Abstract

We perform extensive simulations of light scattering by a granulated sphere in the size and refractive index range of human granulated leucocytes using the discrete dipole approximation. We calculate total and depolarized side scattering signals as a function of the size and refractive indices of cell and granules, and the granule volume fraction. Using typical parameters derived from the literature data on granulocyte morphology, we show that differences between experimentally measured signals of two granulocyte subtypes can be explained solely by the difference in their granule sizes. Moreover, the calculated depolarization ratio quantitatively agrees with experimental results. We also use the Rayleigh-Debye-Gans approximation and its second order extension to derive analytical expressions for side scattering signals. These expressions qualitatively describe the scaling of signals with varying model parameters obtained by rigorous simulations, and even lead to quantitative agreement in some cases. Finally, we show and discuss the dependence of extinction efficiency and asymmetry parameter on size and volume fraction of granules.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. I. Mishchenko, L. D. Travis, and A. A. Lacis, Scattering, Absorption, and Emission of Light by Small Particles, (Cambridge University Press, Cambridge, 2002).
  2. P. Chylek, G. Videen, D. J. W. Geldart, J. S. Dobbie, and H. C. W. Tso, "Effective medium approximations for heterogeneous particles," in Light Scattering by Nonspherical Particles, Theory, Measurements, and Applications, M. I. Mishchenko, J. W. Hovenier, and L. D. Travis, eds. (Academic Press, New York, 2000), pp. 273-308.
    [CrossRef]
  3. L. Kolokolova and B. A. S. Gustafson, "Scattering by inhomogeneous particles: microwave analog experiments and comparison to effective medium theories," J. Quantum Spectrosc. Radiat. Transfer 70, 611-625 (2001).
    [CrossRef]
  4. N. V. Voshchinnikov, V. B. Il'in, and T. Henning, "Modelling the optical properties of composite and porous interstellar grains," Astron. Astrophys. 429, 371-381 (2005).
    [CrossRef]
  5. M. I. Mishchenko, L. D. Travis, and A. A. Lacis, Multiple Scattering of Light by Particles: Radiative Transfer and Coherent Backscattering, (Cambridge University Press, Cambridge, 2006).
  6. Y. L. Xu and B. A. S. Gustafson, "Comparison between multisphere light-scattering calculations: Rigorous solution and discrete-dipole approximation," Astrophys. J. 513, 894-909 (1999).
    [CrossRef]
  7. D. W. Mackowski and M. I. Mishchenko, "Calculation of the T matrix and the scattering matrix for ensembles of spheres," J. Opt. Soc. Am. A 13, 2266-2278 (1996).
    [CrossRef]
  8. M. I. Mishchenko, L. Liu, D. W. Mackowski, B. Cairns, and G. Videen, "Multiple scattering by random particulate media: exact 3D results," Opt. Express 15, 2822-2836 (2007).
    [CrossRef] [PubMed]
  9. A. Taflove and S. C. Hagness, Advances in Computational Electrodynamics: the Finite-Difference Time-Domain Method, 3rd ed., (Artech House, Boston, 2005).
  10. M. A. Yurkin and A. G. Hoekstra, "The discrete dipole approximation: an overview and recent developments," J. Quantum. Spectrosc. Radiat. Transfer 106, 558-589 (2007).
    [CrossRef]
  11. K. Lumme and J. Rahola, "Light-scattering by porous dust particles in the discrete-dipole approximation," Astrophys. J. 425, 653-667 (1994).
    [CrossRef]
  12. A. K. Dunn, "Modelling of light scattering from inhomogeneous biological cells," in Optics of Biological Particles, A. G. Hoekstra, V. P. Maltsev, and G. Videen, eds. (Springer, London, 2006), pp. 19-29.
  13. Flow Cytometry and Sorting, 2nd ed., M. R. Melamed, T. Lindmo, and M. L. Mendelson, eds. (Wiley-Liss, New York, 1990).
  14. B. G. de Grooth, L. W. Terstappen, G. J. Puppels, and J. Greve, "Light-scattering polarization measurements as a new parameter in flow cytometry," Cytometry 8, 539-544 (1987).
    [CrossRef] [PubMed]
  15. S. Suzuki and N. Eguchi, "Leukocyte differential analysis in multiple laboratory species by a laser multi-angle polarized light scattering separation method," Exp. Anim. 48, 107-114 (1999).
    [CrossRef] [PubMed]
  16. M. Hedhammar, M. Stenvall, R. Lonneborg, O. Nord, O. Sjolin, H. Brismar, M. Uhlen, J. Ottosson, and S. Hober, "A novel flow cytometry-based method for analysis of expression levels in Escherichia coli, giving information about precipitated and soluble protein," J. Biotech. 119, 133-146 (2005).
    [CrossRef]
  17. F. Lavergne-Mazeau, A. Maftah, Y. Cenatiempo, and R. Julien, "Linear correlation between bacterial overexpression of recombinant peptides and cell light scatter," Appl. Environ. Microbiol. 62, 3042-3046 (1996).
    [PubMed]
  18. L. W. M. M. Terstappen, B. G. de Grooth, K. Visscher, F. A. van Kouterik, and J. Greve, "Four-parameter white blood cell differential counting based on light scattering measurements," Cytometry 9, 39-43 (1988).
    [CrossRef] [PubMed]
  19. S. Lavigne, M. Bosse, L. P. Boulet, and M. Laviolette, "Identification and analysis of eosinophils by flow cytometry using the depolarized side scatter-saponin method," Cytometry 29, 197-203 (1997).
    [CrossRef] [PubMed]
  20. S. L. Perkins, "Normal blood and bone marrow values in humans," in Wintrobe's Clinical Hematology, 11th ed., J. P. Greer, J. Foerster, and J. N. Lukens, eds., (Lippincott Williams & Wilkins Publishers, Baltimore, USA, 2003), pp. 2738-2741.
  21. K. M. Skubitz, "Neutrophilic leukocytes," in Wintrobe's Clinical Hematology, 11th ed., J. P. Greer, J. Foerster, and J. N. Lukens, eds. (Lippincott Williams & Wilkins Publishers, Baltimore, USA, 2003), pp. 267-310.
  22. P. Lacy, A. B. Becker, and R. Moqbel, "The human eosinophil," in Wintrobe's Clinical Hematology, 11th ed., J. P. Greer, J. Foerster, and J. N. Lukens, eds., (Lippincott Williams & Wilkins Publishers, Baltimore, USA, 2003), pp. 311-334.
  23. H. P. Ting-Beall, D. Needham, and R. M. Hochmuth, "Volume and osmotic properties of human neutrophils," Blood 81, 2774-2780 (1993).
    [PubMed]
  24. P. Brederoo, J. van der Meulen, and A. M. Mommaas-Kienhuis, "Development of the granule population in neutrophil granulocytes from human bone marrow," Cell Tissue Res. 234, 469-496 (1983).
    [CrossRef] [PubMed]
  25. L. W. Diggs, D. Sturm, and A. Bell, The Morphology of Human Blood Cells, 5th ed., (Abbott Laboratories, Abbott Park, IL 60064, 1985).
  26. G. J. Puppels, H. S. P. Garritsen, G. M. J. Segers-Nolten, F. F. M. de Mul, and J. Greve, "Raman microspectroscopic approach to the study of human granulocytes," Biophys. J. 60, 1046-1056 (1991).
    [CrossRef] [PubMed]
  27. S. A. Livesey, E. S. Buescher, G. L. Krannig, D. S. Harrison, J. G. Linner, and R. Chiovetti, "Human neutrophil granule heterogeneity: immunolocalization studies using cryofixed, dried and embedded specimens," Scanning Microsc. Suppl 3, 231-239 (1989).
    [PubMed]
  28. W. T. Daems, "On the fine structure of human neutrophilic leukocyte granules," J. Ultrastruct. Res. 24, 343-348 (1968).
    [CrossRef] [PubMed]
  29. O. W. Bjerrum, "Human neutrophil structure and function with special reference to cytochrome b559 and beta 2-microglobulin," Dan. Med. Bull. 40, 163-189 (1993).
    [PubMed]
  30. D. F. Bainton, "Neutrophilic leukocyte granules: from structure to function," Adv. Exp. Med. Biol. 336, 17-33 (1993).
    [PubMed]
  31. A. E. Zharinov, P. A. Tarasov, A. N. Shvalov, K. A. Semyanov, D. R. van Bockstaele, and V. P. Maltsev, "A study of light scattering of mononuclear blood cells with scanning flow cytometry," J. Quantum. Spectrosc. Radiat. Transfer 102, 121-128 (2006).
    [CrossRef]
  32. K. A. Semyanov, A. E. Zharinov, P. A. Tarasov, M. A. Yurkin, I. G. Skribunov, D. R. van Bockstaele, and V. P. Maltsev, "Optics of leucocytes," in Optics of Biological Particles, A. G. Hoekstra, V. P. Maltsev, and G. Videen, eds., (Springer, London, 2006), pp. 253-264.
  33. C. F. Bohren and D. R. Huffman, Absorption and scattering of Light by Small Particles, (Wiley, New York, 1983).
  34. M. A. Yurkin, V. P. Maltsev, and A. G. Hoekstra, "The discrete dipole approximation for simulation of light scattering by particles much larger than the wavelength," J. Quant. Spectrosc. Radiat. Transfer 106, 546-557 (2007).
    [CrossRef]
  35. "Amsterdam DDA," http://www.science.uva.nl/research/scs/Software/adda> (2007).
  36. "Description of the national compute cluster Lisa," http://www.sara.nl/userinfo/lisa/description/> (2005).
  37. N. W. Ashcroft and J. Lekner, "Structure and resistivity of liquid metals," Phys. Rev. 145, 83-90 (1966).
    [CrossRef]
  38. M. P. Allen and D. J. Tildesley, Computer Simulations of Liquids, (Oxford University Press, Oxford, 1989). 1. 39. V. V. Tuchin, L. V. Wang, and D. A. Zimnyakov, Optical Polarization in Biomedical Applications, (Springer, Berlin, 2006).

