahashi, T. Tsuchizawa, T. Watanabe, J. Takahashi, and S. Itabashi, "Four-wave mixing in silicon wire waveguides," Opt. Express 13, 4629-4637 (2005).
[CrossRef] [PubMed]

Yaman, F.

Q. Lin, F. Yaman, and G. P. Agrawal, "Photon-pair generation in optical fibers through four-wave mixing: Role of Raman scattering and pump polarization," Phys. Rev. A 75, 023803 (2007).
[CrossRef]

Q. Lin, F. Yaman, and G. P. Agrawal, "Photon-pair generation by four-wave mixing in optical fibers," Opt. Lett. 31, 1286-1288 (2006).
[CrossRef] [PubMed]

Yang, X.

Yin, L.

Yokoyama, H.

H. Yamada, M. Shirane, T. Chu, H. Yokoyama, S. Ishida, and Y. Arakawa, "Nonlinear-optic silicon-nanowire waveguides," Jpn. J. Appl. Phys. 44, 6541-6545 (2005).
[CrossRef]

Yong, J. F.

G.W. Rieger, K. S. Virk, and J. F. Yong, "Nonlinear propagation of ultrafast 1.5 μm pulses in high-index-contrast silicon-on-insulator waveguides," Appl. Phys. Lett. 84, 900-902 (2004).
[CrossRef]

Young, J. F.

Yuksek, N. S.

Zhang, J.

Q. Lin, J. Zhang, G. Piredda, R.W. Boyd, P. M. Fauchet, and G. P. Agrawal, "Dispersion of silicon nonlinearities in the near-infrared region," Appl. Phys. Lett. 90, 021111 (2007).
[CrossRef]

J. Zhang, Q. Lin, G. Piredda, R. W. Boyd, G. P. Agrawal, and P. M. Fauchet, "Optical solitons in a silicon waveguide," Opt. Express 15, 7682-7688 (2007).
[CrossRef] [PubMed]

J. Zhang, Q. Lin, G. Piredda, R. W. Boyd, G. P. Agrawal, and P. M. Fauchet, "Anisotropic nonlinear response of silicon in the near-infrared region," Appl. Phys. Lett. 90, 071113 (2007).
[CrossRef]

Q. Lin, J. Zhang, P. M. Fauchet, and G. P. Agrawal, "Ultrabroadband parametric generation and wavelength conversion in silicon waveguides," Opt. Express 14, 4786-4799 (2006).
[CrossRef] [PubMed]

Zheng, K.

Zwick, A.

A. Zwick and R. Carles, "Multiple-order Raman scattering in crystalline and amorphous silicon," Phys. Rev. B 48, 6024-6032 (1993).
[CrossRef]

Adv. Phys. (1)

R. Loudon, "The Raman effect in crystals," Adv. Phys. 50, 813-864 (2001).
[CrossRef]

Appl. Phys. Lett. (21)

J. Zhang, Q. Lin, G. Piredda, R. W. Boyd, G. P. Agrawal, and P. M. Fauchet, "Anisotropic nonlinear response of silicon in the near-infrared region," Appl. Phys. Lett. 90, 071113 (2007).
[CrossRef]

T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya, and E. Kuramochi, "All-optical switches on a silicon chip realized using photonic crystal nanocavities," Appl. Phys. Lett. 87, 151112 (2005).
[CrossRef]

D. J. Moss, H. M. van Driel, and J. E. Sipe, "Third harmonic generation as a structure diagonostic of ionimplanted amorphous and crystalline silicon," Appl. Phys. Lett. 48, 1150-1152 (1986).
[CrossRef]

M. Dinu, F. Quochi, and H. Garcia, "Third-order nonlinearities in silicon at telecom wavelengths," Appl. Phys. Lett. 82, 2954-2956 (2003).
[CrossRef]

H. K. Tsang, C. S. Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake, and M. Asghari, "Optical dispersion, two-photon absorption, and self-phase modulation in silicon waveguides at 1.5 μm wavelength," Appl. Phys. Lett. 80, 416-418 (2002).
[CrossRef]

G.W. Rieger, K. S. Virk, and J. F. Yong, "Nonlinear propagation of ultrafast 1.5 μm pulses in high-index-contrast silicon-on-insulator waveguides," Appl. Phys. Lett. 84, 900-902 (2004).
[CrossRef]

A. Hache and M. Bourgeois, "Ultrafast all-optical switching in a silicon-based photonic crystal," Appl. Phys. Lett. 77, 4089-4091 (2000).
[CrossRef]

H. Rong, A. Liu, R. Nicolaescu, M. Paniccia, O. Cohen, and D. Hak, "Raman gain and nonlinear optical absorption measurement in a low-loss silicon waveguide," Appl. Phys. Lett. 85, 2196-2198 (2004).
[CrossRef]

T. K. Liang and H. K. Tsang, "Efficient Raman amplificationin silicon-on-insulator waveguides," Appl. Phys. Lett. 85, 3343-3345 (2004).
[CrossRef]

T. K. Liang and H. K. Tsang, "Role of free carriers from two-photon absorption in Raman amplification in silicon-on-insulator waveguides," Appl. Phys. Lett. 84, 2745-2747 (2004).
[CrossRef]

P. Koonath, D. R. Solli, and B. Jalali, "Continuum generation and carving on a silicon chip," Appl. Phys. Lett. 91, 061111 (2007).
[CrossRef]

V. Raghunathan, R. Claps, D. Dimitropoulos, and B. Jalali, "Wavelength conversion in silicon using Raman induced four-wave mixing," Appl. Phys. Lett. 85, 34-36 (2004).
[CrossRef]

A. D. Bristow, N. Rotenberg, and H. M. van Driel, "Two-photon absorption and Kerr coefficients of silicon for 850-2200 nm," Appl. Phys. Lett. 90, 191104 (2007).
[CrossRef]

Q. Lin, J. Zhang, G. Piredda, R.W. Boyd, P. M. Fauchet, and G. P. Agrawal, "Dispersion of silicon nonlinearities in the near-infrared region," Appl. Phys. Lett. 90, 021111 (2007).
[CrossRef]

Y. Liu and H. K. Tsang, "Time dependent density of free carriers generated by two photon absorption in silicon waveguides," Appl. Phys. Lett. 90, 211105 (2007).
[CrossRef]

T. Tanabe, K. Nishiguchi, A. Shinya, E. Kuramochi, H. Inokawa, and M. Notomi, "Fast all-optical switching using ion-implanted silicon photonic crystal nanocavities," Appl. Phys. Lett. 90, 031115 (2007).
[CrossRef]

D. Dimitropoulos, S. Fathpour, and B. Jalali, "Limitations of active carrier removal in silicon Raman amplifiers and lasers," Appl. Phys. Lett. 87, 261108 (2005).
[CrossRef]

M. J. Adams, S. Ritchie, and M. J. Robertson, "Optimum overlap of electric and optical fields in semiconductor waveguide devices," Appl. Phys. Lett. 18, 820-822 (1986).
[CrossRef]

D. Dimitropoulos, R. Jhaveri, R. Claps, J. C. S. Woo, and B. Jalali, "Lifetime of photogenerated carriers in silicon-on-insulator rib waveguides," Appl. Phys. Lett. 86, 071115 (2005).
[CrossRef]

T. K. Liang, H. K. Tsang, T. E. Day, J. Drake, A. P. Knights, M. Asghari, "Silicon waveguide two-photon absorption detector at 1.5 μm wavelength for autocorrelation measurements," Appl. Phys. Lett. 81, 1323-1325 (2002).
[CrossRef]

S. Fathpour, K. K. Tsia, and B. Jalali, "Energy harvesting in silicon Raman amplifiers," Appl. Phys. Lett. 89, 061109 (2006).
[CrossRef]

