Abstract

Periodically corrugated chains of gold nanoblocks, fabricated with high precision by electron-beam lithography and lift-off techniques, were found to exhibit optical signatures of particle plasmon states in which relative contribution of longitudinal multipolar plasmons is significantly lower than that in equivalent rectangular gold nanorods. Plasmonic response of periodic chains is dominated by dipolar plasmon modes, which in the absence of multipolar exciations are seen as background-free and spectrally well-resolved extinction peaks at infrared (IR) wavelengths. This observation may help improve spectral parameters of IR plasmonic sub-wavelength antennae. Comparative studies of plasmon damping and dephasing in corrugated chains of nanoblocks and smooth rectangular nanorods are also presented.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Hutter and J. Fendler, "Exploitation of localized surface plasmon resonance," Adv. Materials 16, 1685-1706 (2004).
    [CrossRef]
  2. M. L. Brongersma, J. W. Hartman, and H. A. Atwater, "Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit," Phys. Rev. B 62, R16356-R16359 (2000).
    [CrossRef]
  3. P. MElschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D.W. Pohl, "Resonant optical antennas." Science 308, 1607-9 (2005). URL http://dx.doi.org/10.1126/science.1111886>.
    [CrossRef]
  4. M. I. Stockman, "Nanofocusing of optical energy in tapered plasmonic waveguides." Phys. Rev. Lett. 93, 137404 (2004).
    [CrossRef] [PubMed]
  5. K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, "Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS)," Phys. Rev. Lett. 78, 1667-1670 (1997).
    [CrossRef]
  6. C. Anceau, S. Brasselet, J. Zyss, and P. Gadenne, "Local second-harmonic generation eto the erefore, nhancement on gold nanostructures probed by two-photon microscopy." Opt. Lett. 28, 713-5 (2003).
    [CrossRef] [PubMed]
  7. T. Kalkbrenner, M. Ramstein, J. Mlynek, and V. Sandoghdar, "A single gold particle as a probe for apertureless scanning near-field optical microscopy." J. Microsc. 202, 72-6 (2001).
    [CrossRef] [PubMed]
  8. A. Bouhelier, J. Renger, M. R. Beversluis, and L. Novotny, "Plasmon-coupled tip-enhanced near-field optical microscopy." J. Microsc. 210, 220-4 (2003).
    [CrossRef] [PubMed]
  9. K. Ueno, S. Juodkazis, V. Mizeikis, K. Sasaki, and H. Misawa, "Clusters of closely-spaced gold nanoparticles as a source of two-photon photoluminescence at visible wavelengths," Accepted to Adv. Mater. (2007).
  10. N. Nath and A. Chilkoti, "Label-free biosensing by surface plasmon resonance of nanoparticles on glass: optimization of nanoparticle size." Anal. Chem. 76, 5370-8 (2004). URL http://dx.doi.org/10.1021/ac049741z>.
    [CrossRef] [PubMed]
  11. C. Sönnichsen and A. P. Alivisatos, "Gold nanorods as novel nonbleaching plasmon-based orientation sensors for polarized single-particle microscopy." Nano Lett. 5, 301-4 (2005). URL http://dx.doi.org/10.1021/nl048089k>.
    [CrossRef] [PubMed]
  12. K. Ueno, S. Juodkazis, M. Mino, V. Mizeikis, and H. Misawa, "Spectral sensitivity of uniform arrays of gold nanorods to dielectric environment," J. Phys. Chem. C 111, 4180-4184 (2007).
    [CrossRef]
  13. T. S. Hartwick, D. T. Hodges, D. H. Barker, and F. B. Foote, "Far infrared imagery," Appl. Opt. 15, 1919-1922 (1976).
    [CrossRef] [PubMed]
  14. B. B. Hu and M. C. Nuss, "Imaging with terahertz waves," Opt. Lett. 20, 1716-1718 (1995).
    [CrossRef] [PubMed]
  15. J. R. Krenn, G. Schider, W. Rechberger, B. Lamprecht, A. Leitner, F. R. Aussenegg, and J. C. Weeber, "Design of multipolar plasmon excitations in silver nanoparticles," Appl. Phys. Lett. 77, 3379-3381 (2000).
    [CrossRef]
  16. G. Schider, J. R. Krenn, A. Hohenau, H. Ditlbacher, A. Leitner, F. R. Aussenegg, W. L. Schaich, I. Puscasu, B. Monacelli, and G. Boreman, "Plasmon dispersion relation of Au and Agnanowires," Phys. Rev. B 68, 155427 (2003).
    [CrossRef]
  17. K. Ueno, V. Mizeikis, S. Juodkazis, K. Sasaki, and H. Misawa, "Optical properties of nano-engineered gold blocks," Opt. Lett. 30, 2158 - 2160 (2005).
    [CrossRef] [PubMed]
  18. K. Ueno, S. Juodkazis, V. Mizeikis, K. Sasaki, and H. Misawa, "Spectrally-resolved atomicscale length variations of gold nanorods." J. Am. Chem. Soc. 128, 14226-14227 (2006). URL http://dx.doi.org/10.1021/ja0645786>.
    [CrossRef] [PubMed]
  19. C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, "Drastic reduction of plasmon damping in gold nanorods," Phys. Rev. Lett. 88, 77402 (2002).
    [CrossRef]
  20. A. Wokaun, J. P. Gordon, and P. F. Liao, "Radiation Damping in Surface-Enhanced Raman Scattering," Phys. Rev. Lett. 48, 957-960 (1982).
    [CrossRef]
  21. K. ImuraT. Nagahara, and H. Okamoto, "Near-field optical imaging of plasmon modes in gold nanorods," J. Chem. Phys. 122, 154701 (2005).
    [CrossRef] [PubMed]
  22. H. J. Huang, C. ping Yu, H. C. Chang, K. P. Chiu, H. M. Chen, R. S. Liu, and D. P. Tsai, "Plasmonic optical properties of a single gold nano-rod," Opt. Express 15, 7132-7139 (2007).
    [CrossRef]
  23. P. Johnson and R. Christy, "Optical constants of noble metals," Phys. Rev. B 6, 4730-4739 (1972).
    [CrossRef]
  24. S. Enoch, R. Quidant, and G. Badenes, "Optical sensing based on plasmon coupling in nanoparticle arrays," Opt. Express 12, 3422-3427 (2004).
    [CrossRef]

