Abstract

We have studied the dispersion characteristics of single-mode channel plasmon polaritons (CPPs) with step-trench-type groove waveguides. From the numerical simulations using the finite-element method, the modal shapes and the complex propagation constants of the CPPs over a wide spectral range were obtained. It is shown that the dispersion characteristics of the step-trench-type CPP waveguide, which is composed of a step trench with a stacking nature, show an intermediate feature between the narrow and broad trenches. The results show that this configuration allows for a well-confined CPP with a moderate propagation loss at the wavelengths investigated.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Rather, Surface Plasmons (Springer-Verlag, Berlin, 1988).
  2. R. Zia, M. D. Selker, P. B. Catrysse, and M. Brongersma, "Geometries and materials for subwavelength surface plasmon modes," J. Opt. Soc. Am. A 21, 2442-2446 (2004).
    [CrossRef]
  3. W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature 424, 824-830 (2003).
    [CrossRef] [PubMed]
  4. S. Kim, H. Kim, Y. Lim, and B. Lee, "Off-axis directional beaming of optical field diffracted by a single subwavelength metal slit with asymmetric dielectric surface gratings," Appl. Phys. Lett. 90, 051113 (2007).
    [CrossRef]
  5. J. Takahara, S. Yamagishi, H. Taki, A. Morimoto, and T. Kobayashi, "Guiding of a one-dimensional optical beam with nanometer diameter," Opt. Lett. 22, 475-477 (1997).
    [CrossRef] [PubMed]
  6. P. Berini, "Plasmon-polariton modes guided by a metal film of finite width," Opt. Lett. 24, 1011-1013 (1999).
    [CrossRef]
  7. L. Liu, Z. Han, and S. He, "Novel surface plasmon waveguide for high integration," Opt. Express 13, 6645-6650 (2005).
    [CrossRef] [PubMed]
  8. I. V. Novikov and A. A. Maradudin, "Channel polaritons," Phys. Rev. B 66, 035403 (2002).
    [CrossRef]
  9. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, "Channel plasmon-polariton guiding by subwavelength metal grooves," Phys. Rev. Lett. 95, 046802 (2005).
    [CrossRef] [PubMed]
  10. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laulet, and T. W. Ebbesen, "Channel plasmon subwavelength waveguide components including interferometers and ring resonators," Nature 440, 508-511 (2006).
    [CrossRef] [PubMed]
  11. S. I. Bozhevolnyi, "Effective-index modeling of channel plasmon polaritons," Opt. Express 14, 9467-9476 (2006).
    [CrossRef] [PubMed]
  12. E. Moreno, F. J. Garcia-Vidal, S. G. Rodrigo, L. Martin-Moreno, and S. I. Bozhevolnyi, "Channel plasmon-polaritons: modal shape, dispersion, and losses," Opt. Lett. 31, 3447-3449 (2006).
    [CrossRef] [PubMed]
  13. G. Vernois and S. Fan, "Modes of subwavelength plasmonic slot waveguides," J. Lightwave Technol. 25, 2511-2521 (2007).
    [CrossRef]
  14. E. Feigenbaum and M. Orenstein, "Modeling of complementary (void) plasmon waveguiding," J. Lightwave Technol. 25, 2547-2562 (2007).
    [CrossRef]
  15. V. S. Volkov, S. I. Bozhevolnyi, E. Devaux, J.-Y. Laluet, and W. Ebbesen, "Wavelength selective nanophotonics components utilizing channel plasmon polaritons," Nano Lett. 7, 880-884 (2007).
    [CrossRef] [PubMed]
  16. http://www.comsol.com/>
  17. A. Vial, A.-S. Grimault, D. Macias, D. Barchiesi, and M. L. de la Chapelle, "Improved analytical fit of gold dispersion: Application to the modeling of extinction spectra with a finite-difference time-domain method," Phys. Rev. B 71, 085416 (2005).
    [CrossRef]
  18. S. H. Ko, I. Park, H. Pen, C. P. Gigoropoulos, A. P. Pisano, C. K. Luscombe, and J. M. Frechet, "Direct nanoimprinting of metal nanoparticles for nanoscale electronics fabrication," Nano Lett. 7, 1869-1877 (2007).
    [CrossRef] [PubMed]
  19. H. L. Chen, S. Y. Chuang, H. C. Cheng, C. H. Lin, and T. C. Chu, "Directly patterning metal films by nanoimprint lithography with low-temperature and low-pressure," Microelectron. Eng. 83, 893-896 (2006).
    [CrossRef]