Electron. Lett. (4)

K. Taira, Y. Fukuchi, R. Ohta, K. Katoh, and K. Kikuchi, "Background-free intensity autocorrelator employing Si avalanche photodiode as two-photon absorber," Electron. Lett. 38, 1465-1466 (2002).
[CrossRef]

K. Kikuchi, "Highly sensitive interferometric autocorrelator using Si avalanche photodiode as two-photon absorber," Electron. Lett. 34, 123-125 (1998).
[CrossRef]

C. Xu, J. M. Roth, W. H. Knox, K. Bergman, "Ultra-sensitive autocorrelation of 1.5 μm light with single photon counting silicon avalanche photodiode," Electron. Lett. 38, 86-88 (2002).
[CrossRef]

D. J. Moss, L. Fu, I. Littler, and B. J. Eggleton, "Ultrafast all-optical modulation via two-photon absorption in silicon-on-insulator waveguides," Electron. Lett. 41, 320-321 (2005).
[CrossRef]

IEEE J. Lightwave Technol. (8)

C. Manolatou and M. Lipson, "All-optical silicon modulators based on carrier injection by two-photon absorption," IEEE J. Lightwave Technol. 24, 1433-1439 (2006).
[CrossRef]

F. Gan, F. J. Grawert, J. M. Schley, S. Akiyama, J. Michel, K. Wada, L. C. Kimerling, and F. X. K¨artner, "Design of all-optical switches based on carrier injection in Si/SiO2 split-ridge waveguides (SRWs)," IEEE J. Lightwave Technol. 24, 3454-3463 (2006).
[CrossRef]

V. Raghunathan, R. Claps, D. Dimitropoulos, and B. Jalali, "Parametric Raman wavelength conversion in scaled silicon waveguides," IEEE J. Lightwave Technol. 23, 2094-2102 (2005).
[CrossRef]

F. De Leonardis and V. M. N. Passaro, "Modeling and performance of a guided-wave optical angular-velocity sensor based on Raman effect in SOI," IEEE J. Lightwave Technol. 25, 2352-2366 (2007).
[CrossRef]

V. M. N. Passaro and F. D. Leonardis, "Space-time modeling of Raman pulses in silicon-on-insulator optical waveguides," IEEE J. Lightwave Technol. 24, 2920-2931 (2006).
[CrossRef]

A. Liu, H. Rong, R. Jones, O. Cohen, D. Hak, and M. Paniccia, "Optical amplification and lasing by stimulated Raman scattering in silicon waveguides," IEEE J. Lightwave Technol. 24, 1440-1455 (2006).
[CrossRef]

P. St. J. Russell, "Photonic crystal fibers," IEEE J. Lightwave Technol. 24, 4729-4749 (2006).
[CrossRef]

M. Dinu, D. C. Kilper, H. R. Stuart, "Optical performance monitoring using data stream intensity autocorrelation," IEEE J. Lightwave Technol. 24, 1194-1202 (2006).
[CrossRef]

IEEE J. Quantum Electron. (5)

M. Sheik-Bahae, D. C. Hutchings, D. J. Hagan, and E. W. Van Stryland, "Dispersion of bound electronic nonlinear refraction in solids," IEEE J. Quantum Electron. 27, 1296-1309 (1991).
[CrossRef]

X. Chen, N. C. Panoiu, R. M. Osgood, Jr., "Theory of Raman-mediated pulsed amplification in silicon-wire waveguides," IEEE J. Quantum Electron. 42, 160-170 (2006).
[CrossRef]

R. A. Soref and B. R. Bennett, "Electrooptical effects in silicon," IEEE J. Quantum Electron. 23, 123-129 (1987).
[CrossRef]

T. K. Liang and H. K. Tsang, "Nonlinear absorption and Raman scattering in silicon-on-insulator optical waveguides," IEEE J. Quantum Electron. 10, 1149-1153 (2004).
[CrossRef]

M. Dinu, "Dispersion of phonon-assisted nonresonant third-order nonlinearities," IEEE J. Quantum Electron. 39, 1498-1503 (2003).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (6)

R. A. Soref, "The Past, Present, and Future of Silicon Photonics," IEEE J. Sel. Top. Quantum Electron. 12, 1678-1687 (2006).
[CrossRef]

N. Vermeulen, C. Debaes, and H. Thienpont, "Mitigating heat dissipation in near- and mid-infrared silicon-based Raman lasers using CARS," IEEE J. Sel. Top. Quantum Electron. 13, 770-787 (2007).
[CrossRef]

B. Jalali, V. Raghunathan, D. Dimitropoulos, and O. Boyraz, "Raman-based silicon photonics," IEEE J. Sel. Top. Quantum Electron. 12, 412-421 (2006).
[CrossRef]

T. J. Kippenberg, S. M. Spillane, B. Min, and K. J. Vahala, "Theoretical and Experimental Study of Stimulated and Cascaded Raman Scattering in Ultrahigh-Q Optical Microcavities," IEEE J. Sel. Top. Quantum Electron. 10, 1219-1228 (2004).
[CrossRef]

J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P. Hedekvist, "Fiber-based optical parametric amplifiers and their applications," IEEE J. Sel. Top. Quantum Electron. 8, 506-520 (2002).
[CrossRef]

B. Jalali, V. Raghunathan, R. Shori, S. Fathpour, D. Dimitropoulos, and O. Stafsudd, "Prospects for silicon Mid-IR Raman Lasers," IEEE J. Sel. Top. Quantum Electron. 12, 1618-1627 (2006).
[CrossRef]

IEEE Photon. Technol. Lett. (3)

T. Torounidis and P. Andrekson, "Broadband single-pumped fiber-optic parametric amplifiers," IEEE Photon. Technol. Lett. 19, 650-652 (2007).
[CrossRef]

R. Salem, G. E. Tudury, T. U. Horton, G.M. Carter, T. E. Murphy, "Polarization-insensitive optical clock recovery at 80 Gb/s using a silicon photodiode," IEEE Photon. Technol. Lett. 17, 1968-1970 (2005).
[CrossRef]

K. Yamada, H. Fukuda, T. Tsuchizawa, T. Watanabe, T. Shoji, and S. Itabashi, "All-optical efficient wavelength conversion using silicon photonic wire waveguide," IEEE Photon. Technol. Lett. 18, 1046-1048 (2006).
[CrossRef]

J. Appl. Phys. (2)

T. G. Eusera and W. L. Vos, "Spatial homogeneity of optically switched semiconductor photonic crystals and of bulk semiconductors," J. Appl. Phys. 97, 043102 (2005).
[CrossRef]

A. Othonos, "Probing ultrafast carrier and phonon dynamics in semiconductors," J. Appl. Phys. 83, 1789-1830 (1998), and references therein.
[CrossRef]

J. Lightwave Technol. (1)

J. Opt. A: Pure Appl. Opt. (1)

R. A. Soref, S. J. Emelett, and W. R. Buchwald, "Silicon waveguided components for the long-wave infrared region," J. Opt. A: Pure Appl. Opt. 8, 840-848 (2006).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Phys. B (1)

H. Garcia and R. Kalyanaraman, "Phonon-assisted two-photon absorption in the presence of a dc-field: the nonlinear Franz-Keldysh effect in indirect gap semiconductor," J. Phys. B 39, 2737-2746 (2006).
[CrossRef]

J. Phys. D: Appl. Phys. (1)

R. Dekker, N. Usechak, M. Först, and A. Driessen, "Ultrafast nonlinear all-optical processes in silicon-oninsulator waveguides," J. Phys. D: Appl. Phys. 40, R249-R271 (2007).
[CrossRef]