2007

M. I. Mishchenko, L. Liu, D. W. Mackowski, B. Cairns, and G. Videen, "Multiple scattering by random particulate media: exact 3D results," Opt. Express 15, 2822-2836 (2007).
[CrossRef] [PubMed]

M. A. Yurkin and A. G. Hoekstra, "The discrete dipole approximation: an overview and recent developments," J. Quantum. Spectrosc. Radiat. Transfer 106, 558-589 (2007).
[CrossRef]

M. A. Yurkin, V. P. Maltsev, and A. G. Hoekstra, "The discrete dipole approximation for simulation of light scattering by particles much larger than the wavelength," J. Quant. Spectrosc. Radiat. Transfer 106, 546-557 (2007).
[CrossRef]

2006

A. E. Zharinov, P. A. Tarasov, A. N. Shvalov, K. A. Semyanov, D. R. van Bockstaele, and V. P. Maltsev, "A study of light scattering of mononuclear blood cells with scanning flow cytometry," J. Quantum. Spectrosc. Radiat. Transfer 102, 121-128 (2006).
[CrossRef]

2005

N. V. Voshchinnikov, V. B. Il'in, and T. Henning, "Modelling the optical properties of composite and porous interstellar grains," Astron. Astrophys. 429, 371-381 (2005).
[CrossRef]

M. Hedhammar, M. Stenvall, R. Lonneborg, O. Nord, O. Sjolin, H. Brismar, M. Uhlen, J. Ottosson, and S. Hober, "A novel flow cytometry-based method for analysis of expression levels in Escherichia coli, giving information about precipitated and soluble protein," J. Biotech. 119, 133-146 (2005).
[CrossRef]

2001

L. Kolokolova and B. A. S. Gustafson, "Scattering by inhomogeneous particles: microwave analog experiments and comparison to effective medium theories," J. Quantum Spectrosc. Radiat. Transfer 70, 611-625 (2001).
[CrossRef]

1999

S. Suzuki and N. Eguchi, "Leukocyte differential analysis in multiple laboratory species by a laser multi-angle polarized light scattering separation method," Exp. Anim. 48, 107-114 (1999).
[CrossRef] [PubMed]

Y. L. Xu and B. A. S. Gustafson, "Comparison between multisphere light-scattering calculations: Rigorous solution and discrete-dipole approximation," Astrophys. J. 513, 894-909 (1999).
[CrossRef]

1997

S. Lavigne, M. Bosse, L. P. Boulet, and M. Laviolette, "Identification and analysis of eosinophils by flow cytometry using the depolarized side scatter-saponin method," Cytometry 29, 197-203 (1997).
[CrossRef] [PubMed]

1996

F. Lavergne-Mazeau, A. Maftah, Y. Cenatiempo, and R. Julien, "Linear correlation between bacterial overexpression of recombinant peptides and cell light scatter," Appl. Environ. Microbiol. 62, 3042-3046 (1996).
[PubMed]

D. W. Mackowski and M. I. Mishchenko, "Calculation of the T matrix and the scattering matrix for ensembles of spheres," J. Opt. Soc. Am. A 13, 2266-2278 (1996).
[CrossRef]

1994

K. Lumme and J. Rahola, "Light-scattering by porous dust particles in the discrete-dipole approximation," Astrophys. J. 425, 653-667 (1994).
[CrossRef]

1993

H. P. Ting-Beall, D. Needham, and R. M. Hochmuth, "Volume and osmotic properties of human neutrophils," Blood 81, 2774-2780 (1993).
[PubMed]

O. W. Bjerrum, "Human neutrophil structure and function with special reference to cytochrome b559 and beta 2-microglobulin," Dan. Med. Bull. 40, 163-189 (1993).
[PubMed]

D. F. Bainton, "Neutrophilic leukocyte granules: from structure to function," Adv. Exp. Med. Biol. 336, 17-33 (1993).
[PubMed]

1991

G. J. Puppels, H. S. P. Garritsen, G. M. J. Segers-Nolten, F. F. M. de Mul, and J. Greve, "Raman microspectroscopic approach to the study of human granulocytes," Biophys. J. 60, 1046-1056 (1991).
[CrossRef] [PubMed]

1989

S. A. Livesey, E. S. Buescher, G. L. Krannig, D. S. Harrison, J. G. Linner, and R. Chiovetti, "Human neutrophil granule heterogeneity: immunolocalization studies using cryofixed, dried and embedded specimens," Scanning Microsc. Suppl 3, 231-239 (1989).
[PubMed]