2007 (2)

K. Ueno, S. Juodkazis, M. Mino, V. Mizeikis, and H. Misawa, "Spectral sensitivity of uniform arrays of gold nanorods to dielectric environment," J. Phys. Chem. C 111, 4180-4184 (2007).
[CrossRef]

H. J. Huang, C. ping Yu, H. C. Chang, K. P. Chiu, H. M. Chen, R. S. Liu, and D. P. Tsai, "Plasmonic optical properties of a single gold nano-rod," Opt. Express 15, 7132-7139 (2007).
[CrossRef]

2005 (2)

K. Ueno, V. Mizeikis, S. Juodkazis, K. Sasaki, and H. Misawa, "Optical properties of nano-engineered gold blocks," Opt. Lett. 30, 2158 - 2160 (2005).
[CrossRef] [PubMed]

K. ImuraT. Nagahara, and H. Okamoto, "Near-field optical imaging of plasmon modes in gold nanorods," J. Chem. Phys. 122, 154701 (2005).
[CrossRef] [PubMed]

2004 (3)

S. Enoch, R. Quidant, and G. Badenes, "Optical sensing based on plasmon coupling in nanoparticle arrays," Opt. Express 12, 3422-3427 (2004).
[CrossRef]

E. Hutter and J. Fendler, "Exploitation of localized surface plasmon resonance," Adv. Materials 16, 1685-1706 (2004).
[CrossRef]

M. I. Stockman, "Nanofocusing of optical energy in tapered plasmonic waveguides." Phys. Rev. Lett. 93, 137404 (2004).
[CrossRef] [PubMed]

