Abstract

A high speed 2×2 electro-optic switch using a polarization modulator (PolM) is proposed and experimentally demonstrated. In the proposed switch, two linearly polarized input lightwaves with orthogonal polarization directions are sent to the PolM which is connected to a polarization beam splitter (PBS). When a switching signal is applied to the PolM, the polarization directions of the two lightwaves at the output of PolM will exchange. Consequently, the lightwaves at the two output ports of the PBS would be switched, a 2×2 switch is thus realized. An optical switch with a crosstalk lower than -35 dB and a switching time less than 25 ps is experimentally demonstrated. The performance of the switch is also experimentally investigated by studying the bit error rates and eye diagrams. A technique to achieve polarization independent operation is also proposed and discussed.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Shibata, M. Okuno, T. Goh, T. Watanabe, M. Yasu, M. Itoh, M. Ishii, Y. Hibino, A. Sugita, and A. Himeno, "Silica-based waveguide-type 16×16 optical switch module incorporating driving circuits," IEEE Photon. Technol. Lett. 15, 1300-1302 (2003).
    [CrossRef]
  2. V. A. Aksyuk, S. Arney, N. R. Basavanhally, D. J. Bishop, C. A. Bolle, C. C. Chang, R. Frahm, A. Gasparyan, J. V. Gates, R. George, C. R. Giles, J. Kim, P. R. Kolodner, T. M. Lee, D. T. Neilson, C. Nijander, C. J. Nuzman, M. Paczkowski, A. R. Papazian, R. Ryf, H. Shea, and M. E. Simon, "238×238 surface micromachined optical crossconnect with 2 dB maximum loss," in OFC Tech. Dig. Series Anaheim, CA, 2002.Q1
  3. X. H. Ma and G. S. Kuo, "Optical switching technology comparison: optical MEMS vs. other technologies," IEEE Commun. Mag. 41, S16-S23 (2003).
  4. J. Sapriel, V. Molchanov, G. Aubin, and S. Gosselin, "Acousto-optic switch for telecommunication networks," Proc. SPIE,  5828, 68-75 (2005).
    [CrossRef]
  5. H. S. Park, K. Y. Song, S. H. Yun, and B. Y. Kim, "All-fiber wavelength-tunable acousto-optic switch," in Proc. OFC’ 2001, 3, WJ4-1-WJ4-3 (2001).
  6. S. T. Feng and E. A. Irene, "Thermo-optical switching in Si based etalons," J. Appl. Phys. 72, 3897-3903 (1992).
    [CrossRef]
  7. R. Kasahara, M. Yanagisawa, T. Goh, A. Sugita, A. Himeno, M. Yasu, and S. Matsui, "New structure of silica-based planar lightwave circuits for low-power thermooptic switch and its application to 8×8 optical matrix switch," J. Lightwave Technol. 20, 993-1000 (2002).
    [CrossRef]
  8. A. Sneh, J. E. Zucker, and B. I. Miller, "Compact, low-crosstalk, and low-propagation-loss quantum-well Y-branch switches," IEEE Photon. Technol. Lett. 8, 1644-1646 (1996).
    [CrossRef]
  9. N. Wan, L. Liu, and Y. Yin, "Cantor network, control algorithm, two-dimensional compact structure and its optical implementation," Appl. Opt. 34, 8176-8182 (1995)
    [CrossRef]
  10. D. M. Maron and D. Mendlovic, "Compact all-optical bypass-exchange switch," Appl. Opt.,  35, 248-253 (1996)
    [CrossRef]
  11. N. Cohen, D. Mendlovic, B. Leibner and N. Konforti, "Compact polarization-based all-optical interconnection systems with growth capability," Appl. Opt. 37, 5479-5487 (1998)
    [CrossRef]
  12. G. Berrettini, G. Meloni, A. Bogoni, and L. Poti, "All-optical 2 × 2 switch based on Kerr effect in highly nonlinear fiber for ultrafast applications," IEEE Photon. Technol. Lett. 18, 2439-2441 (2006).
    [CrossRef]
  13. Y. H. Kim, U. -C. Paek, and W. -T. Han, "All-optical 2×2 switching with two independent Yb3+-doped nonlinear optical fibers with a long-period fiber grating pair," Appl. Opt. 44,3051-3057 (2005).
    [CrossRef] [PubMed]
  14. J. D. Bull, N. A. F. Jaeger, H. Kato, M. Fairburn, A. Reid, and P. Ghanipour, "40 GHz electro-optic polarization modulator for fiber optic communication systems," in Proc. SPIE, 5577, 133-143 (2004).
    [CrossRef]