1988

L. W. M. M. Terstappen, B. G. de Grooth, K. Visscher, F. A. van Kouterik, and J. Greve, "Four-parameter white blood cell differential counting based on light scattering measurements," Cytometry 9, 39-43 (1988).
[CrossRef] [PubMed]

1987

B. G. de Grooth, L. W. Terstappen, G. J. Puppels, and J. Greve, "Light-scattering polarization measurements as a new parameter in flow cytometry," Cytometry 8, 539-544 (1987).
[CrossRef] [PubMed]

1983

P. Brederoo, J. van der Meulen, and A. M. Mommaas-Kienhuis, "Development of the granule population in neutrophil granulocytes from human bone marrow," Cell Tissue Res. 234, 469-496 (1983).
[CrossRef] [PubMed]

1968

W. T. Daems, "On the fine structure of human neutrophilic leukocyte granules," J. Ultrastruct. Res. 24, 343-348 (1968).
[CrossRef] [PubMed]

1966

N. W. Ashcroft and J. Lekner, "Structure and resistivity of liquid metals," Phys. Rev. 145, 83-90 (1966).
[CrossRef]

Ashcroft, N. W.

N. W. Ashcroft and J. Lekner, "Structure and resistivity of liquid metals," Phys. Rev. 145, 83-90 (1966).
[CrossRef]

Bainton, D. F.

D. F. Bainton, "Neutrophilic leukocyte granules: from structure to function," Adv. Exp. Med. Biol. 336, 17-33 (1993).
[PubMed]

Bjerrum, O. W.

O. W. Bjerrum, "Human neutrophil structure and function with special reference to cytochrome b559 and beta 2-microglobulin," Dan. Med. Bull. 40, 163-189 (1993).
[PubMed]

Bosse, M.

S. Lavigne, M. Bosse, L. P. Boulet, and M. Laviolette, "Identification and analysis of eosinophils by flow cytometry using the depolarized side scatter-saponin method," Cytometry 29, 197-203 (1997).
[CrossRef] [PubMed]

Boulet, L. P.

S. Lavigne, M. Bosse, L. P. Boulet, and M. Laviolette, "Identification and analysis of eosinophils by flow cytometry using the depolarized side scatter-saponin method," Cytometry 29, 197-203 (1997).
[CrossRef] [PubMed]

Brederoo, P.

P. Brederoo, J. van der Meulen, and A. M. Mommaas-Kienhuis, "Development of the granule population in neutrophil granulocytes from human bone marrow," Cell Tissue Res. 234, 469-496 (1983).
[CrossRef] [PubMed]

Brismar, H.

M. Hedhammar, M. Stenvall, R. Lonneborg, O. Nord, O. Sjolin, H. Brismar, M. Uhlen, J. Ottosson, and S. Hober, "A novel flow cytometry-based method for analysis of expression levels in Escherichia coli, giving information about precipitated and soluble protein," J. Biotech. 119, 133-146 (2005).
[CrossRef]

Buescher, E. S.

S. A. Livesey, E. S. Buescher, G. L. Krannig, D. S. Harrison, J. G. Linner, and R. Chiovetti, "Human neutrophil granule heterogeneity: immunolocalization studies using cryofixed, dried and embedded specimens," Scanning Microsc. Suppl 3, 231-239 (1989).
[PubMed]

Cairns, B.

Cenatiempo, Y.

F. Lavergne-Mazeau, A. Maftah, Y. Cenatiempo, and R. Julien, "Linear correlation between bacterial overexpression of recombinant peptides and cell light scatter," Appl. Environ. Microbiol. 62, 3042-3046 (1996).
[PubMed]

Chiovetti, R.

S. A. Livesey, E. S. Buescher, G. L. Krannig, D. S. Harrison, J. G. Linner, and R. Chiovetti, "Human neutrophil granule heterogeneity: immunolocalization studies using cryofixed, dried and embedded specimens," Scanning Microsc. Suppl 3, 231-239 (1989).
[PubMed]

Daems, W. T.

W. T. Daems, "On the fine structure of human neutrophilic leukocyte granules," J. Ultrastruct. Res. 24, 343-348 (1968).
[CrossRef] [PubMed]

de Grooth, B. G.

L. W. M. M. Terstappen, B. G. de Grooth, K. Visscher, F. A. van Kouterik, and J. Greve, "Four-parameter white blood cell differential counting based on light scattering measurements," Cytometry 9, 39-43 (1988).
[CrossRef] [PubMed]

B. G. de Grooth, L. W. Terstappen, G. J. Puppels, and J. Greve, "Light-scattering polarization measurements as a new parameter in flow cytometry," Cytometry 8, 539-544 (1987).
[CrossRef] [PubMed]

de Mul, F. F. M.

G. J. Puppels, H. S. P. Garritsen, G. M. J. Segers-Nolten, F. F. M. de Mul, and J. Greve, "Raman microspectroscopic approach to the study of human granulocytes," Biophys. J. 60, 1046-1056 (1991).
[CrossRef] [PubMed]

Eguchi, N.

S. Suzuki and N. Eguchi, "Leukocyte differential analysis in multiple laboratory species by a laser multi-angle polarized light scattering separation method," Exp. Anim. 48, 107-114 (1999).
[CrossRef] [PubMed]

Garritsen, H. S. P.

G. J. Puppels, H. S. P. Garritsen, G. M. J. Segers-Nolten, F. F. M. de Mul, and J. Greve, "Raman microspectroscopic approach to the study of human granulocytes," Biophys. J. 60, 1046-1056 (1991).
[CrossRef] [PubMed]

Greve, J.

G. J. Puppels, H. S. P. Garritsen, G. M. J. Segers-Nolten, F. F. M. de Mul, and J. Greve, "Raman microspectroscopic approach to the study of human granulocytes," Biophys. J. 60, 1046-1056 (1991).
[CrossRef] [PubMed]

L. W. M. M. Terstappen, B. G. de Grooth, K. Visscher, F. A. van Kouterik, and J. Greve, "Four-parameter white blood cell differential counting based on light scattering measurements," Cytometry 9, 39-43 (1988).
[CrossRef] [PubMed]

B. G. de Grooth, L. W. Terstappen, G. J. Puppels, and J. Greve, "Light-scattering polarization measurements as a new parameter in flow cytometry," Cytometry 8, 539-544 (1987).
[CrossRef] [PubMed]

Gustafson, B. A. S.

L. Kolokolova and B. A. S. Gustafson, "Scattering by inhomogeneous particles: microwave analog experiments and comparison to effective medium theories," J. Quantum Spectrosc. Radiat. Transfer 70, 611-625 (2001).
[CrossRef]

Y. L. Xu and B. A. S. Gustafson, "Comparison between multisphere light-scattering calculations: Rigorous solution and discrete-dipole approximation," Astrophys. J. 513, 894-909 (1999).
[CrossRef]

Harrison, D. S.

S. A. Livesey, E. S. Buescher, G. L. Krannig, D. S. Harrison, J. G. Linner, and R. Chiovetti, "Human neutrophil granule heterogeneity: immunolocalization studies using cryofixed, dried and embedded specimens," Scanning Microsc. Suppl 3, 231-239 (1989).
[PubMed]

Hedhammar, M.