2003 (3)

A. Bouhelier, J. Renger, M. R. Beversluis, and L. Novotny, "Plasmon-coupled tip-enhanced near-field optical microscopy." J. Microsc. 210, 220-4 (2003).
[CrossRef] [PubMed]

C. Anceau, S. Brasselet, J. Zyss, and P. Gadenne, "Local second-harmonic generation eto the erefore, nhancement on gold nanostructures probed by two-photon microscopy." Opt. Lett. 28, 713-5 (2003).
[CrossRef] [PubMed]

G. Schider, J. R. Krenn, A. Hohenau, H. Ditlbacher, A. Leitner, F. R. Aussenegg, W. L. Schaich, I. Puscasu, B. Monacelli, and G. Boreman, "Plasmon dispersion relation of Au and Agnanowires," Phys. Rev. B 68, 155427 (2003).
[CrossRef]

2002 (1)

C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, "Drastic reduction of plasmon damping in gold nanorods," Phys. Rev. Lett. 88, 77402 (2002).
[CrossRef]

2001 (1)

T. Kalkbrenner, M. Ramstein, J. Mlynek, and V. Sandoghdar, "A single gold particle as a probe for apertureless scanning near-field optical microscopy." J. Microsc. 202, 72-6 (2001).
[CrossRef] [PubMed]

2000 (2)

M. L. Brongersma, J. W. Hartman, and H. A. Atwater, "Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit," Phys. Rev. B 62, R16356-R16359 (2000).
[CrossRef]

J. R. Krenn, G. Schider, W. Rechberger, B. Lamprecht, A. Leitner, F. R. Aussenegg, and J. C. Weeber, "Design of multipolar plasmon excitations in silver nanoparticles," Appl. Phys. Lett. 77, 3379-3381 (2000).
[CrossRef]

1997 (1)

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, "Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS)," Phys. Rev. Lett. 78, 1667-1670 (1997).
[CrossRef]

1995 (1)

1982 (1)

A. Wokaun, J. P. Gordon, and P. F. Liao, "Radiation Damping in Surface-Enhanced Raman Scattering," Phys. Rev. Lett. 48, 957-960 (1982).
[CrossRef]

1976 (1)

1972 (1)

P. Johnson and R. Christy, "Optical constants of noble metals," Phys. Rev. B 6, 4730-4739 (1972).
[CrossRef]

Anceau, C.

Atwater, H. A.

M. L. Brongersma, J. W. Hartman, and H. A. Atwater, "Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit," Phys. Rev. B 62, R16356-R16359 (2000).
[CrossRef]

Aussenegg, F. R.

G. Schider, J. R. Krenn, A. Hohenau, H. Ditlbacher, A. Leitner, F. R. Aussenegg, W. L. Schaich, I. Puscasu, B. Monacelli, and G. Boreman, "Plasmon dispersion relation of Au and Agnanowires," Phys. Rev. B 68, 155427 (2003).
[CrossRef]

J. R. Krenn, G. Schider, W. Rechberger, B. Lamprecht, A. Leitner, F. R. Aussenegg, and J. C. Weeber, "Design of multipolar plasmon excitations in silver nanoparticles," Appl. Phys. Lett. 77, 3379-3381 (2000).
[CrossRef]

Badenes, G.

Barker, D. H.

Beversluis, M. R.

A. Bouhelier, J. Renger, M. R. Beversluis, and L. Novotny, "Plasmon-coupled tip-enhanced near-field optical microscopy." J. Microsc. 210, 220-4 (2003).
[CrossRef] [PubMed]

Boreman, G.

G. Schider, J. R. Krenn, A. Hohenau, H. Ditlbacher, A. Leitner, F. R. Aussenegg, W. L. Schaich, I. Puscasu, B. Monacelli, and G. Boreman, "Plasmon dispersion relation of Au and Agnanowires," Phys. Rev. B 68, 155427 (2003).
[CrossRef]

Bouhelier, A.