Jpn. J. Appl. Phys. (2)

H. Yamada, M. Shirane, T. Chu, H. Yokoyama, S. Ishida, and Y. Arakawa, "Nonlinear-optic silicon-nanowire waveguides," Jpn. J. Appl. Phys. 44, 6541-6545 (2005).
[CrossRef]

T. Kagawa and S. Ooami, "Polarization dependence of two-photon absorption in Si avalanche photodiodes," Jpn. J. Appl. Phys. 46, 664-668 (2007).
[CrossRef]

Nature (4)

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, "All-optical control of light on a silicon chip," Nature 431, 1081-1084 (2004).
[CrossRef] [PubMed]

H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, "An all-silicon Raman laser," Nature 433, 292-294 (2005).
[CrossRef] [PubMed]

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, "A continuous-wave Raman silicon laser," Nature 433, 725-728 (2005).
[CrossRef] [PubMed]

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, "Broad-band optical parametric gain on a silicon photonic chip," Nature 441, 960-963 (2006).
[CrossRef] [PubMed]

Nature Photon. (1)

H. Rong, S. Xu, Y. Kuo, V. Sih, O. Cohen, O. Raday, and M. Paniccia, "Low-threshold continuous-wave Raman silicon laser," Nature Photon. 1, 232-237 (2007).
[CrossRef]

New J. Phys. (1)

F. De Leonardis and V. M. N. Passaro, "Modelling of Raman amplification in silicon-on-insulator optical microcavities," New J. Phys. 9, 25 (2007).
[CrossRef]

Opt. Commun. (1)

T. K. Liang, L. R. Nunes, M. Tsuchiya, K. S. Abedin, T. Miyazaki, D. Van Thourhout, W. Bogaerts, P. Dumon, R. Baets, and H. K. Tsang, "High speed logic gate using two-photon absorption in silicon waveguides," Opt. Commun. 265, 171-174 (2006).
[CrossRef]

Opt. Express (47)

R. Claps, V. Raghunathan, D. Dimitropoulos, and B. Jalali, "Anti-Sotkes Raman conversion in silicon waveguides," Opt. Express 11, 2862-2872 (2003).
[CrossRef] [PubMed]

D. Dimitropoulos, V. Raghunathan, R. Claps, and B. Jalali, "Phase-matching and nonlinear optical processes in silicon waveguides," Opt. Express 12, 149-160 (2003).
[CrossRef]

O. Boyraz, T. Indukuri, and B. Jalali, "Self-phase-modulation induced spectral broadening in silicon waveguides," Opt. Express 12, 829-834 (2004).
[CrossRef] [PubMed]

A. R. Cowan, G. W. Rieger, and J. F. Young, "Nonlinear transmission of 1.5 μm pulses through single-mode silicon-on-insulator waveguide structures," Opt. Express 12, 1611-1621 (2004).
[CrossRef] [PubMed]

R. Claps, V. Raghunathan, D. Dimitropoulos, and B. Jalali, "Influence of nonlinear absorption on Raman amplification in silicon waveguides," Opt. Express 12, 2774-2780 (2004).
[CrossRef] [PubMed]

R. L. Espinola, J. I. Dadap, R.M. Osgood, Jr., S. J. McNab, and Y. A. Vlasov, "Raman amplification in ultrasmall silicon-on-insulator wire waveguides," Opt. Express 12, 3713-3718 (2004).
[CrossRef] [PubMed]

X. Li, J. Chen, P. Voss, J. Sharping, and P. Kumar, "All-fiber photon-pair source for quantum communications: Improved generation of correlated photons," Opt. Express 12, 3737-3744 (2004).
[CrossRef] [PubMed]

Ö. Boyraz, P. Koonath, V. Raghunathan, and B. Jalali, "All optical switching and continuum generation in silicon waveguides," Opt. Express 12, 4094-4102 (2004).
[CrossRef] [PubMed]

A. Liu, H. Rong, M. Paniccia, O. Cohen, and D. Hak, "Net optical gain in a low loss silicon-on-insulator waveguide by stimulated Raman scattering," Opt. Express 12, 4261-4268 (2004).
[CrossRef] [PubMed]

Q. Xu, V. R. Almeida, and M. Lipson, "Time-resolved study of Raman gain in highly confined silicon-oninsulator waveguides," Opt. Express 12, 4437-4442 (2004).
[CrossRef] [PubMed]

O. Boyraz and B. Jalali, "Demonstration of a silicon Raman laser," Opt. Express 12, 5269-5273 (2004).
[CrossRef] [PubMed]

M. Krause, H. Renner, and E. Brinkmeyer, "Analysis of Raman lasing characteristics in silicon-on-insulator waveguides," Opt. Express 12, 5703-5710 (2004).
[CrossRef] [PubMed]

O. Boyraz and B. Jalali, "Demonstration of directly modulated silicon Raman laser," Opt. Express 13, 796-800 (2005).
[CrossRef] [PubMed]

P. E. Barclay, K. Srinivasan, and O. Painter, "Nonlinear response of silicon photonic crystal microresonators excited via an integrated waveguide and fiber taper", Opt. Express 13, 801-820 (2005).
[CrossRef] [PubMed]

R. Jones, A. Liu, H. Rong, M. Paniccia, O. Cohen, and D. Hak, "Lossless optical modulation in a silicon waveguide using stimulated Raman scattering," Opt. Express 13, 1716-1723 (2005).
[CrossRef] [PubMed]

R. L. Espinola, J. I, Dadap, R. M. Osgood, Jr., S. J. McNab, and Y. A. Vlasov, "C-band wavelength conversion in silicon photonic wire waveguides," Opt. Express 13, 4341-4349 (2005).
[CrossRef] [PubMed]

H. Fukuda, K. Yamada, T. Shoji, M. Takahashi, T. Tsuchizawa, T. Watanabe, J. Takahashi, and S. Itabashi, "Four-wave mixing in silicon wire waveguides," Opt. Express 13, 4629-4637 (2005).
[CrossRef] [PubMed]

X. Yang and C. W. Wong, "Design of photonic band gap nanocavities for stimulated Raman amplification and lasing in monolithic silicon," Opt. Express 13, 4723-4730 (2005).
[CrossRef] [PubMed]

T. K. Liang, L. R. Nunes, T. Sakamoto, K. Sasagawa, T. Kawanishi, M. Tsuchiya, G. R. A. Priem, D. Van Thourhout, P. Dumon, R. Baets, and H. K. Tsang, "Ultrafast all-optical switching by cross-absorption modulation in silicon wire waveguides," Opt. Express 13, 7298-7303 (2005).
[CrossRef] [PubMed]

J. Fulconis, O. Alibart, W. J. Wadsworth, P. St. J. Russell, and J. G. Rarity, "High brightness single mode source of correlated photon pairs using a photonic crystal fiber," Opt. Express 13, 7572-7582 (2005).
[CrossRef] [PubMed]

H. Takesue and K. Inoue, "1.5- μm band quantum-correlated photon pair generation in dispersion-shifted fibers: suppression of noise photons by cooling fiber," Opt. Express 13, 7832-7839 (2005).
[CrossRef] [PubMed]

T. J. Johnson,M. Borselli, and O. Painter, "Self-induced optical modulation of the transmission through a high-Q silicon microdisk resonator," Opt. Express 14, 817-831 (2006).
[CrossRef] [PubMed]

S. Blair and K. Zheng, "Intensity-tunable group delay using stimulated Raman scattering in silicon slow-light waveguides," Opt. Express 14, 1064-1069 (2006).
[CrossRef] [PubMed]