M. Hedhammar, M. Stenvall, R. Lonneborg, O. Nord, O. Sjolin, H. Brismar, M. Uhlen, J. Ottosson, and S. Hober, "A novel flow cytometry-based method for analysis of expression levels in Escherichia coli, giving information about precipitated and soluble protein," J. Biotech. 119, 133-146 (2005).
[CrossRef]

Henning, T.

N. V. Voshchinnikov, V. B. Il'in, and T. Henning, "Modelling the optical properties of composite and porous interstellar grains," Astron. Astrophys. 429, 371-381 (2005).
[CrossRef]

Hober, S.

M. Hedhammar, M. Stenvall, R. Lonneborg, O. Nord, O. Sjolin, H. Brismar, M. Uhlen, J. Ottosson, and S. Hober, "A novel flow cytometry-based method for analysis of expression levels in Escherichia coli, giving information about precipitated and soluble protein," J. Biotech. 119, 133-146 (2005).
[CrossRef]

Hochmuth, R. M.

H. P. Ting-Beall, D. Needham, and R. M. Hochmuth, "Volume and osmotic properties of human neutrophils," Blood 81, 2774-2780 (1993).
[PubMed]

Hoekstra, A. G.

M. A. Yurkin and A. G. Hoekstra, "The discrete dipole approximation: an overview and recent developments," J. Quantum. Spectrosc. Radiat. Transfer 106, 558-589 (2007).
[CrossRef]

M. A. Yurkin, V. P. Maltsev, and A. G. Hoekstra, "The discrete dipole approximation for simulation of light scattering by particles much larger than the wavelength," J. Quant. Spectrosc. Radiat. Transfer 106, 546-557 (2007).
[CrossRef]

Il'in, V. B.

N. V. Voshchinnikov, V. B. Il'in, and T. Henning, "Modelling the optical properties of composite and porous interstellar grains," Astron. Astrophys. 429, 371-381 (2005).
[CrossRef]

Julien, R.

F. Lavergne-Mazeau, A. Maftah, Y. Cenatiempo, and R. Julien, "Linear correlation between bacterial overexpression of recombinant peptides and cell light scatter," Appl. Environ. Microbiol. 62, 3042-3046 (1996).
[PubMed]

Kolokolova, L.

L. Kolokolova and B. A. S. Gustafson, "Scattering by inhomogeneous particles: microwave analog experiments and comparison to effective medium theories," J. Quantum Spectrosc. Radiat. Transfer 70, 611-625 (2001).
[CrossRef]

Krannig, G. L.

S. A. Livesey, E. S. Buescher, G. L. Krannig, D. S. Harrison, J. G. Linner, and R. Chiovetti, "Human neutrophil granule heterogeneity: immunolocalization studies using cryofixed, dried and embedded specimens," Scanning Microsc. Suppl 3, 231-239 (1989).
[PubMed]

Lavergne-Mazeau, F.

F. Lavergne-Mazeau, A. Maftah, Y. Cenatiempo, and R. Julien, "Linear correlation between bacterial overexpression of recombinant peptides and cell light scatter," Appl. Environ. Microbiol. 62, 3042-3046 (1996).
[PubMed]

Lavigne, S.

S. Lavigne, M. Bosse, L. P. Boulet, and M. Laviolette, "Identification and analysis of eosinophils by flow cytometry using the depolarized side scatter-saponin method," Cytometry 29, 197-203 (1997).
[CrossRef] [PubMed]

Laviolette, M.

S. Lavigne, M. Bosse, L. P. Boulet, and M. Laviolette, "Identification and analysis of eosinophils by flow cytometry using the depolarized side scatter-saponin method," Cytometry 29, 197-203 (1997).
[CrossRef] [PubMed]

Lekner, J.

N. W. Ashcroft and J. Lekner, "Structure and resistivity of liquid metals," Phys. Rev. 145, 83-90 (1966).
[CrossRef]

Linner, J. G.

S. A. Livesey, E. S. Buescher, G. L. Krannig, D. S. Harrison, J. G. Linner, and R. Chiovetti, "Human neutrophil granule heterogeneity: immunolocalization studies using cryofixed, dried and embedded specimens," Scanning Microsc. Suppl 3, 231-239 (1989).
[PubMed]

Liu, L.

Livesey, S. A.

S. A. Livesey, E. S. Buescher, G. L. Krannig, D. S. Harrison, J. G. Linner, and R. Chiovetti, "Human neutrophil granule heterogeneity: immunolocalization studies using cryofixed, dried and embedded specimens," Scanning Microsc. Suppl 3, 231-239 (1989).
[PubMed]

Lonneborg, R.

M. Hedhammar, M. Stenvall, R. Lonneborg, O. Nord, O. Sjolin, H. Brismar, M. Uhlen, J. Ottosson, and S. Hober, "A novel flow cytometry-based method for analysis of expression levels in Escherichia coli, giving information about precipitated and soluble protein," J. Biotech. 119, 133-146 (2005).
[CrossRef]

Lumme, K.

K. Lumme and J. Rahola, "Light-scattering by porous dust particles in the discrete-dipole approximation," Astrophys. J. 425, 653-667 (1994).
[CrossRef]

Mackowski, D. W.

Maftah, A.

F. Lavergne-Mazeau, A. Maftah, Y. Cenatiempo, and R. Julien, "Linear correlation between bacterial overexpression of recombinant peptides and cell light scatter," Appl. Environ. Microbiol. 62, 3042-3046 (1996).
[PubMed]

Maltsev, V. P.

M. A. Yurkin, V. P. Maltsev, and A. G. Hoekstra, "The discrete dipole approximation for simulation of light scattering by particles much larger than the wavelength," J. Quant. Spectrosc. Radiat. Transfer 106, 546-557 (2007).
[CrossRef]

A. E. Zharinov, P. A. Tarasov, A. N. Shvalov, K. A. Semyanov, D. R. van Bockstaele, and V. P. Maltsev, "A study of light scattering of mononuclear blood cells with scanning flow cytometry," J. Quantum. Spectrosc. Radiat. Transfer 102, 121-128 (2006).
[CrossRef]

Mishchenko, M. I.

Mommaas-Kienhuis, A. M.

P. Brederoo, J. van der Meulen, and A. M. Mommaas-Kienhuis, "Development of the granule population in neutrophil granulocytes from human bone marrow," Cell Tissue Res. 234, 469-496 (1983).
[CrossRef] [PubMed]

Needham, D.

H. P. Ting-Beall, D. Needham, and R. M. Hochmuth, "Volume and osmotic properties of human neutrophils," Blood 81, 2774-2780 (1993).
[PubMed]

Nord, O.

M. Hedhammar, M. Stenvall, R. Lonneborg, O. Nord, O. Sjolin, H. Brismar, M. Uhlen, J. Ottosson, and S. Hober, "A novel flow cytometry-based method for analysis of expression levels in Escherichia coli, giving information about precipitated and soluble protein," J. Biotech. 119, 133-146 (2005).
[CrossRef]

Ottosson, J.