A. Bouhelier, J. Renger, M. R. Beversluis, and L. Novotny, "Plasmon-coupled tip-enhanced near-field optical microscopy." J. Microsc. 210, 220-4 (2003).
[CrossRef] [PubMed]

Brasselet, S.

Brongersma, M. L.

M. L. Brongersma, J. W. Hartman, and H. A. Atwater, "Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit," Phys. Rev. B 62, R16356-R16359 (2000).
[CrossRef]

Christy, R.

P. Johnson and R. Christy, "Optical constants of noble metals," Phys. Rev. B 6, 4730-4739 (1972).
[CrossRef]

Dasari, R. R.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, "Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS)," Phys. Rev. Lett. 78, 1667-1670 (1997).
[CrossRef]

Ditlbacher, H.

G. Schider, J. R. Krenn, A. Hohenau, H. Ditlbacher, A. Leitner, F. R. Aussenegg, W. L. Schaich, I. Puscasu, B. Monacelli, and G. Boreman, "Plasmon dispersion relation of Au and Agnanowires," Phys. Rev. B 68, 155427 (2003).
[CrossRef]

Enoch, S.

Feld, M. S.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, "Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS)," Phys. Rev. Lett. 78, 1667-1670 (1997).
[CrossRef]

Feldmann, J.

C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, "Drastic reduction of plasmon damping in gold nanorods," Phys. Rev. Lett. 88, 77402 (2002).
[CrossRef]

Fendler, J.

E. Hutter and J. Fendler, "Exploitation of localized surface plasmon resonance," Adv. Materials 16, 1685-1706 (2004).
[CrossRef]

Foote, F. B.

Franzl, T.

C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, "Drastic reduction of plasmon damping in gold nanorods," Phys. Rev. Lett. 88, 77402 (2002).
[CrossRef]

Gadenne, P.

Gordon, J. P.

A. Wokaun, J. P. Gordon, and P. F. Liao, "Radiation Damping in Surface-Enhanced Raman Scattering," Phys. Rev. Lett. 48, 957-960 (1982).
[CrossRef]

Hartman, J. W.

M. L. Brongersma, J. W. Hartman, and H. A. Atwater, "Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit," Phys. Rev. B 62, R16356-R16359 (2000).
[CrossRef]

Hartwick, T. S.

Hodges, D. T.

Hohenau, A.

G. Schider, J. R. Krenn, A. Hohenau, H. Ditlbacher, A. Leitner, F. R. Aussenegg, W. L. Schaich, I. Puscasu, B. Monacelli, and G. Boreman, "Plasmon dispersion relation of Au and Agnanowires," Phys. Rev. B 68, 155427 (2003).
[CrossRef]

Hu, B. B.

Huang, H. J.

Hutter, E.

E. Hutter and J. Fendler, "Exploitation of localized surface plasmon resonance," Adv. Materials 16, 1685-1706 (2004).
[CrossRef]

Imura, K.

K. ImuraT. Nagahara, and H. Okamoto, "Near-field optical imaging of plasmon modes in gold nanorods," J. Chem. Phys. 122, 154701 (2005).
[CrossRef] [PubMed]

Itzkan, I.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, "Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS)," Phys. Rev. Lett. 78, 1667-1670 (1997).
[CrossRef]

Johnson, P.

P. Johnson and R. Christy, "Optical constants of noble metals," Phys. Rev. B 6, 4730-4739 (1972).
[CrossRef]

Juodkazis, S.

K. Ueno, S. Juodkazis, M. Mino, V. Mizeikis, and H. Misawa, "Spectral sensitivity of uniform arrays of gold nanorods to dielectric environment," J. Phys. Chem. C 111, 4180-4184 (2007).
[CrossRef]

K. Ueno, V. Mizeikis, S. Juodkazis, K. Sasaki, and H. Misawa, "Optical properties of nano-engineered gold blocks," Opt. Lett. 30, 2158 - 2160 (2005).
[CrossRef] [PubMed]

Kalkbrenner, T.