2006

G. Berrettini, G. Meloni, A. Bogoni, and L. Poti, "All-optical 2 × 2 switch based on Kerr effect in highly nonlinear fiber for ultrafast applications," IEEE Photon. Technol. Lett. 18, 2439-2441 (2006).
[CrossRef]

2005

2003

T. Shibata, M. Okuno, T. Goh, T. Watanabe, M. Yasu, M. Itoh, M. Ishii, Y. Hibino, A. Sugita, and A. Himeno, "Silica-based waveguide-type 16×16 optical switch module incorporating driving circuits," IEEE Photon. Technol. Lett. 15, 1300-1302 (2003).
[CrossRef]

X. H. Ma and G. S. Kuo, "Optical switching technology comparison: optical MEMS vs. other technologies," IEEE Commun. Mag. 41, S16-S23 (2003).

2002

1998

1996

A. Sneh, J. E. Zucker, and B. I. Miller, "Compact, low-crosstalk, and low-propagation-loss quantum-well Y-branch switches," IEEE Photon. Technol. Lett. 8, 1644-1646 (1996).
[CrossRef]

D. M. Maron and D. Mendlovic, "Compact all-optical bypass-exchange switch," Appl. Opt.,  35, 248-253 (1996)
[CrossRef]

1995

1992

S. T. Feng and E. A. Irene, "Thermo-optical switching in Si based etalons," J. Appl. Phys. 72, 3897-3903 (1992).
[CrossRef]

Aubin, G.

J. Sapriel, V. Molchanov, G. Aubin, and S. Gosselin, "Acousto-optic switch for telecommunication networks," Proc. SPIE,  5828, 68-75 (2005).
[CrossRef]

Berrettini, G.

G. Berrettini, G. Meloni, A. Bogoni, and L. Poti, "All-optical 2 × 2 switch based on Kerr effect in highly nonlinear fiber for ultrafast applications," IEEE Photon. Technol. Lett. 18, 2439-2441 (2006).
[CrossRef]

Bogoni, A.

G. Berrettini, G. Meloni, A. Bogoni, and L. Poti, "All-optical 2 × 2 switch based on Kerr effect in highly nonlinear fiber for ultrafast applications," IEEE Photon. Technol. Lett. 18, 2439-2441 (2006).
[CrossRef]

Cohen, N.

Feng, S. T.

S. T. Feng and E. A. Irene, "Thermo-optical switching in Si based etalons," J. Appl. Phys. 72, 3897-3903 (1992).
[CrossRef]

Goh, T.

T. Shibata, M. Okuno, T. Goh, T. Watanabe, M. Yasu, M. Itoh, M. Ishii, Y. Hibino, A. Sugita, and A. Himeno, "Silica-based waveguide-type 16×16 optical switch module incorporating driving circuits," IEEE Photon. Technol. Lett. 15, 1300-1302 (2003).
[CrossRef]

R. Kasahara, M. Yanagisawa, T. Goh, A. Sugita, A. Himeno, M. Yasu, and S. Matsui, "New structure of silica-based planar lightwave circuits for low-power thermooptic switch and its application to 8×8 optical matrix switch," J. Lightwave Technol. 20, 993-1000 (2002).
[CrossRef]

Gosselin, S.

J. Sapriel, V. Molchanov, G. Aubin, and S. Gosselin, "Acousto-optic switch for telecommunication networks," Proc. SPIE,  5828, 68-75 (2005).
[CrossRef]

Han, W. -T.

Hibino, Y.

T. Shibata, M. Okuno, T. Goh, T. Watanabe, M. Yasu, M. Itoh, M. Ishii, Y. Hibino, A. Sugita, and A. Himeno, "Silica-based waveguide-type 16×16 optical switch module incorporating driving circuits," IEEE Photon. Technol. Lett. 15, 1300-1302 (2003).
[CrossRef]

Himeno, A.

T. Shibata, M. Okuno, T. Goh, T. Watanabe, M. Yasu, M. Itoh, M. Ishii, Y. Hibino, A. Sugita, and A. Himeno, "Silica-based waveguide-type 16×16 optical switch module incorporating driving circuits," IEEE Photon. Technol. Lett. 15, 1300-1302 (2003).
[CrossRef]

R. Kasahara, M. Yanagisawa, T. Goh, A. Sugita, A. Himeno, M. Yasu, and S. Matsui, "New structure of silica-based planar lightwave circuits for low-power thermooptic switch and its application to 8×8 optical matrix switch," J. Lightwave Technol. 20, 993-1000 (2002).
[CrossRef]

Irene, E. A.

S. T. Feng and E. A. Irene, "Thermo-optical switching in Si based etalons," J. Appl. Phys. 72, 3897-3903 (1992).
[CrossRef]

Ishii, M.