M. Hedhammar, M. Stenvall, R. Lonneborg, O. Nord, O. Sjolin, H. Brismar, M. Uhlen, J. Ottosson, and S. Hober, "A novel flow cytometry-based method for analysis of expression levels in Escherichia coli, giving information about precipitated and soluble protein," J. Biotech. 119, 133-146 (2005).
[CrossRef]

Puppels, G. J.

G. J. Puppels, H. S. P. Garritsen, G. M. J. Segers-Nolten, F. F. M. de Mul, and J. Greve, "Raman microspectroscopic approach to the study of human granulocytes," Biophys. J. 60, 1046-1056 (1991).
[CrossRef] [PubMed]

B. G. de Grooth, L. W. Terstappen, G. J. Puppels, and J. Greve, "Light-scattering polarization measurements as a new parameter in flow cytometry," Cytometry 8, 539-544 (1987).
[CrossRef] [PubMed]

Rahola, J.

K. Lumme and J. Rahola, "Light-scattering by porous dust particles in the discrete-dipole approximation," Astrophys. J. 425, 653-667 (1994).
[CrossRef]

Segers-Nolten, G. M. J.

G. J. Puppels, H. S. P. Garritsen, G. M. J. Segers-Nolten, F. F. M. de Mul, and J. Greve, "Raman microspectroscopic approach to the study of human granulocytes," Biophys. J. 60, 1046-1056 (1991).
[CrossRef] [PubMed]

Semyanov, K. A.

A. E. Zharinov, P. A. Tarasov, A. N. Shvalov, K. A. Semyanov, D. R. van Bockstaele, and V. P. Maltsev, "A study of light scattering of mononuclear blood cells with scanning flow cytometry," J. Quantum. Spectrosc. Radiat. Transfer 102, 121-128 (2006).
[CrossRef]

Shvalov, A. N.

A. E. Zharinov, P. A. Tarasov, A. N. Shvalov, K. A. Semyanov, D. R. van Bockstaele, and V. P. Maltsev, "A study of light scattering of mononuclear blood cells with scanning flow cytometry," J. Quantum. Spectrosc. Radiat. Transfer 102, 121-128 (2006).
[CrossRef]

Sjolin, O.

M. Hedhammar, M. Stenvall, R. Lonneborg, O. Nord, O. Sjolin, H. Brismar, M. Uhlen, J. Ottosson, and S. Hober, "A novel flow cytometry-based method for analysis of expression levels in Escherichia coli, giving information about precipitated and soluble protein," J. Biotech. 119, 133-146 (2005).
[CrossRef]

Stenvall, M.

M. Hedhammar, M. Stenvall, R. Lonneborg, O. Nord, O. Sjolin, H. Brismar, M. Uhlen, J. Ottosson, and S. Hober, "A novel flow cytometry-based method for analysis of expression levels in Escherichia coli, giving information about precipitated and soluble protein," J. Biotech. 119, 133-146 (2005).
[CrossRef]

Suzuki, S.

S. Suzuki and N. Eguchi, "Leukocyte differential analysis in multiple laboratory species by a laser multi-angle polarized light scattering separation method," Exp. Anim. 48, 107-114 (1999).
[CrossRef] [PubMed]

Tarasov, P. A.

A. E. Zharinov, P. A. Tarasov, A. N. Shvalov, K. A. Semyanov, D. R. van Bockstaele, and V. P. Maltsev, "A study of light scattering of mononuclear blood cells with scanning flow cytometry," J. Quantum. Spectrosc. Radiat. Transfer 102, 121-128 (2006).
[CrossRef]

Terstappen, L. W.

B. G. de Grooth, L. W. Terstappen, G. J. Puppels, and J. Greve, "Light-scattering polarization measurements as a new parameter in flow cytometry," Cytometry 8, 539-544 (1987).
[CrossRef] [PubMed]

Terstappen, L. W. M. M.

L. W. M. M. Terstappen, B. G. de Grooth, K. Visscher, F. A. van Kouterik, and J. Greve, "Four-parameter white blood cell differential counting based on light scattering measurements," Cytometry 9, 39-43 (1988).
[CrossRef] [PubMed]

Ting-Beall, H. P.

H. P. Ting-Beall, D. Needham, and R. M. Hochmuth, "Volume and osmotic properties of human neutrophils," Blood 81, 2774-2780 (1993).
[PubMed]

Uhlen, M.

M. Hedhammar, M. Stenvall, R. Lonneborg, O. Nord, O. Sjolin, H. Brismar, M. Uhlen, J. Ottosson, and S. Hober, "A novel flow cytometry-based method for analysis of expression levels in Escherichia coli, giving information about precipitated and soluble protein," J. Biotech. 119, 133-146 (2005).
[CrossRef]

van Bockstaele, D. R.

A. E. Zharinov, P. A. Tarasov, A. N. Shvalov, K. A. Semyanov, D. R. van Bockstaele, and V. P. Maltsev, "A study of light scattering of mononuclear blood cells with scanning flow cytometry," J. Quantum. Spectrosc. Radiat. Transfer 102, 121-128 (2006).
[CrossRef]

van der Meulen, J.

P. Brederoo, J. van der Meulen, and A. M. Mommaas-Kienhuis, "Development of the granule population in neutrophil granulocytes from human bone marrow," Cell Tissue Res. 234, 469-496 (1983).
[CrossRef] [PubMed]

van Kouterik, F. A.

L. W. M. M. Terstappen, B. G. de Grooth, K. Visscher, F. A. van Kouterik, and J. Greve, "Four-parameter white blood cell differential counting based on light scattering measurements," Cytometry 9, 39-43 (1988).
[CrossRef] [PubMed]

Videen, G.

Visscher, K.

L. W. M. M. Terstappen, B. G. de Grooth, K. Visscher, F. A. van Kouterik, and J. Greve, "Four-parameter white blood cell differential counting based on light scattering measurements," Cytometry 9, 39-43 (1988).
[CrossRef] [PubMed]

Voshchinnikov, N. V.

N. V. Voshchinnikov, V. B. Il'in, and T. Henning, "Modelling the optical properties of composite and porous interstellar grains," Astron. Astrophys. 429, 371-381 (2005).
[CrossRef]

Xu, Y. L.

Y. L. Xu and B. A. S. Gustafson, "Comparison between multisphere light-scattering calculations: Rigorous solution and discrete-dipole approximation," Astrophys. J. 513, 894-909 (1999).
[CrossRef]

Yurkin, M. A.

M. A. Yurkin and A. G. Hoekstra, "The discrete dipole approximation: an overview and recent developments," J. Quantum. Spectrosc. Radiat. Transfer 106, 558-589 (2007).
[CrossRef]

M. A. Yurkin, V. P. Maltsev, and A. G. Hoekstra, "The discrete dipole approximation for simulation of light scattering by particles much larger than the wavelength," J. Quant. Spectrosc. Radiat. Transfer 106, 546-557 (2007).
[CrossRef]

Zharinov, A. E.

A. E. Zharinov, P. A. Tarasov, A. N. Shvalov, K. A. Semyanov, D. R. van Bockstaele, and V. P. Maltsev, "A study of light scattering of mononuclear blood cells with scanning flow cytometry," J. Quantum. Spectrosc. Radiat. Transfer 102, 121-128 (2006).
[CrossRef]

Adv. Exp. Med. Biol.