T. Kalkbrenner, M. Ramstein, J. Mlynek, and V. Sandoghdar, "A single gold particle as a probe for apertureless scanning near-field optical microscopy." J. Microsc. 202, 72-6 (2001).
[CrossRef] [PubMed]

Kneipp, H.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, "Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS)," Phys. Rev. Lett. 78, 1667-1670 (1997).
[CrossRef]

Kneipp, K.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, "Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS)," Phys. Rev. Lett. 78, 1667-1670 (1997).
[CrossRef]

Krenn, J. R.

G. Schider, J. R. Krenn, A. Hohenau, H. Ditlbacher, A. Leitner, F. R. Aussenegg, W. L. Schaich, I. Puscasu, B. Monacelli, and G. Boreman, "Plasmon dispersion relation of Au and Agnanowires," Phys. Rev. B 68, 155427 (2003).
[CrossRef]

J. R. Krenn, G. Schider, W. Rechberger, B. Lamprecht, A. Leitner, F. R. Aussenegg, and J. C. Weeber, "Design of multipolar plasmon excitations in silver nanoparticles," Appl. Phys. Lett. 77, 3379-3381 (2000).
[CrossRef]

Lamprecht, B.

J. R. Krenn, G. Schider, W. Rechberger, B. Lamprecht, A. Leitner, F. R. Aussenegg, and J. C. Weeber, "Design of multipolar plasmon excitations in silver nanoparticles," Appl. Phys. Lett. 77, 3379-3381 (2000).
[CrossRef]

Leitner, A.

G. Schider, J. R. Krenn, A. Hohenau, H. Ditlbacher, A. Leitner, F. R. Aussenegg, W. L. Schaich, I. Puscasu, B. Monacelli, and G. Boreman, "Plasmon dispersion relation of Au and Agnanowires," Phys. Rev. B 68, 155427 (2003).
[CrossRef]

J. R. Krenn, G. Schider, W. Rechberger, B. Lamprecht, A. Leitner, F. R. Aussenegg, and J. C. Weeber, "Design of multipolar plasmon excitations in silver nanoparticles," Appl. Phys. Lett. 77, 3379-3381 (2000).
[CrossRef]

Liao, P. F.

A. Wokaun, J. P. Gordon, and P. F. Liao, "Radiation Damping in Surface-Enhanced Raman Scattering," Phys. Rev. Lett. 48, 957-960 (1982).
[CrossRef]

Mino, M.

K. Ueno, S. Juodkazis, M. Mino, V. Mizeikis, and H. Misawa, "Spectral sensitivity of uniform arrays of gold nanorods to dielectric environment," J. Phys. Chem. C 111, 4180-4184 (2007).
[CrossRef]

Misawa, H.

K. Ueno, S. Juodkazis, M. Mino, V. Mizeikis, and H. Misawa, "Spectral sensitivity of uniform arrays of gold nanorods to dielectric environment," J. Phys. Chem. C 111, 4180-4184 (2007).
[CrossRef]

K. Ueno, V. Mizeikis, S. Juodkazis, K. Sasaki, and H. Misawa, "Optical properties of nano-engineered gold blocks," Opt. Lett. 30, 2158 - 2160 (2005).
[CrossRef] [PubMed]

Mizeikis, V.

K. Ueno, S. Juodkazis, M. Mino, V. Mizeikis, and H. Misawa, "Spectral sensitivity of uniform arrays of gold nanorods to dielectric environment," J. Phys. Chem. C 111, 4180-4184 (2007).
[CrossRef]

K. Ueno, V. Mizeikis, S. Juodkazis, K. Sasaki, and H. Misawa, "Optical properties of nano-engineered gold blocks," Opt. Lett. 30, 2158 - 2160 (2005).
[CrossRef] [PubMed]

Mlynek, J.

T. Kalkbrenner, M. Ramstein, J. Mlynek, and V. Sandoghdar, "A single gold particle as a probe for apertureless scanning near-field optical microscopy." J. Microsc. 202, 72-6 (2001).
[CrossRef] [PubMed]

Monacelli, B.