2007 (5)

S. Kim, H. Kim, Y. Lim, and B. Lee, "Off-axis directional beaming of optical field diffracted by a single subwavelength metal slit with asymmetric dielectric surface gratings," Appl. Phys. Lett. 90, 051113 (2007).
[CrossRef]

G. Vernois and S. Fan, "Modes of subwavelength plasmonic slot waveguides," J. Lightwave Technol. 25, 2511-2521 (2007).
[CrossRef]

E. Feigenbaum and M. Orenstein, "Modeling of complementary (void) plasmon waveguiding," J. Lightwave Technol. 25, 2547-2562 (2007).
[CrossRef]

V. S. Volkov, S. I. Bozhevolnyi, E. Devaux, J.-Y. Laluet, and W. Ebbesen, "Wavelength selective nanophotonics components utilizing channel plasmon polaritons," Nano Lett. 7, 880-884 (2007).
[CrossRef] [PubMed]

S. H. Ko, I. Park, H. Pen, C. P. Gigoropoulos, A. P. Pisano, C. K. Luscombe, and J. M. Frechet, "Direct nanoimprinting of metal nanoparticles for nanoscale electronics fabrication," Nano Lett. 7, 1869-1877 (2007).
[CrossRef] [PubMed]

2006 (4)

H. L. Chen, S. Y. Chuang, H. C. Cheng, C. H. Lin, and T. C. Chu, "Directly patterning metal films by nanoimprint lithography with low-temperature and low-pressure," Microelectron. Eng. 83, 893-896 (2006).
[CrossRef]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laulet, and T. W. Ebbesen, "Channel plasmon subwavelength waveguide components including interferometers and ring resonators," Nature 440, 508-511 (2006).
[CrossRef] [PubMed]

S. I. Bozhevolnyi, "Effective-index modeling of channel plasmon polaritons," Opt. Express 14, 9467-9476 (2006).
[CrossRef] [PubMed]

E. Moreno, F. J. Garcia-Vidal, S. G. Rodrigo, L. Martin-Moreno, and S. I. Bozhevolnyi, "Channel plasmon-polaritons: modal shape, dispersion, and losses," Opt. Lett. 31, 3447-3449 (2006).
[CrossRef] [PubMed]

2005 (3)

A. Vial, A.-S. Grimault, D. Macias, D. Barchiesi, and M. L. de la Chapelle, "Improved analytical fit of gold dispersion: Application to the modeling of extinction spectra with a finite-difference time-domain method," Phys. Rev. B 71, 085416 (2005).
[CrossRef]

L. Liu, Z. Han, and S. He, "Novel surface plasmon waveguide for high integration," Opt. Express 13, 6645-6650 (2005).
[CrossRef] [PubMed]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, "Channel plasmon-polariton guiding by subwavelength metal grooves," Phys. Rev. Lett. 95, 046802 (2005).
[CrossRef] [PubMed]

2004 (1)

2003 (1)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature 424, 824-830 (2003).
[CrossRef] [PubMed]

2002 (1)

I. V. Novikov and A. A. Maradudin, "Channel polaritons," Phys. Rev. B 66, 035403 (2002).
[CrossRef]

1999 (1)

1997 (1)

Barchiesi, D.

A. Vial, A.-S. Grimault, D. Macias, D. Barchiesi, and M. L. de la Chapelle, "Improved analytical fit of gold dispersion: Application to the modeling of extinction spectra with a finite-difference time-domain method," Phys. Rev. B 71, 085416 (2005).
[CrossRef]

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature 424, 824-830 (2003).
[CrossRef] [PubMed]

Berini, P.