D. F. Bainton, "Neutrophilic leukocyte granules: from structure to function," Adv. Exp. Med. Biol. 336, 17-33 (1993).
[PubMed]

Appl. Environ. Microbiol.

F. Lavergne-Mazeau, A. Maftah, Y. Cenatiempo, and R. Julien, "Linear correlation between bacterial overexpression of recombinant peptides and cell light scatter," Appl. Environ. Microbiol. 62, 3042-3046 (1996).
[PubMed]

Astron. Astrophys.

N. V. Voshchinnikov, V. B. Il'in, and T. Henning, "Modelling the optical properties of composite and porous interstellar grains," Astron. Astrophys. 429, 371-381 (2005).
[CrossRef]

Astrophys. J.

Y. L. Xu and B. A. S. Gustafson, "Comparison between multisphere light-scattering calculations: Rigorous solution and discrete-dipole approximation," Astrophys. J. 513, 894-909 (1999).
[CrossRef]

K. Lumme and J. Rahola, "Light-scattering by porous dust particles in the discrete-dipole approximation," Astrophys. J. 425, 653-667 (1994).
[CrossRef]

Biophys. J.

G. J. Puppels, H. S. P. Garritsen, G. M. J. Segers-Nolten, F. F. M. de Mul, and J. Greve, "Raman microspectroscopic approach to the study of human granulocytes," Biophys. J. 60, 1046-1056 (1991).
[CrossRef] [PubMed]

Blood

H. P. Ting-Beall, D. Needham, and R. M. Hochmuth, "Volume and osmotic properties of human neutrophils," Blood 81, 2774-2780 (1993).
[PubMed]

Cell Tissue Res.

P. Brederoo, J. van der Meulen, and A. M. Mommaas-Kienhuis, "Development of the granule population in neutrophil granulocytes from human bone marrow," Cell Tissue Res. 234, 469-496 (1983).
[CrossRef] [PubMed]

Cytometry

B. G. de Grooth, L. W. Terstappen, G. J. Puppels, and J. Greve, "Light-scattering polarization measurements as a new parameter in flow cytometry," Cytometry 8, 539-544 (1987).
[CrossRef] [PubMed]

L. W. M. M. Terstappen, B. G. de Grooth, K. Visscher, F. A. van Kouterik, and J. Greve, "Four-parameter white blood cell differential counting based on light scattering measurements," Cytometry 9, 39-43 (1988).
[CrossRef] [PubMed]

S. Lavigne, M. Bosse, L. P. Boulet, and M. Laviolette, "Identification and analysis of eosinophils by flow cytometry using the depolarized side scatter-saponin method," Cytometry 29, 197-203 (1997).
[CrossRef] [PubMed]

Dan. Med. Bull.

O. W. Bjerrum, "Human neutrophil structure and function with special reference to cytochrome b559 and beta 2-microglobulin," Dan. Med. Bull. 40, 163-189 (1993).
[PubMed]

Exp. Anim.

S. Suzuki and N. Eguchi, "Leukocyte differential analysis in multiple laboratory species by a laser multi-angle polarized light scattering separation method," Exp. Anim. 48, 107-114 (1999).
[CrossRef] [PubMed]

J. Biotech.

M. Hedhammar, M. Stenvall, R. Lonneborg, O. Nord, O. Sjolin, H. Brismar, M. Uhlen, J. Ottosson, and S. Hober, "A novel flow cytometry-based method for analysis of expression levels in Escherichia coli, giving information about precipitated and soluble protein," J. Biotech. 119, 133-146 (2005).
[CrossRef]

J. Opt. Soc. Am. A

J. Quant. Spectrosc. Radiat. Transfer

M. A. Yurkin, V. P. Maltsev, and A. G. Hoekstra, "The discrete dipole approximation for simulation of light scattering by particles much larger than the wavelength," J. Quant. Spectrosc. Radiat. Transfer 106, 546-557 (2007).
[CrossRef]

J. Quantum Spectrosc. Radiat. Transfer

L. Kolokolova and B. A. S. Gustafson, "Scattering by inhomogeneous particles: microwave analog experiments and comparison to effective medium theories," J. Quantum Spectrosc. Radiat. Transfer 70, 611-625 (2001).
[CrossRef]

J. Quantum. Spectrosc. Radiat. Transfer

M. A. Yurkin and A. G. Hoekstra, "The discrete dipole approximation: an overview and recent developments," J. Quantum. Spectrosc. Radiat. Transfer 106, 558-589 (2007).
[CrossRef]

A. E. Zharinov, P. A. Tarasov, A. N. Shvalov, K. A. Semyanov, D. R. van Bockstaele, and V. P. Maltsev, "A study of light scattering of mononuclear blood cells with scanning flow cytometry," J. Quantum. Spectrosc. Radiat. Transfer 102, 121-128 (2006).
[CrossRef]

J. Ultrastruct. Res.

W. T. Daems, "On the fine structure of human neutrophilic leukocyte granules," J. Ultrastruct. Res. 24, 343-348 (1968).
[CrossRef] [PubMed]

Opt. Express

Phys. Rev.

N. W. Ashcroft and J. Lekner, "Structure and resistivity of liquid metals," Phys. Rev. 145, 83-90 (1966).
[CrossRef]

Scanning Microsc. Suppl

S. A. Livesey, E. S. Buescher, G. L. Krannig, D. S. Harrison, J. G. Linner, and R. Chiovetti, "Human neutrophil granule heterogeneity: immunolocalization studies using cryofixed, dried and embedded specimens," Scanning Microsc. Suppl 3, 231-239 (1989).
[PubMed]

Other

L. W. Diggs, D. Sturm, and A. Bell, The Morphology of Human Blood Cells, 5th ed., (Abbott Laboratories, Abbott Park, IL 60064, 1985).

M. P. Allen and D. J. Tildesley, Computer Simulations of Liquids, (Oxford University Press, Oxford, 1989). 1. 39. V. V. Tuchin, L. V. Wang, and D. A. Zimnyakov, Optical Polarization in Biomedical Applications, (Springer, Berlin, 2006).

"Amsterdam DDA," http://www.science.uva.nl/research/scs/Software/adda> (2007).

"Description of the national compute cluster Lisa," http://www.sara.nl/userinfo/lisa/description/> (2005).

K. A. Semyanov, A. E. Zharinov, P. A. Tarasov, M. A. Yurkin, I. G. Skribunov, D. R. van Bockstaele, and V. P. Maltsev, "Optics of leucocytes," in Optics of Biological Particles, A. G. Hoekstra, V. P. Maltsev, and G. Videen, eds., (Springer, London, 2006), pp. 253-264.

C. F. Bohren and D. R. Huffman, Absorption and scattering of Light by Small Particles, (Wiley, New York, 1983).

A. Taflove and S. C. Hagness, Advances in Computational Electrodynamics: the Finite-Difference Time-Domain Method, 3rd ed., (Artech House, Boston, 2005).

M. I. Mishchenko, L. D. Travis, and A. A. Lacis, Multiple Scattering of Light by Particles: Radiative Transfer and Coherent Backscattering, (Cambridge University Press, Cambridge, 2006).