G. Schider, J. R. Krenn, A. Hohenau, H. Ditlbacher, A. Leitner, F. R. Aussenegg, W. L. Schaich, I. Puscasu, B. Monacelli, and G. Boreman, "Plasmon dispersion relation of Au and Agnanowires," Phys. Rev. B 68, 155427 (2003).
[CrossRef]

Mulvaney, P.

C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, "Drastic reduction of plasmon damping in gold nanorods," Phys. Rev. Lett. 88, 77402 (2002).
[CrossRef]

Nagahara, T.

K. ImuraT. Nagahara, and H. Okamoto, "Near-field optical imaging of plasmon modes in gold nanorods," J. Chem. Phys. 122, 154701 (2005).
[CrossRef] [PubMed]

Novotny, L.

A. Bouhelier, J. Renger, M. R. Beversluis, and L. Novotny, "Plasmon-coupled tip-enhanced near-field optical microscopy." J. Microsc. 210, 220-4 (2003).
[CrossRef] [PubMed]

Nuss, M. C.

Okamoto, H.

K. ImuraT. Nagahara, and H. Okamoto, "Near-field optical imaging of plasmon modes in gold nanorods," J. Chem. Phys. 122, 154701 (2005).
[CrossRef] [PubMed]

Perelman, L. T.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, "Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS)," Phys. Rev. Lett. 78, 1667-1670 (1997).
[CrossRef]

Puscasu, I.

G. Schider, J. R. Krenn, A. Hohenau, H. Ditlbacher, A. Leitner, F. R. Aussenegg, W. L. Schaich, I. Puscasu, B. Monacelli, and G. Boreman, "Plasmon dispersion relation of Au and Agnanowires," Phys. Rev. B 68, 155427 (2003).
[CrossRef]

Quidant, R.

Ramstein, M.

T. Kalkbrenner, M. Ramstein, J. Mlynek, and V. Sandoghdar, "A single gold particle as a probe for apertureless scanning near-field optical microscopy." J. Microsc. 202, 72-6 (2001).
[CrossRef] [PubMed]

Rechberger, W.

J. R. Krenn, G. Schider, W. Rechberger, B. Lamprecht, A. Leitner, F. R. Aussenegg, and J. C. Weeber, "Design of multipolar plasmon excitations in silver nanoparticles," Appl. Phys. Lett. 77, 3379-3381 (2000).
[CrossRef]

Renger, J.

A. Bouhelier, J. Renger, M. R. Beversluis, and L. Novotny, "Plasmon-coupled tip-enhanced near-field optical microscopy." J. Microsc. 210, 220-4 (2003).
[CrossRef] [PubMed]

Sandoghdar, V.

T. Kalkbrenner, M. Ramstein, J. Mlynek, and V. Sandoghdar, "A single gold particle as a probe for apertureless scanning near-field optical microscopy." J. Microsc. 202, 72-6 (2001).
[CrossRef] [PubMed]

Sasaki, K.

Schaich, W. L.

G. Schider, J. R. Krenn, A. Hohenau, H. Ditlbacher, A. Leitner, F. R. Aussenegg, W. L. Schaich, I. Puscasu, B. Monacelli, and G. Boreman, "Plasmon dispersion relation of Au and Agnanowires," Phys. Rev. B 68, 155427 (2003).
[CrossRef]

Schider, G.

G. Schider, J. R. Krenn, A. Hohenau, H. Ditlbacher, A. Leitner, F. R. Aussenegg, W. L. Schaich, I. Puscasu, B. Monacelli, and G. Boreman, "Plasmon dispersion relation of Au and Agnanowires," Phys. Rev. B 68, 155427 (2003).
[CrossRef]

J. R. Krenn, G. Schider, W. Rechberger, B. Lamprecht, A. Leitner, F. R. Aussenegg, and J. C. Weeber, "Design of multipolar plasmon excitations in silver nanoparticles," Appl. Phys. Lett. 77, 3379-3381 (2000).
[CrossRef]

Sönnichsen, C.