Bozhevolnyi, S. I.

V. S. Volkov, S. I. Bozhevolnyi, E. Devaux, J.-Y. Laluet, and W. Ebbesen, "Wavelength selective nanophotonics components utilizing channel plasmon polaritons," Nano Lett. 7, 880-884 (2007).
[CrossRef] [PubMed]

E. Moreno, F. J. Garcia-Vidal, S. G. Rodrigo, L. Martin-Moreno, and S. I. Bozhevolnyi, "Channel plasmon-polaritons: modal shape, dispersion, and losses," Opt. Lett. 31, 3447-3449 (2006).
[CrossRef] [PubMed]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laulet, and T. W. Ebbesen, "Channel plasmon subwavelength waveguide components including interferometers and ring resonators," Nature 440, 508-511 (2006).
[CrossRef] [PubMed]

S. I. Bozhevolnyi, "Effective-index modeling of channel plasmon polaritons," Opt. Express 14, 9467-9476 (2006).
[CrossRef] [PubMed]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, "Channel plasmon-polariton guiding by subwavelength metal grooves," Phys. Rev. Lett. 95, 046802 (2005).
[CrossRef] [PubMed]

Brongersma, M.

Catrysse, P. B.

Chen, H. L.

H. L. Chen, S. Y. Chuang, H. C. Cheng, C. H. Lin, and T. C. Chu, "Directly patterning metal films by nanoimprint lithography with low-temperature and low-pressure," Microelectron. Eng. 83, 893-896 (2006).
[CrossRef]

Cheng, H. C.

H. L. Chen, S. Y. Chuang, H. C. Cheng, C. H. Lin, and T. C. Chu, "Directly patterning metal films by nanoimprint lithography with low-temperature and low-pressure," Microelectron. Eng. 83, 893-896 (2006).
[CrossRef]

Chu, T. C.

H. L. Chen, S. Y. Chuang, H. C. Cheng, C. H. Lin, and T. C. Chu, "Directly patterning metal films by nanoimprint lithography with low-temperature and low-pressure," Microelectron. Eng. 83, 893-896 (2006).
[CrossRef]

Chuang, S. Y.

H. L. Chen, S. Y. Chuang, H. C. Cheng, C. H. Lin, and T. C. Chu, "Directly patterning metal films by nanoimprint lithography with low-temperature and low-pressure," Microelectron. Eng. 83, 893-896 (2006).
[CrossRef]

de la Chapelle, M. L.

A. Vial, A.-S. Grimault, D. Macias, D. Barchiesi, and M. L. de la Chapelle, "Improved analytical fit of gold dispersion: Application to the modeling of extinction spectra with a finite-difference time-domain method," Phys. Rev. B 71, 085416 (2005).
[CrossRef]

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature 424, 824-830 (2003).
[CrossRef] [PubMed]

Devaux, E.

V. S. Volkov, S. I. Bozhevolnyi, E. Devaux, J.-Y. Laluet, and W. Ebbesen, "Wavelength selective nanophotonics components utilizing channel plasmon polaritons," Nano Lett. 7, 880-884 (2007).
[CrossRef] [PubMed]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laulet, and T. W. Ebbesen, "Channel plasmon subwavelength waveguide components including interferometers and ring resonators," Nature 440, 508-511 (2006).
[CrossRef] [PubMed]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, "Channel plasmon-polariton guiding by subwavelength metal grooves," Phys. Rev. Lett. 95, 046802 (2005).
[CrossRef] [PubMed]

Ebbesen, T. W.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laulet, and T. W. Ebbesen, "Channel plasmon subwavelength waveguide components including interferometers and ring resonators," Nature 440, 508-511 (2006).
[CrossRef] [PubMed]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, "Channel plasmon-polariton guiding by subwavelength metal grooves," Phys. Rev. Lett. 95, 046802 (2005).
[CrossRef] [PubMed]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature 424, 824-830 (2003).
[CrossRef] [PubMed]

Ebbesen, W.