M. I. Mishchenko, L. D. Travis, and A. A. Lacis, Scattering, Absorption, and Emission of Light by Small Particles, (Cambridge University Press, Cambridge, 2002).

P. Chylek, G. Videen, D. J. W. Geldart, J. S. Dobbie, and H. C. W. Tso, "Effective medium approximations for heterogeneous particles," in Light Scattering by Nonspherical Particles, Theory, Measurements, and Applications, M. I. Mishchenko, J. W. Hovenier, and L. D. Travis, eds. (Academic Press, New York, 2000), pp. 273-308.
[CrossRef]

A. K. Dunn, "Modelling of light scattering from inhomogeneous biological cells," in Optics of Biological Particles, A. G. Hoekstra, V. P. Maltsev, and G. Videen, eds. (Springer, London, 2006), pp. 19-29.

Flow Cytometry and Sorting, 2nd ed., M. R. Melamed, T. Lindmo, and M. L. Mendelson, eds. (Wiley-Liss, New York, 1990).

S. L. Perkins, "Normal blood and bone marrow values in humans," in Wintrobe's Clinical Hematology, 11th ed., J. P. Greer, J. Foerster, and J. N. Lukens, eds., (Lippincott Williams & Wilkins Publishers, Baltimore, USA, 2003), pp. 2738-2741.

K. M. Skubitz, "Neutrophilic leukocytes," in Wintrobe's Clinical Hematology, 11th ed., J. P. Greer, J. Foerster, and J. N. Lukens, eds. (Lippincott Williams & Wilkins Publishers, Baltimore, USA, 2003), pp. 267-310.

P. Lacy, A. B. Becker, and R. Moqbel, "The human eosinophil," in Wintrobe's Clinical Hematology, 11th ed., J. P. Greer, J. Foerster, and J. N. Lukens, eds., (Lippincott Williams & Wilkins Publishers, Baltimore, USA, 2003), pp. 311-334.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

The granulated sphere model. All granules are identical and randomly positioned.

Fig. 2.
Fig. 2.

Depolarized versus total side scattering intensities for several granule diameters from 0 to 2 µm, indicated for some points by labels, for the default set of parameters (see text). Mean values ±2×SD are shown.

Fig. 3.
Fig. 3.

(a). Total and (b) depolarized side scattering intensity and (c) their ratio versus granule diameter for several volume fractions. Other parameters are set to default values (see text). Mean values ±2×SD are shown. Experimental results for mean values of D SS of neutrophils and eosinophils are shown in (c) for comparison.

Fig. 4.
Fig. 4.

Same as Fig. 2 but for several volume fractions. I and I SS are normalized by f 2 and f respectively to the case f=0.1.

Fig. 5.
Fig. 5.

Mean values of depolarization ratio versus granule diameter for several sizes of azimuthal angle aperture. Other parameters, including Δθ, are set to default values (see text). An inset shows the magnified region near the origin.

Fig. 6.
Fig. 6.

Same as Fig. 2 but for several cell diameters. I and I SS values are normalized by D 4 c and D 3 c respectively to the case D c=8 µm.

Fig. 7.
Fig. 7.

Same as Fig. 2 but for several m g with m c=1.015 and for m g=1.2, m c=1. I and I SS are normalized by |m g-m c|4 and |m g-m c|2 respectively to the case m g=1.2, m c=1.015.

Fig. 8.
Fig. 8.

Same as Fig. 3 but for (a) extinction efficiency and (b) asymmetry parameter.

Fig. 9.
Fig. 9.

Comparison of DDA results (mean ±2×SD) and mean values obtained (a) by the RDG for total- and (b) by second-order Born approximation for depolarized side scattering intensity. Typical parameters were used (described in the text) and for RDG - several values of f. Axes corresponding to both x g and d g are shown for convenience.

Equations (65)

Equations on this page are rendered with MathJax. Learn more.