H. Rong, Y. Kuo, A. Liu, M. Paniccia, and O. Cohen, "High efficiency wavelength conversion of 10 Gb/s data in silicon waveguides," Opt. Express 14, 1182-1188 (2006).
[CrossRef] [PubMed]

Y. Okawachi, M. A. Foster, J. E. Sharping, A. L. Gaeta, Q. Xu, and M. Lipson, "All-optical slow-light on a photonic chip," Opt. Express 14, 2317-2322 (2006).
[CrossRef] [PubMed]

R. Claps, D. Dimitropoulos, Y. Han, and B. Jalali, "Observation of Raman emission in silicon waveguide at 1.54 μm," Opt. Express 10, 1305-1313 (2002).
[PubMed]

R. Claps, D. Dimitropoulos, V. Raghunathan, Y. Han, and B. Jalali, "Observation of stimulated Raman amplifi-cation in silicon waveguides," Opt. Express 11, 1731-1739 (2003).
[CrossRef] [PubMed]

A. C. Turner, C. Manolatou, B. S. Schmidt, M. Lipson, M. A. Foster, J. E. Sharping, and A. L. Gaeta, "Tailored anomalous group-velocity dispersion in silicon channel waveguides," Opt. Express 14, 4357-4362 (2006).
[CrossRef] [PubMed]

Q. Lin, J. Zhang, P. M. Fauchet, and G. P. Agrawal, "Ultrabroadband parametric generation and wavelength conversion in silicon waveguides," Opt. Express 14, 4786-4799 (2006).
[CrossRef] [PubMed]

E. Dulkeith, Y. A. Vlasov, X. Chen, N. C. Panoiu, and R. M. Osgood, Jr., "Self-phase-modulation in submicron silicon-on-insulator photonic wires," Opt. Express 14, 5524-5534 (2006).
[CrossRef] [PubMed]

R. Dekker, A. Driessen, T. Wahlbrink, C. Moormann, J. Niehusmann, and M. Först, "Ultrafast Kerr-induced all-optical wavelength conversion in silicon waveguides using 1.55 μm femtosecond pulses," Opt. Express 14, 8336-8346 (2006).
[CrossRef] [PubMed]

V. Raghunathan, D. Borlaug, R. R. Rice, and B. Jalali, "Demonstration of a mid-infrared silicon Raman ampli-fier," Opt. Express 15, 14355-14362 (2007).
[CrossRef] [PubMed]

I-W. Hsieh, X. Chen, X. Liu, J. I. Dadap, N. C. Panoiu, C-Y. Chou, F. Xia,W. M. Green, Y. A. Vlasov, and R. M. Osgood, Jr., "Supercontinuum generation in silicon photonic wires," Opt. Express 15, 15242-15248 (2007).
[CrossRef] [PubMed]

D. Dimitropoulos, D. R. Solli, R. Claps, and B. Jalali, "Noise figure and photon statistics in coherent anti-Stokes Raman scattering," Opt. Express 14, 11418-11432 (2006).
[CrossRef] [PubMed]

Y. Kuo, H. Rong, V. Sih, S. Xu, M. Paniccia, and O. Cohen, "Demonstration of wavelength conversion at 40 Gb/s data rate in silicon waveguides," Opt. Express 14, 11721-11726 (2006).
[CrossRef] [PubMed]

K. K. Tsia, S. Fathpour, and B. Jalali, "Energy harvesting in silicon wavelength converters," Opt. Express 14, 12327-12333 (2006).
[CrossRef] [PubMed]

I-W. Hsieh, X. Chen, J. I. Dadap, N. C. Panoiu, R.M. Osgood, Jr., S. J. McNab, and Y. A. Vlasov, "Ultrafast-pulse self-phase modulation and third-order dispersion in Si photonic wire-waveguides," Opt. Express 14, 12380-12387 (2006).
[CrossRef] [PubMed]

J. E. Sharping, K. F. Lee, M. A. Foster, A. C. Turner, B. S. Schmidt, M. Lipson, A. L. Gaeta, and P. Kumar, "Generation of correlated photons in nanoscale silicon waveguides," Opt. Express 14, 12388-12393 (2006).
[CrossRef] [PubMed]

V. Sih, S. Xu, Y. Kuo, H. Rong, M. Paniccia, O. Cohen, and O. Raday, "Raman amplification of 40 Gb/s data in low-loss silicon waveguides," Opt. Express 15, 357-362 (2007).
[CrossRef] [PubMed]

I-W. Hsieh, X. Chen, J. I. Dadap, N. C. Panoiu, R. M. Osgood, Jr., S. J. McNab, and Y. A. Vlasov, "Crossphase modulation-induced spectral and temporal effects on co-propagating femtosecond pulses in silicon photonic wires," Opt. Express 15, 1135-1146 (2007).
[CrossRef] [PubMed]

V. Raghunathan, H. Renner, R. R. Rice, and B. Jalali, "Self-imaging silicon Raman amplifier," Opt. Express 15, 3396-3408 (2007).
[CrossRef] [PubMed]

X. Yang and C.W. Wong, "Coupled-mode theory for stimulated Raman scattering in high-Q/Vm silicon photonic band gap defect cavity lasers," Opt. Express 15, 4763-4780 (2007).
[CrossRef] [PubMed]

J. M. Chavez Boggio, J. D. Marconi, S. R. Bickham, and H. L. Fragnito, "Spectrally flat and broadband double-pumped fiber optical parametric amplifiers," Opt. Express 15, 5288-5309 (2007).
[CrossRef] [PubMed]

E. Tien, N. S. Yuksek, F. Qian, and O. Boyraz, "Pulse compression and modelocking by using TPA in silicon waveguides," Opt. Express 15, 6500-6506 (2007).
[CrossRef] [PubMed]

J. Zhang, Q. Lin, G. Piredda, R. W. Boyd, G. P. Agrawal, and P. M. Fauchet, "Optical solitons in a silicon waveguide," Opt. Express 15, 7682-7688 (2007).
[CrossRef] [PubMed]

R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, "All-optical regeneration on a silicon chip," Opt. Express 15, 7802-7809 (2007).
[CrossRef] [PubMed]

M. A. Foster, A. C. Turner, R. Salem, M. Lipson, and A. L. Gaeta, "Broad-band continuous-wave parametric wavelength conversion in silicon nanowaveguides," Opt. Express 15, 12949-12958 (2007).
[CrossRef] [PubMed]

Opt. Lett. (22)

L. Yin and G. P. Agrawal, "Impact of two-photon absorption on self-phase modulation in silicon waveguides," Opt. Lett. 32, 2031-2033 (2007).
[CrossRef] [PubMed]

M. Först, J. Niehusmann, T. Plötzing, J. Bolten, T. Wahlbrink, C. Moormann, and H. Kurz, "High-speed alloptical switching in ion-implanted silicon-on-insulator microring resonators," Opt. Lett. 32, 2046-2048 (2007).
[CrossRef] [PubMed]

S. Ayotte, H. Rong, S. Xu, O. Cohen, and M. Paniccia, "Multichannel dispersion compensation using a silicon waveguide-based optical phase conjugator," Opt. Lett. 32, 2393-2395 (2007).
[CrossRef] [PubMed]

L. Yin, Q. Lin, and G. P. Agrawal, "Soliton fission and supercontinuum generation in silicon waveguides," Opt. Lett. 32, 391-393 (2007).
[CrossRef] [PubMed]

N. C. Panoiu, X. Chen, and R. M. Osgood, Jr., "Modulation instability in silicon photonic nanowires," Opt. Lett. 31, 3609-3611 (2006).
[CrossRef] [PubMed]

Q. Lin and G. P. Agrawal, "Silicon waveguides for creating quantum-correlated photon pairs," Opt. Lett. 31, 3140-3142 (2006).
[CrossRef] [PubMed]