V. S. Volkov, S. I. Bozhevolnyi, E. Devaux, J.-Y. Laluet, and W. Ebbesen, "Wavelength selective nanophotonics components utilizing channel plasmon polaritons," Nano Lett. 7, 880-884 (2007).
[CrossRef] [PubMed]

Fan, S.

Feigenbaum, E.

Frechet, J. M.

S. H. Ko, I. Park, H. Pen, C. P. Gigoropoulos, A. P. Pisano, C. K. Luscombe, and J. M. Frechet, "Direct nanoimprinting of metal nanoparticles for nanoscale electronics fabrication," Nano Lett. 7, 1869-1877 (2007).
[CrossRef] [PubMed]

Garcia-Vidal, F. J.

Gigoropoulos, C. P.

S. H. Ko, I. Park, H. Pen, C. P. Gigoropoulos, A. P. Pisano, C. K. Luscombe, and J. M. Frechet, "Direct nanoimprinting of metal nanoparticles for nanoscale electronics fabrication," Nano Lett. 7, 1869-1877 (2007).
[CrossRef] [PubMed]

Grimault, A.-S.

A. Vial, A.-S. Grimault, D. Macias, D. Barchiesi, and M. L. de la Chapelle, "Improved analytical fit of gold dispersion: Application to the modeling of extinction spectra with a finite-difference time-domain method," Phys. Rev. B 71, 085416 (2005).
[CrossRef]

Han, Z.

He, S.

Kim, H.

S. Kim, H. Kim, Y. Lim, and B. Lee, "Off-axis directional beaming of optical field diffracted by a single subwavelength metal slit with asymmetric dielectric surface gratings," Appl. Phys. Lett. 90, 051113 (2007).
[CrossRef]

Kim, S.

S. Kim, H. Kim, Y. Lim, and B. Lee, "Off-axis directional beaming of optical field diffracted by a single subwavelength metal slit with asymmetric dielectric surface gratings," Appl. Phys. Lett. 90, 051113 (2007).
[CrossRef]

Ko, S. H.

S. H. Ko, I. Park, H. Pen, C. P. Gigoropoulos, A. P. Pisano, C. K. Luscombe, and J. M. Frechet, "Direct nanoimprinting of metal nanoparticles for nanoscale electronics fabrication," Nano Lett. 7, 1869-1877 (2007).
[CrossRef] [PubMed]

Kobayashi, T.

Laluet, J.-Y.

V. S. Volkov, S. I. Bozhevolnyi, E. Devaux, J.-Y. Laluet, and W. Ebbesen, "Wavelength selective nanophotonics components utilizing channel plasmon polaritons," Nano Lett. 7, 880-884 (2007).
[CrossRef] [PubMed]

Laulet, J.-Y.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laulet, and T. W. Ebbesen, "Channel plasmon subwavelength waveguide components including interferometers and ring resonators," Nature 440, 508-511 (2006).
[CrossRef] [PubMed]

Lee, B.

S. Kim, H. Kim, Y. Lim, and B. Lee, "Off-axis directional beaming of optical field diffracted by a single subwavelength metal slit with asymmetric dielectric surface gratings," Appl. Phys. Lett. 90, 051113 (2007).
[CrossRef]

Lim, Y.

S. Kim, H. Kim, Y. Lim, and B. Lee, "Off-axis directional beaming of optical field diffracted by a single subwavelength metal slit with asymmetric dielectric surface gratings," Appl. Phys. Lett. 90, 051113 (2007).
[CrossRef]

Lin, C. H.

H. L. Chen, S. Y. Chuang, H. C. Cheng, C. H. Lin, and T. C. Chu, "Directly patterning metal films by nanoimprint lithography with low-temperature and low-pressure," Microelectron. Eng. 83, 893-896 (2006).
[CrossRef]

Liu, L.

Luscombe, C. K.