T. Shibata, M. Okuno, T. Goh, T. Watanabe, M. Yasu, M. Itoh, M. Ishii, Y. Hibino, A. Sugita, and A. Himeno, "Silica-based waveguide-type 16×16 optical switch module incorporating driving circuits," IEEE Photon. Technol. Lett. 15, 1300-1302 (2003).
[CrossRef]

Itoh, M.

T. Shibata, M. Okuno, T. Goh, T. Watanabe, M. Yasu, M. Itoh, M. Ishii, Y. Hibino, A. Sugita, and A. Himeno, "Silica-based waveguide-type 16×16 optical switch module incorporating driving circuits," IEEE Photon. Technol. Lett. 15, 1300-1302 (2003).
[CrossRef]

Kasahara, R.

Kim, Y. H.

Konforti, N.

Kuo, G. S.

X. H. Ma and G. S. Kuo, "Optical switching technology comparison: optical MEMS vs. other technologies," IEEE Commun. Mag. 41, S16-S23 (2003).

Leibner, B.

Liu, L.

Ma, X. H.

X. H. Ma and G. S. Kuo, "Optical switching technology comparison: optical MEMS vs. other technologies," IEEE Commun. Mag. 41, S16-S23 (2003).

Maron, D. M.

Matsui, S.

Meloni, G.

G. Berrettini, G. Meloni, A. Bogoni, and L. Poti, "All-optical 2 × 2 switch based on Kerr effect in highly nonlinear fiber for ultrafast applications," IEEE Photon. Technol. Lett. 18, 2439-2441 (2006).
[CrossRef]

Mendlovic, D.

Miller, B. I.

A. Sneh, J. E. Zucker, and B. I. Miller, "Compact, low-crosstalk, and low-propagation-loss quantum-well Y-branch switches," IEEE Photon. Technol. Lett. 8, 1644-1646 (1996).
[CrossRef]

Molchanov, V.

J. Sapriel, V. Molchanov, G. Aubin, and S. Gosselin, "Acousto-optic switch for telecommunication networks," Proc. SPIE,  5828, 68-75 (2005).
[CrossRef]

Okuno, M.

T. Shibata, M. Okuno, T. Goh, T. Watanabe, M. Yasu, M. Itoh, M. Ishii, Y. Hibino, A. Sugita, and A. Himeno, "Silica-based waveguide-type 16×16 optical switch module incorporating driving circuits," IEEE Photon. Technol. Lett. 15, 1300-1302 (2003).
[CrossRef]

Paek, U. -C.

Poti, L.

G. Berrettini, G. Meloni, A. Bogoni, and L. Poti, "All-optical 2 × 2 switch based on Kerr effect in highly nonlinear fiber for ultrafast applications," IEEE Photon. Technol. Lett. 18, 2439-2441 (2006).
[CrossRef]

Sapriel, J.

J. Sapriel, V. Molchanov, G. Aubin, and S. Gosselin, "Acousto-optic switch for telecommunication networks," Proc. SPIE,  5828, 68-75 (2005).
[CrossRef]

Shibata, T.

T. Shibata, M. Okuno, T. Goh, T. Watanabe, M. Yasu, M. Itoh, M. Ishii, Y. Hibino, A. Sugita, and A. Himeno, "Silica-based waveguide-type 16×16 optical switch module incorporating driving circuits," IEEE Photon. Technol. Lett. 15, 1300-1302 (2003).
[CrossRef]

Sneh, A.

A. Sneh, J. E. Zucker, and B. I. Miller, "Compact, low-crosstalk, and low-propagation-loss quantum-well Y-branch switches," IEEE Photon. Technol. Lett. 8, 1644-1646 (1996).
[CrossRef]

Sugita, A.

T. Shibata, M. Okuno, T. Goh, T. Watanabe, M. Yasu, M. Itoh, M. Ishii, Y. Hibino, A. Sugita, and A. Himeno, "Silica-based waveguide-type 16×16 optical switch module incorporating driving circuits," IEEE Photon. Technol. Lett. 15, 1300-1302 (2003).
[CrossRef]

R. Kasahara, M. Yanagisawa, T. Goh, A. Sugita, A. Himeno, M. Yasu, and S. Matsui, "New structure of silica-based planar lightwave circuits for low-power thermooptic switch and its application to 8×8 optical matrix switch," J. Lightwave Technol. 20, 993-1000 (2002).
[CrossRef]

Wan, N.

Watanabe, T.

T. Shibata, M. Okuno, T. Goh, T. Watanabe, M. Yasu, M. Itoh, M. Ishii, Y. Hibino, A. Sugita, and A. Himeno, "Silica-based waveguide-type 16×16 optical switch module incorporating driving circuits," IEEE Photon. Technol. Lett. 15, 1300-1302 (2003).
[CrossRef]

Yanagisawa, M.