K. Ikeda and Y. Fainman, "Nonlinear Fabry-Perot resonator with a silicon photonic crystal waveguide," Opt. Lett. 31, 3486-3488 (2006).
[CrossRef] [PubMed]

K. F. Lee, J. Chen, C. Liang, X. Li, P. L. Voss, and P. Kumar, "Generation of high-purity telecom-band entangled photon pairs in dispersion-shifted fiber," Opt. Lett. 31, 1905-1907 (2006).
[CrossRef] [PubMed]

D. Dimitropoulos, B. Houshmand, R. Claps, and B. Jalali, "Coupled-mode theory of the Raman effect in siliconon-insulator waveguides," Opt. Lett. 28, 1954-1956 (2003).
[CrossRef] [PubMed]

J. F. McMillan, X. Yang, N. C. Panoiu, R. M. Osgood, and C.W. Wong, "Enhanced stimulated Raman scattering in slow-light photonic crystal waveguides," Opt. Lett. 31, 1235-1237 (2006).
[CrossRef] [PubMed]

Q. Lin, F. Yaman, and G. P. Agrawal, "Photon-pair generation by four-wave mixing in optical fibers," Opt. Lett. 31, 1286-1288 (2006).
[CrossRef] [PubMed]

L. Yin, Q. Lin, and G. P. Agrawal, "Dispersion tailoring and soliton propagation in silicon waveguides," Opt. Lett. 31, 1295-1297 (2006).
[CrossRef] [PubMed]

Y. Liu and H. K. Tsang, "Nonlinear absorption and Raman gain in helium-ion-implanted silicon waveguides," Opt. Lett. 31, 1714-1716 (2006).
[CrossRef] [PubMed]

S. F. Preble, Q. Xu, B. S. Schmidt, and M. Lipson, "Ultrafast all-optical modulation on a silicon chip," Opt. Lett. 30, 2891-2893 (2005).
[CrossRef] [PubMed]

J. Fan, A. Migdall, and L. J. Wang, "Efficient generation of correlated photon pairs in a microstructure fiber," Opt. Lett. 30, 3368-3370 (2005).
[CrossRef]

J. I. Dadap, R. L. Espinola, R. M. Osgood, Jr., S. J. McNab, and Y. A. Vlasov, "Spontaneous Raman scattering in ultrasmall silicon waveguides," Opt. Lett. 29, 2755-2757 (2004).
[CrossRef] [PubMed]

Q. Xu, V. R. Almeida, and M. Lipson, "Demonstration of high Raman gain in a submicrometer-size silicon-oninsulator waveguide," Opt. Lett. 30, 35-37 (2005).
[CrossRef] [PubMed]

R. Salem and T. E. Murphy, "Polarization-insensitive cross correlation using two-photon absorption in a silicon photodiode," Opt. Lett. 29, 1524-1526 (2004).
[CrossRef] [PubMed]

D. J. Moss, H. M. van Driel, and J. E. Sipe, "Dispersion in the anisotropy of optical third-harmonic generation in silicon," Opt. Lett. 14, 57-59 (1989).
[CrossRef] [PubMed]

V. Mizrahi, K. W. DeLong, G. I. Stegeman, M. A. Saifi, and M. J. Andrejco, "Two-photon absorption as a limitation to all-optical switching," Opt. Lett. 14, 1140-1142 (1989).
[CrossRef] [PubMed]

T. A. Birks,W. J. Wadsworth, and P. St. J. Russell, "Supercontinuum generation in tapered fibers," Opt. Lett. 25, 1415-1416 (2000).
[CrossRef]

D. Panasenko, Y. Fainman, "Single-shot sonogram generation for femtosecond laser pulse diagnostics by use of two-photon absorption in a silicon CCD camera," Opt. Lett. 27, 1475-1477 (2002).
[CrossRef]

Phys. Rev. (4)

Y. R. Shen and N. Bloembergen, "Theory of stimulated Brillouin and Raman scattering," Phys. Rev. 137, A1787- A1805 (1965).
[CrossRef]

P. D. Maker and R.W. Terhune, "Study of optical effects due to an induced polarization third order in the electric field strength," Phys. Rev. 137, A801-A818 (1965).
[CrossRef]

S. S. Jha and N. Bloembergen, "Nonlinear optical susceptibilities in group-IV and III-V semiconductors," Phys. Rev. 171, 891-898 (1968).
[CrossRef]

J. J. Wynne, "Optical third-order mixing in GaAs, Ge, Si, and InAs," Phys. Rev. 178, 1295-1303 (1969).
[CrossRef]

Phys. Rev. A (2)

H. Takesue and K. Inoue, "Generation of polarization-entangled photon pairs and violation of Bell’s inequality using spontaneous four-wave mixing in a fiber loop," Phys. Rev. A 70, 031802(R) (2004).
[CrossRef]

Q. Lin, F. Yaman, and G. P. Agrawal, "Photon-pair generation in optical fibers through four-wave mixing: Role of Raman scattering and pump polarization," Phys. Rev. A 75, 023803 (2007).
[CrossRef]

Phys. Rev. B (11)

M. D. Levenson, C. Flytzanis, and N. Bloembergen, "Interference of resonant and nonresonant three-wave mixing in diamond," Phys. Rev. B 6, 3962-3965 (1972).
[CrossRef]

A. J. Sabbah and D. M. Riffe, "Femtosecond pump-probe reflectivity study of silicon carrier dynamics," Phys. Rev. B 66, 165217 (2002).
[CrossRef]

J. M. Ralston and R. K. Chang, "Spontaneous-Raman-scattering efficiency and stimulated scattering in silicon", Phys. Rev. B 2, 1858 (1970).
[CrossRef]

J. B. Renucci, R. N. Tyte, and M. Cardona, "Resonant Raman scattering in silicon", Phys. Rev. B 11, 3885 (1975).
[CrossRef]

R. Buhleier, G. Lüpke, G. Marowsky, Z. Gogolak, and J. Kuhl, "Anisotropic interference of degenerate four-wave mixing in crystalline silicon," Phys. Rev. B 50, 2425-2431 (1994).
[CrossRef]

W. K. Burns and N. Bloembergen, "Third-harmonic generation in absorbing media of cubic or isotropic symmetry," Phys. Rev. B 4, 3437-3450 (1971).
[CrossRef]

D. J. Moss, E. Ghahramani, J. E. Sipe, and H. M. van Driel, "Band-structure calculation of dispersion and anisotropy in χ(3) for third-harmonic generation in Si, Ge, and GaAs," Phys. Rev. B 41, 1542-1560 (1990).
[CrossRef]

M. D. Lvenson and N. Bloembergen, "Dispersion of the nonlinear optical susceptibility tensor in centrosymmetric media," Phys. Rev. B 10, 4447-4463 (1974).
[CrossRef]

P. A. Temple and C. E. Hathaway, "Multiphonon Raman spectrum of silicon," Phys. Rev. B 7, 3685-3697 (1973).
[CrossRef]

T. R. Hart, R. L. Aggarwal, and B. Lax, "Temperature dependence of Raman scattering in silicon," Phys. Rev. B 1, 638-642 (1970).
[CrossRef]

A. Zwick and R. Carles, "Multiple-order Raman scattering in crystalline and amorphous silicon," Phys. Rev. B 48, 6024-6032 (1993).
[CrossRef]

Phys. Rev. Lett. (5)

J. R. Sandercock, "Brillouin-scattering measurements on silicon and germanium," Phys. Rev. Lett. 28, 237-240 (1972).
[CrossRef]