S. H. Ko, I. Park, H. Pen, C. P. Gigoropoulos, A. P. Pisano, C. K. Luscombe, and J. M. Frechet, "Direct nanoimprinting of metal nanoparticles for nanoscale electronics fabrication," Nano Lett. 7, 1869-1877 (2007).
[CrossRef] [PubMed]

Macias, D.

A. Vial, A.-S. Grimault, D. Macias, D. Barchiesi, and M. L. de la Chapelle, "Improved analytical fit of gold dispersion: Application to the modeling of extinction spectra with a finite-difference time-domain method," Phys. Rev. B 71, 085416 (2005).
[CrossRef]

Maradudin, A. A.

I. V. Novikov and A. A. Maradudin, "Channel polaritons," Phys. Rev. B 66, 035403 (2002).
[CrossRef]

Martin-Moreno, L.

Moreno, E.

Morimoto, A.

Novikov, I. V.

I. V. Novikov and A. A. Maradudin, "Channel polaritons," Phys. Rev. B 66, 035403 (2002).
[CrossRef]

Orenstein, M.

Park, I.

S. H. Ko, I. Park, H. Pen, C. P. Gigoropoulos, A. P. Pisano, C. K. Luscombe, and J. M. Frechet, "Direct nanoimprinting of metal nanoparticles for nanoscale electronics fabrication," Nano Lett. 7, 1869-1877 (2007).
[CrossRef] [PubMed]

Pen, H.

S. H. Ko, I. Park, H. Pen, C. P. Gigoropoulos, A. P. Pisano, C. K. Luscombe, and J. M. Frechet, "Direct nanoimprinting of metal nanoparticles for nanoscale electronics fabrication," Nano Lett. 7, 1869-1877 (2007).
[CrossRef] [PubMed]

Pisano, A. P.

S. H. Ko, I. Park, H. Pen, C. P. Gigoropoulos, A. P. Pisano, C. K. Luscombe, and J. M. Frechet, "Direct nanoimprinting of metal nanoparticles for nanoscale electronics fabrication," Nano Lett. 7, 1869-1877 (2007).
[CrossRef] [PubMed]

Rodrigo, S. G.

Selker, M. D.

Takahara, J.

Taki, H.

Vernois, G.

Vial, A.

A. Vial, A.-S. Grimault, D. Macias, D. Barchiesi, and M. L. de la Chapelle, "Improved analytical fit of gold dispersion: Application to the modeling of extinction spectra with a finite-difference time-domain method," Phys. Rev. B 71, 085416 (2005).
[CrossRef]

Volkov, V. S.

V. S. Volkov, S. I. Bozhevolnyi, E. Devaux, J.-Y. Laluet, and W. Ebbesen, "Wavelength selective nanophotonics components utilizing channel plasmon polaritons," Nano Lett. 7, 880-884 (2007).
[CrossRef] [PubMed]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laulet, and T. W. Ebbesen, "Channel plasmon subwavelength waveguide components including interferometers and ring resonators," Nature 440, 508-511 (2006).
[CrossRef] [PubMed]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, "Channel plasmon-polariton guiding by subwavelength metal grooves," Phys. Rev. Lett. 95, 046802 (2005).
[CrossRef] [PubMed]

Yamagishi, S.

Zia, R.

Appl. Phys. Lett. (1)

S. Kim, H. Kim, Y. Lim, and B. Lee, "Off-axis directional beaming of optical field diffracted by a single subwavelength metal slit with asymmetric dielectric surface gratings," Appl. Phys. Lett. 90, 051113 (2007).
[CrossRef]

J. Lightwave Technol. (2)

J. Opt. Soc. Am. A (1)

Microelectron. Eng. (1)

H. L. Chen, S. Y. Chuang, H. C. Cheng, C. H. Lin, and T. C. Chu, "Directly patterning metal films by nanoimprint lithography with low-temperature and low-pressure," Microelectron. Eng. 83, 893-896 (2006).
[CrossRef]

Nano Lett. (2)