C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, "Drastic reduction of plasmon damping in gold nanorods," Phys. Rev. Lett. 88, 77402 (2002).
[CrossRef]

Stockman, M. I.

M. I. Stockman, "Nanofocusing of optical energy in tapered plasmonic waveguides." Phys. Rev. Lett. 93, 137404 (2004).
[CrossRef] [PubMed]

Ueno, K.

K. Ueno, S. Juodkazis, M. Mino, V. Mizeikis, and H. Misawa, "Spectral sensitivity of uniform arrays of gold nanorods to dielectric environment," J. Phys. Chem. C 111, 4180-4184 (2007).
[CrossRef]

K. Ueno, V. Mizeikis, S. Juodkazis, K. Sasaki, and H. Misawa, "Optical properties of nano-engineered gold blocks," Opt. Lett. 30, 2158 - 2160 (2005).
[CrossRef] [PubMed]

von Plessen, G.

C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, "Drastic reduction of plasmon damping in gold nanorods," Phys. Rev. Lett. 88, 77402 (2002).
[CrossRef]

Wang, Y.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, "Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS)," Phys. Rev. Lett. 78, 1667-1670 (1997).
[CrossRef]

Weeber, J. C.

J. R. Krenn, G. Schider, W. Rechberger, B. Lamprecht, A. Leitner, F. R. Aussenegg, and J. C. Weeber, "Design of multipolar plasmon excitations in silver nanoparticles," Appl. Phys. Lett. 77, 3379-3381 (2000).
[CrossRef]

Wilk, T.

C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, "Drastic reduction of plasmon damping in gold nanorods," Phys. Rev. Lett. 88, 77402 (2002).
[CrossRef]

Wilson, O.

C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, "Drastic reduction of plasmon damping in gold nanorods," Phys. Rev. Lett. 88, 77402 (2002).
[CrossRef]

Wokaun, A.

A. Wokaun, J. P. Gordon, and P. F. Liao, "Radiation Damping in Surface-Enhanced Raman Scattering," Phys. Rev. Lett. 48, 957-960 (1982).
[CrossRef]

Zyss, J.

Adv. Materials (1)

E. Hutter and J. Fendler, "Exploitation of localized surface plasmon resonance," Adv. Materials 16, 1685-1706 (2004).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

J. R. Krenn, G. Schider, W. Rechberger, B. Lamprecht, A. Leitner, F. R. Aussenegg, and J. C. Weeber, "Design of multipolar plasmon excitations in silver nanoparticles," Appl. Phys. Lett. 77, 3379-3381 (2000).
[CrossRef]

J. Chem. Phys. (1)

K. ImuraT. Nagahara, and H. Okamoto, "Near-field optical imaging of plasmon modes in gold nanorods," J. Chem. Phys. 122, 154701 (2005).
[CrossRef] [PubMed]

J. Microsc. (2)

T. Kalkbrenner, M. Ramstein, J. Mlynek, and V. Sandoghdar, "A single gold particle as a probe for apertureless scanning near-field optical microscopy." J. Microsc. 202, 72-6 (2001).
[CrossRef] [PubMed]

A. Bouhelier, J. Renger, M. R. Beversluis, and L. Novotny, "Plasmon-coupled tip-enhanced near-field optical microscopy." J. Microsc. 210, 220-4 (2003).
[CrossRef] [PubMed]

J. Phys. Chem. C (1)

K. Ueno, S. Juodkazis, M. Mino, V. Mizeikis, and H. Misawa, "Spectral sensitivity of uniform arrays of gold nanorods to dielectric environment," J. Phys. Chem. C 111, 4180-4184 (2007).
[CrossRef]

Opt. Express (2)

Opt. Lett. (3)

Phys. Rev. B (3)

G. Schider, J. R. Krenn, A. Hohenau, H. Ditlbacher, A. Leitner, F. R. Aussenegg, W. L. Schaich, I. Puscasu, B. Monacelli, and G. Boreman, "Plasmon dispersion relation of Au and Agnanowires," Phys. Rev. B 68, 155427 (2003).
[CrossRef]