J. F. Reintjes and J. C. McGroddy, "Indirect two-photon transition in Si at 1.06 μm", Phys. Rev. Lett. 30, 901-903 (1973).
[CrossRef]

C. C. Wang, J. Bomback, W. T. Donlon, C. R. Huo, and J. V. James, "Optical third-harmonic generation in reflection from crystalline and amorphous samples of silicon," Phys. Rev. Lett. 57, 1647-1650 (1986).
[CrossRef] [PubMed]

N. Bloembergen and P. Lallemand, "Complex intensity-dependent index of refraction, frequency broadening of stimulated Raman scattering, and stimulated Rayleigh scattering," Phys. Rev. Lett. 16, 81-84 (1966).
[CrossRef]

X. Li, P. L. Voss, J. E. Sharping, and P. Kumar, "Optical-Fiber Source of Polarization-Entangled Photons in the 1550 nm Telecom Band," Phys. Rev. Lett. 94, 053601 (2005).
[CrossRef] [PubMed]

Physica Status Solidi A (1)

V. Raghunathan, R. Shori, O. M. Stafsudd, B. Jalali, "Nonlinear absorption in silicon and the prospects of midinfrared silicon Raman lasers," Physica Status Solidi A 203, R38-R40 (2006).
[CrossRef]

Proc. SPIE (1)

R. A. Soref and B. R. Bennett, "Kramers-Kronig analysis of electro-optical switching in silicon," Proc. SPIE 704, 32-37 (1987).

Prog. Quantum Electron. (1)

R. W. Hellwarth, "Third-order optical susceptibilities of liquids and solids," Prog. Quantum Electron. 5, 1-68 (1977).
[CrossRef]

Rev. Mod. Phys. (1)

J. M. Dudley, G. Genty, and S. Coen, "Supercontinuum generation in photonic crystal fiber," Rev. Mod. Phys. 78, 1135-1184 (2006).
[CrossRef]

Other (16)

P. N. Butcher and D. Cotter, The Elements of Nonlinear Optics (Cambridge University Press, New York, 1991).

R. W. Boyd, Nonlinear Optics, 2nd ed. (Academic Press, Boston, 2003).

M. Cardona, "Resonance phenomena," in Light Scattering in Solid II, M. Cardona and G. Güntherodt eds. (Springer-Verlag, New York, 1982).

S. M. Sze and K. K. Ng, Physics of Semiconductor Devices, 3rd ed. (Wiley, Hoboken, NJ, 2007).

M. Sheik-Bahae and E. W. Van Stryland, "Optical nonlinearities in the transparency region of bulk semiconductors," in Nonlinear Optics in Semiconductors I, E. Garmire and A. Kost, eds., Semiconductors and Semimetals, (Academic, Boston, 1999) vol. 58.

G. P. Agrawal, Applications of Nonlinear Fiber Optics, 2nd ed. (Academic Press, Boston, 2007).

M. Foster and A. L. Gaeta, "Wavelength dependence of the ultrafast third-order nonlinearity of Silicon," Proc. Conf. Lasers Electro-Optics (OSA, Washington, DC, 2007), Paper CTuY5.

A. C. Turner, M. A. Foster, A. L Gaeda, and M. Lipson, "Ultra-low power frequency conversion in silicon microring resonators," Proc. Conf. Lasers Electro-Optics (OSA, Washington, DC, 2007), paper CPDA3.

G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic Press, Boston, 2007).

V. Raghunathan, O. Boyraz, ann B. Jalali, "20 dB on-off Raman amplification in silicon waveguides," Proc. Conf. Lasers Electro-Optics (OSA, Washington, DC, 2005), pp. 349-351.

L. Pavesi and D. J. Lockwood, Eds., Silicon Photonics (Springer, New York, 2004).

G. T. Reed and A. P. Knights, Silicon Photonics: An Introduction (Wiley, Hoboken, NJ, 2004).
[CrossRef]

D. S. Chemla, "Ultrafast transient nonlinear optical processes in semiconductors," in Nonlinear Optics in Semiconductors I, E. Garmire and A. Kost, Eds., Semiconductors and Semimetals, (Academic, Boston, 1999) vol. 58 .

Q. Lin, T. Johnson, R. Perahia, C. Michael, and O. J. Painter, "Highly tunable optical parametric oscillation in silicon micro-resonators," submitted for publication.

A. Kost, "Resonant optical nonlinearities in semiconductors," in Nonlinear Optics in Semiconductors I, E. Garmire and A. Kost, Eds., Semiconductors and Semimetals, vol. 58 (Academic, Boston, 1999).

M. D. Levenson and S. Kano, Intronduction to Nonlinear Laser Spectroscopy (Academic Press, Boston, 1988).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

Rotation of the coordinate system required for SOI waveguides fabricated along the [0 1 ̄ 1] direction.

Fig. 2.
Fig. 2.

Wavelength dependence of β 2 for several waveguide widths simulated with the finite-element method (FEMLAB, COMSOL). Solid and dashed curves correspond to the TE and TM modes, respectively. The black curve shows for comparison the case of bulk silicon, and the inset shows the waveguide geometry.

Fig. 3.
Fig. 3.

(a) SPM-broadened spectra and (b) nonlinear phase shifts showing the impact of FCC. Red curves neglect both FCA and FCC, black curves include FCA but neglect FCC, and green curves include both. (After Ref. [21].)

Fig. 4.
Fig. 4.

Simulated shape (a) and spectrum (b) of input (blue curves) and output (red curves) pulses in the soliton regime. The green curve in (a) shows the output pulse in the absence nonlinear effects. The dashed curve in (b) corresponds to a sech pulse. (After Ref. [17].)

Fig. 5.
Fig. 5.

(a) Measured spectra (blue curves) at the input and output ends for Gaussian pulses. The green and red curves show the Gaussian and ‘sech’ fits to the data. Part (b) shows a numerical fit to the output spectrum. (After Ref. [17].)

Fig. 6.
Fig. 6.

Supercontinuum created inside a 3-mm-long SOI waveguide when a 50-fs pulse excites the third-order soliton (red curve). The blue curve ignores the effects of TPA and FCA are ignored. The dotted curve shows the input pulse spectrum. (After Ref. [16].)

Fig. 7.
Fig. 7.

Signal gain (a) and wavelength-conversion efficiency (b) as a function of signal wavelength for three pump wavelengths in the vicinity of the ZDWL (dashed line) of the TM mode. Input pump intensity is 0.2 GW/cm2 in all cases. (After Ref. [68].)

Fig. 8.
Fig. 8.

Signal gain (a) and conversion efficiency (b) for the TE mode under the same conditions as in Fig. 7. (After Ref. [68].)

Fig. 9.
Fig. 9.

Parametric gain spectra at three pump wavelengths in the mid-infrared region for the waveguide with a cross section of 1.8×0.4 µm2. (After Ref. [137].)

Fig. 10.
Fig. 10.

Normalized photon flux (a) and pair correlation and spectral brightness (b) for the TM mode as a function of pump intensity. The inset shows the waveguide design. (After Ref. [73].)

Equations (137)

Equations on this page are rendered with MathJax. Learn more.