S. H. Ko, I. Park, H. Pen, C. P. Gigoropoulos, A. P. Pisano, C. K. Luscombe, and J. M. Frechet, "Direct nanoimprinting of metal nanoparticles for nanoscale electronics fabrication," Nano Lett. 7, 1869-1877 (2007).
[CrossRef] [PubMed]

V. S. Volkov, S. I. Bozhevolnyi, E. Devaux, J.-Y. Laluet, and W. Ebbesen, "Wavelength selective nanophotonics components utilizing channel plasmon polaritons," Nano Lett. 7, 880-884 (2007).
[CrossRef] [PubMed]

Nature (2)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature 424, 824-830 (2003).
[CrossRef] [PubMed]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laulet, and T. W. Ebbesen, "Channel plasmon subwavelength waveguide components including interferometers and ring resonators," Nature 440, 508-511 (2006).
[CrossRef] [PubMed]

Opt. Express (2)

Opt. Lett. (3)

Phys. Rev. B (2)

I. V. Novikov and A. A. Maradudin, "Channel polaritons," Phys. Rev. B 66, 035403 (2002).
[CrossRef]

A. Vial, A.-S. Grimault, D. Macias, D. Barchiesi, and M. L. de la Chapelle, "Improved analytical fit of gold dispersion: Application to the modeling of extinction spectra with a finite-difference time-domain method," Phys. Rev. B 71, 085416 (2005).
[CrossRef]

Phys. Rev. Lett. (1)

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, "Channel plasmon-polariton guiding by subwavelength metal grooves," Phys. Rev. Lett. 95, 046802 (2005).
[CrossRef] [PubMed]

Other (2)

H. Rather, Surface Plasmons (Springer-Verlag, Berlin, 1988).

http://www.comsol.com/>

Supplementary Material (4)

» Media 1: GIF (210 KB)     
» Media 2: GIF (218 KB)     
» Media 3: GIF (248 KB)     
» Media 4: GIF (236 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

The effective indices of the fundamental CPP modes in V-shaped, broad, and narrow trenches. The two upper insets show geometrical schematic drawings of the V-shaped (left) and trench (right) waveguides. The frequency-dependent propagation lengths for these configurations are depicted in the lower inset. The depth of all the geometries was set to the same value, d=1.2 µm. The top-most opening widths were: w=523 nm (V-shape), w 1=523 nm (trench), and w 2=120 nm (trench).

Fig. 2.
Fig. 2.

A schematic diagram of our proposed step-trench waveguide.

Fig. 3.
Fig. 3.

The dispersion characteristics of step-trench-type CPPs for different depths. The inset shows the results for the corresponding propagation lengths. The upper trench depth, d 1, was varied from 200 to 1000 nm (depicted as ‘Up 200 nm’-‘Up 1000 nm’). In all cases, the total depth was fixed at d=1.2 µm. The results for the conventional trenches shown in Fig. 1 are represented as black lines.

Fig. 4.
Fig. 4.

(Movie) Normalized modal energy distribution. The white curves denote the contour lines for -10 dB power drops from the peak power, and the thin gray lines denote the geometrical boundaries. In all cases, the top opening width and the total groove depth were fixed to have the same values of 523 and 1200 nm, respectively. For the step trenches, the depth of the upper trench was: (a) 600 and (b) 800 nm. The width of the narrow lower trench in (a) and (b) was 120 nm. The wavelength-dependent evolution of the modal energy distribution are shown in movies with a file size of: (a) 211, (b) 218, (c) 249 and (d) 237 KB [Media 1] [Media 2] [Media 3] [Media 4].

Fig. 5.
Fig. 5.

Numerical results of: (a) the wavelength-dependent lateral mode radius, and (b) the propagation length. The brown horizontal line in (a) depicts a distance of half the opening-width of the waveguide (261.5nm).

Fig. 6.
Fig. 6.

Figure-of-merit for several waveguide configurations.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

FOM = Propagation length Lateral mode radius = L r 3 dB .

Metrics