Yasu, M.

T. Shibata, M. Okuno, T. Goh, T. Watanabe, M. Yasu, M. Itoh, M. Ishii, Y. Hibino, A. Sugita, and A. Himeno, "Silica-based waveguide-type 16×16 optical switch module incorporating driving circuits," IEEE Photon. Technol. Lett. 15, 1300-1302 (2003).
[CrossRef]

R. Kasahara, M. Yanagisawa, T. Goh, A. Sugita, A. Himeno, M. Yasu, and S. Matsui, "New structure of silica-based planar lightwave circuits for low-power thermooptic switch and its application to 8×8 optical matrix switch," J. Lightwave Technol. 20, 993-1000 (2002).
[CrossRef]

Yin, Y.

Zucker, J. E.

A. Sneh, J. E. Zucker, and B. I. Miller, "Compact, low-crosstalk, and low-propagation-loss quantum-well Y-branch switches," IEEE Photon. Technol. Lett. 8, 1644-1646 (1996).
[CrossRef]

Appl. Opt.

IEEE Commun. Mag.

X. H. Ma and G. S. Kuo, "Optical switching technology comparison: optical MEMS vs. other technologies," IEEE Commun. Mag. 41, S16-S23 (2003).

IEEE Photon. Technol. Lett.

T. Shibata, M. Okuno, T. Goh, T. Watanabe, M. Yasu, M. Itoh, M. Ishii, Y. Hibino, A. Sugita, and A. Himeno, "Silica-based waveguide-type 16×16 optical switch module incorporating driving circuits," IEEE Photon. Technol. Lett. 15, 1300-1302 (2003).
[CrossRef]

A. Sneh, J. E. Zucker, and B. I. Miller, "Compact, low-crosstalk, and low-propagation-loss quantum-well Y-branch switches," IEEE Photon. Technol. Lett. 8, 1644-1646 (1996).
[CrossRef]

G. Berrettini, G. Meloni, A. Bogoni, and L. Poti, "All-optical 2 × 2 switch based on Kerr effect in highly nonlinear fiber for ultrafast applications," IEEE Photon. Technol. Lett. 18, 2439-2441 (2006).
[CrossRef]

J. Appl. Phys.

S. T. Feng and E. A. Irene, "Thermo-optical switching in Si based etalons," J. Appl. Phys. 72, 3897-3903 (1992).
[CrossRef]

J. Lightwave Technol.

Proc. SPIE

J. Sapriel, V. Molchanov, G. Aubin, and S. Gosselin, "Acousto-optic switch for telecommunication networks," Proc. SPIE,  5828, 68-75 (2005).
[CrossRef]

Other

H. S. Park, K. Y. Song, S. H. Yun, and B. Y. Kim, "All-fiber wavelength-tunable acousto-optic switch," in Proc. OFC’ 2001, 3, WJ4-1-WJ4-3 (2001).

V. A. Aksyuk, S. Arney, N. R. Basavanhally, D. J. Bishop, C. A. Bolle, C. C. Chang, R. Frahm, A. Gasparyan, J. V. Gates, R. George, C. R. Giles, J. Kim, P. R. Kolodner, T. M. Lee, D. T. Neilson, C. Nijander, C. J. Nuzman, M. Paczkowski, A. R. Papazian, R. Ryf, H. Shea, and M. E. Simon, "238×238 surface micromachined optical crossconnect with 2 dB maximum loss," in OFC Tech. Dig. Series Anaheim, CA, 2002.Q1

J. D. Bull, N. A. F. Jaeger, H. Kato, M. Fairburn, A. Reid, and P. Ghanipour, "40 GHz electro-optic polarization modulator for fiber optic communication systems," in Proc. SPIE, 5577, 133-143 (2004).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

The schematic diagram of the high speed 2×2 electro-optic switch.

Fig. 2.
Fig. 2.

The experimental setup of the high-speed 2×2 electro-optic switch; LD: laser diode, PC, polarization controller, PolM: polarization modulator, PMF: polarization maintaining fiber, PBS: polarization beam splitter.

Fig. 3.
Fig. 3.

The output optical spectra of the optical switch; switch signal off: (a) Output 1, (b) Output 2; switch signal on: (c) Output 1, (d) Output 2.

Fig. 4.
Fig. 4.

Switching time measurement; solid line: the switching signal; dashed line: the output pulse at Output 2.

Fig. 5.
Fig. 5.

The BER measurement results of the optical switch.

Fig. 6.
Fig. 6.

Eye diagram measurements; (a) at the input of the switch, (b) at the output of the switch.

Fig. 7.
Fig. 7.

A polarization-independent 2×2 electro-optic switch.

Metrics