M. L. Brongersma, J. W. Hartman, and H. A. Atwater, "Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit," Phys. Rev. B 62, R16356-R16359 (2000).
[CrossRef]

P. Johnson and R. Christy, "Optical constants of noble metals," Phys. Rev. B 6, 4730-4739 (1972).
[CrossRef]

Phys. Rev. Lett. (4)

C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, "Drastic reduction of plasmon damping in gold nanorods," Phys. Rev. Lett. 88, 77402 (2002).
[CrossRef]

A. Wokaun, J. P. Gordon, and P. F. Liao, "Radiation Damping in Surface-Enhanced Raman Scattering," Phys. Rev. Lett. 48, 957-960 (1982).
[CrossRef]

M. I. Stockman, "Nanofocusing of optical energy in tapered plasmonic waveguides." Phys. Rev. Lett. 93, 137404 (2004).
[CrossRef] [PubMed]

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, "Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS)," Phys. Rev. Lett. 78, 1667-1670 (1997).
[CrossRef]

Other (5)

P. MElschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D.W. Pohl, "Resonant optical antennas." Science 308, 1607-9 (2005). URL http://dx.doi.org/10.1126/science.1111886>.
[CrossRef]

K. Ueno, S. Juodkazis, V. Mizeikis, K. Sasaki, and H. Misawa, "Clusters of closely-spaced gold nanoparticles as a source of two-photon photoluminescence at visible wavelengths," Accepted to Adv. Mater. (2007).

N. Nath and A. Chilkoti, "Label-free biosensing by surface plasmon resonance of nanoparticles on glass: optimization of nanoparticle size." Anal. Chem. 76, 5370-8 (2004). URL http://dx.doi.org/10.1021/ac049741z>.
[CrossRef] [PubMed]

C. Sönnichsen and A. P. Alivisatos, "Gold nanorods as novel nonbleaching plasmon-based orientation sensors for polarized single-particle microscopy." Nano Lett. 5, 301-4 (2005). URL http://dx.doi.org/10.1021/nl048089k>.
[CrossRef] [PubMed]

K. Ueno, S. Juodkazis, V. Mizeikis, K. Sasaki, and H. Misawa, "Spectrally-resolved atomicscale length variations of gold nanorods." J. Am. Chem. Soc. 128, 14226-14227 (2006). URL http://dx.doi.org/10.1021/ja0645786>.
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

(a) Geometric parameters of gold nanoparticles on a dielectric substrate: (1) a chain of connected nanoblocks, (2) a straight nanorod. The side and diagonal lengths are given in nanometers, N is the number of chain/rod segments along the y-axis direction. All dimensions are given in nanometers, the decrease in the total length of the nanoblock chain due to a slight overlap, w, between the nanoblocks is ignored. Nanoparticles are attached to a thick dielectric substrate whose thickness is drawn out of scale in the Figure. (b) Top-view SEM image of chain of nanoblocks with N=3. The yellow dashed line shows the outline of designed nanoblocks, the scale bar corresponds to 100 nm. In optical studies incident radiation was polarized linearly along the y-axis for predominant excitation of LP modes.

Fig. 2.
Fig. 2.

Extinction spectra of (a) nanoblocks, (b) nanorods.

Fig. 3.
Fig. 3.

Parameters of LP peaks versus the nanoparticle length deduced from spectra in the previous Figure: (a) central wavelength, (b) spectral width, (c) LP quality factor, and (d) dephasing time.

Fig. 4.
Fig. 4.

Calculated spectra of extinction cross-section for nanoblocks (a), and nanorods (b) with N=4. For comparison, the corresponding experimental spectra from Fig. 4 are also shown.

Fig. 5.
Fig. 5.

Calculated near-field patterns on the x-y plane at a half-height of the nanoparticles, (a) for nanoblock, and (b) for nanorod structures with N=4.

Metrics