E sca = ( S 4 cos φ + S 1 sin φ ) e i kr i k r , E sca = ( S 2 cos φ + S 3 sin φ ) e i kr i k r .
e 1 = ( e y × n ) e y × n , e 2 = n × e 1 ,
{ e , e , n } R η 1 ( n ) { e 1 , e 2 , n } lens { e 1 , e 3 , e y } R η 2 ( e y ) { e z , e x , e y } ,
E z det = E sca cos η + E sca sin η , E x det = E sca sin η + E sca cos η .
tan η 1 = e y e y = sec θ cot φ , tan η 2 = n z n x = sec φ cot θ ,
cos η = cos θ cos φ 1 + sin θ sin φ , sin η = sin θ + sin φ 1 + sin θ sin φ .
J SS = E x det 2 + E z det 2 , J = E z det 2 .
J SS ( θ , φ ) = 1 k 2 r 2 [ S 11 + S 12 cos ( 2 φ ) + S 13 sin ( 2 φ ) ] ,
J ( θ , φ ) = 1 2 k 2 r 2 { S 11 S 21 cos ( 2 η ) + S 31 sin ( 2 η ) }
+ [ S 12 S 22 cos ( 2 η ) + S 32 sin ( 2 η ) ] cos ( 2 φ ) + [ S 13 S 23 cos ( 2 η ) + S 33 sin ( 2 η ) ] sin ( 2 φ ) } .
I SS , = κ apert . d φ d θ r 2 sin θ J SS , ( θ , φ ) .
Δ θ , Δ φ 0 I SS S 11 S 12 , I S 11 + S 21 S 12 S 22 ,
S 1 ( n ) = i k 3 2 π i = 0 N ( m i 1 ) V i h ( V i , n ) , S 2 ( n ) = S 1 ( n ) cos θ ,
h ( V , n ) = 1 V V d 3 r exp ( i r · q ) ,
h s ( x , θ ) = g s ( u ) = 3 u 3 ( sin u u cos u ) , u = q r = 2 x sin θ 2 ,
g s ( u ) = { 1 + O ( u 2 ) , u < 1 ; 3 u 2 cos u + O ( u 3 ) , u > 1 .
S 1 ( n ) = i k 3 2 π [ ( m c 1 ) V c h s ( x c , θ ) + ( m g m c ) V g h s ( x g , θ ) ξ ( N ) ] ,
ξ ( N ) = i = 1 N exp ( i r i · q ) .
< ξ ( N ) > = N h s ( x c x g , θ ) .
< ξ ( N ) 2 > = i , j = 1 N < exp ( i ( r i r j ) · q ) > = N + N ( N 1 ) < exp ( i ( r i r j ) · q ) > i j ,
< ξ ( N ) 2 > = N + N ( N 1 ) h s 2 ( x c x g , θ ) ,
S 1 ( θ ) 2 = ( 2 3 x c 3 ) 2 ( ( m c 1 ) h s ( x c , θ ) + f ( m g m c ) h s ( x g , θ ) h s ( x c x g , θ ) 2
+ f ( m g m c ) h s ( x g , θ ) 2 [ 1 h s 2 ( x c x g , θ ) ] N ) .
S 1 ( θ ) 2 = 2 3 x c 3 ( m e 1 ) h s ( x c , θ ) 2 , m e = f m g + ( 1 f ) m c ,
< ξ ( N ) > = 0 , < ξ ( N ) 2 > = N S f ( q ) ;
1 S f ( q ) = 1 g f ( v ) = 1 + 24 f v 3 { a f ( sin v v cos v ) + b f [ ( 2 v 2 1 ) v cos v + 2 sin v 2 v ]
+ f a f 2 [ 24 v 3 + 4 ( 1 6 v 2 ) sin v ( 1 12 v 2 + 24 v 4 ) v cos v ] } ,
v = q d g = 4 x g sin ( θ 2 ) , a f = ( 1 + 2 f ) 2 ( 1 f ) 4 , b f = 3 2 f ( 2 + f ) 2 ( 1 f ) 4 .
S 1 ( θ ) 2 = 2 3 x c 3 f ( m g m c ) h s ( x g , θ ) 2 S f ( q ) N .
I SS = 1 4 Δ θ Δ φ π 2 Δ θ π 2 + Δ θ π 2 Δ φ π 2 + Δ φ d φ d θ ( S 11 + S 12 cos 2 φ + S 13 sin 2 φ )
= 1 8 Δ θ Δ φ π 2 Δ θ π 2 + Δ θ π 2 Δ φ π 2 + Δ φ d φ d θ S 1 ( n ) 2 ( ( 1 + cos 2 θ ) + ( cos 2 θ 1 ) cos 2 φ ) ,
I SS = 1 4 Δ θ π 2 Δ θ π 2 + Δ θ d θ ( ( 1 + cos 2 θ ) + ( 1 cos 2 θ ) sin 2 Δ φ 2 Δ φ ) S 1 ( θ ) 2 .
I SS = 4 9 x c 3 f m g m c 2 h SS ( x g , f ) ,
h SS ( x , f ) = x 3 4 Δ θ π 2 Δ θ π 2 + Δ θ d θ ( ( 1 + cos 2 θ ) + ( 1 cos 2 θ ) sin 2 Δ φ 2 Δ φ ) h s 2 ( x , θ ) S f ( q ) .
g f ( v ) = { ( 1 v ) 4 ( 1 + 2 v ) 2 + O ( v 2 ) , v < 1 ; 1 + O ( v 2 ) , v > 1 ,
h SS ( x , f ) = { C 1 ap ( 1 f ) 4 ( 1 + 2 f ) 2 x 3 + O ( x 5 ) , x < 1 ; C 2 ap ( x ) x 1 + O ( x 2 ) , x > 1 ,
E ( r ) = E ( 0 ) ( r ) + E ( 1 ) ( r ) , E ( 0 ) ( r ) = E inc ( r ) ,
E 1 ( r ) = V c V 0 d 3 r ' G ¯ ( r , r ' ) χ ( r ' ) E ( 0 ) ( r ' ) 4 π 3 χ ( r ) E ( 0 ) ( r ) ,
G ¯ ( r , r ' ) = exp ( i k R ) R [ k 2 ( I ¯ R ̂ R ̂ R 2 ) 1 i k R R 2 ( I ¯ 3 R ̂ R ̂ R 2 ) ] ,
F ( n ) = i k 3 ( I ¯ n ̂ n ̂ ) V c d 3 r ' exp ( i k r ' · n ) χ ( r ' ) E ( r ' ) .
I ( 0 ) = S 3 ( e y ) 2 ,
E inc ( r ) = e x exp ( i k r z ) .
S 3 ( e y ) = i k 3 V c V 0 V c d 3 r ' d 3 r exp ( i k ( r z r y ' ) ) χ ( r ' ) χ ( r ) G zx ( r , r ' ) .
S 3 ( e y ) = i k 3 4 π 2 ( m g m c ) 2 i , j = 1 i j N V i V j d 3 r ' d 3 r exp ( i k ( r z r y ' ) ) G zx ( r , r ' ) .
I ( 0 ) = k 6 16 π 4 m g m c 4 i , j = 1 i j N i ' , j ' = 1 i ' j ' N V g V g V g V g d 3 r " ' d 3 r " d 3 r exp ( i k ( r z r z " + r y " ' r y ' ) ) ×
× G z x ( r , R ij + r ' ) G zx * ( r " , R i ' j ' + r " ' ) exp ( i k ( R i , z R i ' , z + R j ' , y R j , y ) ) ,
I ( 0 ) = k 6 16 π 4 m g m c 4 N 2 H ( R ij ) 2 [ 1 + exp ( ik ( e z + e y ) · R ij ) ] i j ,
H ( R ) = V g V g d 3 r ' d 3 r exp ( i k ( r z r y ' ) ) G zx ( r , R + r ' ) ,
H ( R ) = G zx ( R ) V g V g d 3 r ' d 3 r exp ( i k [ r z r y ' + ( r ' r ) · n ] )
= V g 2 G zx ( R ) g s ( x g n e z ) g s ( x g n e y ) ,
G zx ( R ) 2 = n z 2 n x 2 h G ( R ) , h G ( R ) = 9 + 3 ( k R ) 2 + ( k R ) 4 R 6 ,
I ( 0 ) = k 6 16 π 4 m g m c 4 N 2 V g 4 d R P ( R ) h G ( R ) h Ω ( x g , R ) ,
h Ω ( x , R ) = 1 4 π d 2 n n z 2 n x 2 [ 1 + cos ( k R ( n z + n y ) ) ] g s 2 ( x n e z ) g s 2 ( x n e y ) .
P ( R ) = 6 D c 5 R 2 ( D c R ) 2 ( 2 D c + R ) ,
P ( R ) = 24 R 2 D c 3 ( 1 + d g 3 12 π f 0 d q [ S f ( q ) 1 ] q 2 sin ( q R ) q R ) .
P ( R ) = { 24 R 2 D c 3 ( 1 + f ( 2 d g R ) 2 ( 4 d g + R ) 2 d g 3 ) , d g R 2 d g ; 6 D c 5 R 2 ( D c R ) 2 ( 2 D c + R ) , R > 2 d g .
h Ω ( x , ) = { 1 15 ( 1 4 5 x 2 + O ( x 4 ) ) , x < 1 ; O ( x 8 ln x ) , x > 1 ,
h Ω ( x , R ) 2 h Ω ( x , ) .
d R P ( R ) k 4 R 2 h Ω ( x g , R ) = 18 k 3 x c h Ω ( x g , ) D c 3 .
h Ω ( x g , R ) = 2 15 ( 1 4 5 x g 2 1 7 ( k R ) 2 + O ( x g 4 ) ) .
d R P ( R ) 9 + 3 ( k R ) 2 R 6 h Ω ( x g , R )
= 6 k 3 5 D c 3 x g 3 [ 1 + f 4 ( 1 + 6 ln 2 ) + x g 2 35 ( 52 + f ( 373 522 ln 2 ) ) + O ( x g 4 , f 2 ) ] .
I ( 0 ) = 4 135 m g m c 4 f 2 x c 3 x g 3 [ C ( x g , f ) + x g 3 x c h Ω ( x , ) ] ,
C ( x , f ) = { 1 + f 4 ( 1 + 6 ln 2 ) + x 2 35 ( 52 + f ( 373 522 ln 2 ) ) , x < 1 ; 0 , x 1 .
D SS ( x g ) = f m g m c 2 × { C D + O ( f ) + O ( x c x g 3 ) , x g 1 ; x c O ( x g 1 ln x g ) , x g 1 ,

Metrics