P ˜ i ( 3 ) ( r , ω i ) = 3 ε 0 4 ( 2 π ) 2 χ ijkl ( 3 ) ( ω i ; ω j , ω k , ω l ) E ˜ j ( r , ω j ) E ˜ k * ( r , ω k ) E ˜ l ( r , ω l ) d ω j d ω k ,
χ ijkl R ( ω i ; ω j , ω k , ω l ) = g H ˜ R ( ω l ω k ) v = x , y , z ij v kl v + g H ˜ R ( ω j ω k ) v = x , y , z il v jk v ,
H ˜ R ( Ω ) = Ω R 2 Ω R 2 Ω 2 2 i Γ R Ω .
ij x = δ iy δ jz + δ iz δ jy , ij y = δ ix δ jz + δ iz δ jx , ij z = δ ix δ jy + δ iy δ jx ,
χ ijkl R ( ω i ; ω j , ω k , ω l ) = g H ˜ R ( ω l ω k ) ( δ ik δ jl + δ il δ jk 2 δ ijkl )
+ g H ˜ R ( ω j ω k ) ( δ ik δ jl + δ ij δ kl 2 δ ijkl ) ,
χ ijkl e = χ 1122 e δ ij δ kl + χ 1212 e δ ik δ jl + χ 1221 e δ il δ jk + χ d e δ ijkl ,
χ ijkl e = χ 1111 e [ ρ 3 ( δ ij δ kl + δ ik δ jl + δ il δ jk ) + ( 1 ρ ) δ ijkl ] ,
ω c n 2 ( ω ) + i 2 β T ( ω ) = 3 ω 4 ε 0 c 2 n 0 2 ( ω ) χ 1111 e ( ω ; ω , ω , ω ) ,
P i f ( r , t ) = N e ( r , t ) p i e ( r , t ) + N h ( r , t ) p i h ( r , t ) ,
ϒ v ( ω ) = q 2 τ v ε 0 m v * ( 1 ω ( ω τ v + i ) ) .
P ˜ i f ( r , ω ) = ε 0 χ ˜ f ( ω , ω , N ˜ e , N ˜ h ) E ˜ i ( r , ω ) d ω ,
χ ˜ f ( ω , ω , N ˜ e , N ˜ h ) ϒ e ( ω ) N ˜ e ( r , ω ω ) + ϒ h ( ω ) N ˜ h ( r , ω ω ) .
P i f ( r , t ) = ε 0 u χ f ( ω u , N e , N h ) E i ( r , ω u , t ) ,
χ f ( ω u , N e , N h ) = ϒ e ( ω u ) N e ( r , t ) + ϒ h ( ω u ) N h ( r , t ) .
χ f = 2 n 0 [ n f + i c α f ( 2 ω ) ] ,
n f ( ω , N e , N h ) = q 2 2 ε 0 n 0 ω 2 ( N e m e * + N h m h * ) ,
α f ( ω , N e , N h ) = q 3 ε 0 c n 0 ω 2 ( N e μ e m e * 2 + N h μ h m h * 2 ) ,
n f ( ω r , N e , N h ) = ( 8.8 × 10 4 N e + 8.5 N h 0.8 ) × 10 18 ,
α f ( ω r , N e , N h ) = ( 8.5 N e + 6.0 N h ) × 10 18 ,
n f = σ n ( ω ) N , α f = σ a ( ω ) N ,
2 E ˜ i ( r , ω ) + ω 2 c 2 n 0 2 ( ω ) E ˜ i ( r , ω ) = μ 0 ω 2 [ P ˜ i f ( r , ω ) + P ˜ i ( 3 ) ( r , ω ) ] .
E ˜ i ( r , ω ) F ˜ i ( x , y , ω ) A ˜ i ( z , ω ) ,
2 A ˜ i z 2 + β i 2 ( ω ) A ˜ i = μ 0 ω 2 F ˜ i * [ P ˜ i f + P ˜ i ( 3 ) ] dx dy F ˜ i 2 dx dy ,
β i 2 ( ω ) = ω 2 c 2 n 0 2 ( ω ) F ˜ i 2 dx dy F ˜ i 2 dx dy + F ˜ i * T 2 F ˜ i dx dy F ˜ i 2 dx dy ,
2 z 2 + β i 2 = ( z + i β i ) ( z i β i ) 2 i β i ( z i β i ) .
A ˜ i z = i β i ( ω ) A ˜ i + i μ 0 ω 2 2 β i ( ω ) F ˜ i * [ P ˜ i f + P ˜ i ( 3 ) ] dx dy [ F ˜ i ] 2 dx dy .
A ˜ i z = i β i ( ω ) A ˜ i + i β ˜ i f ( ω , ω , N ˜ e , N ˜ h ) A ˜ i ( z , ω ) d ω
+ i 4 π 2 γ ijkl ( ω ; ω j , ω k , ω l ) A j ( z , ω j ) A k * ( z , ω k ) A l ( z , ω l ) d ω j d ω k ,
γ ijkl ( ω i ; ω j , ω k , ω l ) = 3 ω i η ijkl 4 ε 0 c 2 a ¯ ( n i n j n k n l ) 1 2 χ ijkl ( 3 ) ( ω i ; ω j , ω k , ω l ) ,
a ¯ ( a i a j a k a l ) 1 4 , a v = [ F v ˜ 2 dx dy ] 2 F ˜ v 4 dx dy ,
η ijkl F ˜ i * F ˜ j F ˜ k * F ˜ l dx dy [ Π v = i , j , k , l F ˜ v 4 dx dy ] 1 4 .
β ˜ i f ( ω , ω , N ˜ e , N ˜ h ) = ω 2 c n i ( ω ) χ ˜ f ( ω , ω , N ˜ e , N ˜ h ) F ˜ i 2 dx dy F ˜ i 2 dx dy ,
β ˜ i f = ω 2 c n i ( ω ) χ ˜ f ( ω , ω , N ¯ ˜ e , N ¯ ˜ h ) , N ¯ ˜ v = N ˜ v F ˜ i 2 dx dy F ˜ i 2 dx dy .
β i f ( ω u , N ¯ e , N ¯ h ) = n 0 ( ω u ) n i ( ω u ) [ ω u c n f ( ω u , N ¯ e , N ¯ h ) + i 2 α f ( ω u , N ¯ e , N ¯ h ) ] ,
N v t = G N v τ v + D v 2 N v s v μ v · ( N v E dc ) ,
F ˜ i 2 [ D v 2 N v s v μ v · ( N v E dc ) ] dx dy F ˜ i 2 dx dy = N ¯ v τ v * ,
N ¯ v t = G ¯ N ¯ v τ 0 , G ¯ = G F ˜ i 2 dx dy F ˜ i 2 dx dy ,
A i z = m = 0 i m + 1 β im m ! m A i t m + i β i f ( ω 0 , N ¯ e , N ¯ h ) A i + i ( 1 + i ξ t ) P i NL ,
P i NL ( z , t ) = A j ( z , t ) R ijkl ( 3 ) ( t τ ) A k * ( z , τ ) A l ( z , τ ) d τ ,
R ijkl ( 3 ) ( τ ) = γ e ( ω 0 ) δ ( τ ) [ ρ 3 ( δ ij δ kl + δ ik δ jl + δ il δ jk ) + ( 1 ρ ) δ ijkl ]
+ γ R h R ( τ ) ( δ ik δ jl + δ il δ jk 2 δ ijkl ) ,
γ e ( ω 0 ) γ 1111 e ( ω 0 ; ω 0 , ω 0 , ω 0 ) γ 0 ( ω 0 ) + i 2 β T ( ω 0 ) ,
h R ( t ) = Ω R 2 τ 1 e t τ 2 sin ( t τ 1 ) ,
R ijkl ( 3 ) ( τ ) = γ e δ ( τ ) [ ρ 3 ( δ ij δ kl + δ ik δ jl + δ il δ jk ) + ( 1 ρ ) s M si M sj M sk M sl ]
+ h R ( τ ) ( δ ik δ jl + δ il δ jk 2 s M si M sj M sk M sl ) .
M = ( 1 0 0 0 1 2 1 2 0 1 2 1 2 ) .
R xxxx ( 3 ) ( τ ) = γ e δ ( τ ) , R yyyy ( 3 ) ( τ ) = γ e δ ( τ ) ( 1 + ρ ) 2 + γ R h R ( τ ) ,
R yxxy ( 3 ) ( τ ) = R xyyx ( 3 ) ( τ ) , R xyyx ( 3 ) ( τ ) = γ e ρ δ ( τ ) 3 + γ R h R ( τ ) .
ξ 1 ω 0 + 1 χ e ( ω 0 ) d χ e d ω ω 0 1 a ¯ ( ω 0 ) d a ¯ d ω ω 0 ,
A z = i β f ( ω 0 , N ¯ ) A + i γ e A 2 A ,
G ¯ = 1 2 h ¯ ω 0 a ¯ P z = β T A 4 2 h ¯ ω 0 a 2 ¯ .
N ¯ ( z , τ ) = β T 2 h ¯ ω 0 a ¯ 2 τ e ( τ τ ) τ 0 A ( z , τ ) 4 d τ .
N ¯ m = β T 2 h ¯ ω 0 a ¯ 2 A ( z , τ ) 4 d τ .
N ¯ m = π β T P 0 2 T 0 2 2 h ¯ ω 0 a ¯ 2 .
r a α fm α Tm = n 0 σ a p 2 2 h ¯ ω 0 n a ¯ ,
Φ K z = γ 0 A 2 , Φ f z = n 0 ω 0 σ n cn N ¯ ,
( δ ω K ) z = γ 0 A 2 τ , ( δ ω f ) z = n 0 ω 0 σ n cn N ¯ τ .
N ¯ τ = β T 2 h ¯ ω 0 a ¯ 2 [ A 4 1 τ 0 τ e ( τ τ ) τ 0 A ( z , τ ) 4 d τ ] .
( δ ω f ) z n 0 σ n β T A 4 2 cn h ¯ a ¯ 2 .
( δ ω fm ) z n 0 σ n β T P 0 2 2 cn h ¯ a ¯ 2 .
r c ( δ ω fm ) z ( δ ω Km ) z n 0 σ n p 4 π 3 2 F n cn h ¯ a ¯ .
A z = α l 2 A + i γ e A 2 A ,
P ( z , τ ) = P ( 0 , τ ) exp ( α l z ) 1 + β T P ( 0 , τ ) α l a [ 1 exp ( α l z ) ] .
Φ K ( L , τ ) = γ 0 a ¯ β T ln [ 1 + β T P ( 0 , τ ) a ¯ L eff ] ,
A z + α l 2 A + i β 2 2 2 A τ 2 = i γ e A 2 A .
A p z i m = 0 i m β mp m ! m A p t m = α lp 2 A p + i β p f A p + i { γ pp ( 0 ) A p 2 + [ γ ps e + γ ps ( 0 ) ] A s 2 } A p
+ i γ ps R A s t h R ( t t ) e i Ω ps ( t t ) A s * ( z , t ) A p ( z , t ) d t ,
A s z i m = 0 i m β ms m ! m A s t m = α ls 2 A s + i β s f A s + i { γ ss ( 0 ) A s 2 + [ γ sp e + γ sp ( 0 ) ] A p 2 } A s
+ i γ sp R A p t h R ( t t ) e i Ω sp ( t t ) A p * ( z , t ) A s ( z , t ) d t ,
g R ( ω u ) = 3 ω u g Ω R η uv 2 ε 0 c 2 n u n v Γ R ,
γ uv e = γ 1111 e ( ω u ; ω v , ω v , ω u ) ( 1 + ρ ) 2 .
A p z + β 1 p A p t = i β p f A p + i ( γ pp e A p 2 + 2 γ ps e A s 2 ) A p ,
A s z + β 1 s A s t = i β s f A s + i ( γ ss e A s 2 + 2 γ sp e A p 2 ) A s ,
P p z + β 1 p P p t = β Tpp P p 2 2 β Tps P s P p ,
P s z + β 1 s P s t = β Tss P s 2 2 β Tsp P s P p ,
β Tps ω p = β Tsp ω s ,
G ¯ = β Tpp A p 4 2 h ¯ ω p a ¯ pp 2 + β Tss A s 4 2 h ¯ ω s a ss 2 ¯ + 2 β Tps A p 2 A s 2 h ¯ ω p a ¯ ps 2 ,
Φ K z = 2 Re ( γ sp e ) A p 2 , Φ f z = n 0 s ω s cn s σ ns N ¯ .
Φ fm z = π n 0 s ω s σ ns β Tpp P 0 2 T 0 2 2 cn s h ¯ ω p a ¯ pp 2 .
r x Φ fm z Φ Km z = n 0 s ω s σ ns β Tpp p 4 2 cn s Re ( γ sp e ) h ¯ ω p a ¯ pp 2 π r c 2 2 ,
A p z = i β p A p α lp 2 A p + i β p f A p + i { γ pp ( 0 ) A p 2 + [ γ ps ( 0 ) + γ ps ( Ω ps ) ] A s 2 } A p ,
A s z = i β s A s α ls 2 A s + i β s f A s + i { γ ss ( 0 ) A s 2 + [ γ sp ( 0 ) + γ sp ( Ω sp ) ] A p 2 } A s .
P p z = ( α lp + α fp ) P p β Tpp P p 2 2 β Tps P s P p 2 γ ps R Im [ H ˜ R ( Ω ps ) ] P s P p ,
P s z = ( α ls + α fs ) P s β Tss P s 2 2 β Tsp P p P s 2 γ sp R Im [ H ˜ R ( Ω sp ) ] P p P s ,
α fs = n 0 s σ as β Tpp τ 0 P p 2 2 h ¯ ω p n s a ¯ pp 2 .
r a = n 0 s σ as β Tpp P p τ 0 a ¯ sp 4 h ¯ ω 0 n s β Tsp a ¯ pp 2 .
( g R 2 β Tsp ) P p a ¯ sp n 0 s σ as β Tpp τ 0 P p 2 2 h ¯ ω p n s a ¯ pp 2 α ls > 0 .
τ 0 < τ th h ¯ ω p n s a ¯ pp 2 ( g R 2 β Tsp ) 2 2 α ls σ as n 0 s β Tpp a ¯ sp 2 .
( g R 2 β Tsp ) a ¯ sp 0 L P p dz n 0 s σ as β Tpp τ 0 2 h ¯ ω p n s a ¯ pp 2 0 L P p 2 dz α ls L > 0 .
P th = ω p ω s n gp n gs V m 2 c 2 ( g R 2 β Tsp ) Q ep Q ts Q tp 2 τ th τ 0 [ 1 ( 1 τ 0 τ th ) 1 2 ] ,
P th = ω p ω s n gp n gs V m 4 c 2 ( g R 2 β Tsp ) Q ep Q ts Q tp 2 ,
P m = ω p ω s n gp n gs V m 2 c 2 ( g R 2 β Tsp ) Q ep Q ts Q tp 2 τ th τ 0 [ 1 + ( 1 τ 0 τ th ) 1 2 ] .
β R = g R P p Γ R Ω R a ¯ sp Ω R 2 Ω 2 ( Ω R 2 Ω 2 ) 2 + 4 Γ R 2 Ω 2 .
τ g = g R 2 Γ R a ¯ sp 0 L P p ( z ) dz .
A z = m = 0 i m + 1 β m m ! m A t m + i γ e A 2 A + i γ f A t e ( t t ) τ 0 A ( z , t ) 4 dt ,
γ f = β T 2 h ¯ ω 0 a ¯ 2 n 0 ( ω 0 ) n ( ω 0 ) [ ω 0 c σ n ( ω 0 ) + i 2 σ a ( ω 0 ) ] .
A p z i m = 0 i m β mp m ! m A p t m = i γ e A p ∣<