Abstract

To enhance the performance of an evanescent-wave (EW) based sensor, efforts are usually made to modify the sensor architecture rather than the excitation source. In this paper, we theoretically examine the role of meridian and skew rays under total internal reflection (TIR) as well as tunneling rays with the emphasis on sensor performance. Our further investigation indicates that the intensity profile of the light source enormously influences the EW power, and thus the collectable fluorescent emission level as well. A non-Lambertian fiber-optic side-emitting diffuser (FOSED) is proposed and experimentally verified, revealing that a proper alignment of this FOSED can dramatically improve the signal quality and reduce the level of stray excitation light. In particular, the adoption of a FOSED or other light diffusers with similar output profiles will ensure that the excitation power is used more efficiently, suggesting a lower demand on the excitation source power level, and the performance of the stray light filter and detector. The superiority of this innovation is further addressed by comparing it with a long period grating (LPG) fiber-optic sensor, which claims highly efficient core to cladding mode coupling. This study presents a new concept for the construction of a high-performance and cost-effective EW-based sensor system.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Enderlein, T. Ruckstuhl, and S. Stefean, "Highly efficient optical detection of surface-generated fluorescence," Appl. Opt. 38, 724-732 (1999).
    [CrossRef]
  2. L. Polerecky, J. Hamrle, and B. D. MacCraith, "Theory of the radiation of dipoles placed within a multilayer system," Appl. Opt. 39, 3968-3977 (2000).
    [CrossRef]
  3. D. Marcuse, "Launching light into fiber cores from sources located in the cladding," IEEE J. Lightwave Technol. 6, 1273-1279 (1988).
    [CrossRef]
  4. E. H. Lee, R. E. Benner, J. B. Fenn, and R. K. Change, "Angular distribution of fluorescence from liquids and monodispersed spheres by evanescent wave excitation," Appl. Opt. 18, 862-868 (1979).
    [CrossRef]
  5. C. R. Taitt, G. P. Anderson, and F. S. Ligler, "Evanescent wave fluorescence biosensors," Biosens. Bioelectron. 20, 2470-2487 (2005).
    [CrossRef] [PubMed]
  6. L. C. Shriver-Lake, K. A. Breslin, P. T. Charles, D. W. Conrad, J. P. Golden, and F. S. Ligler, "Detection of TNT in water using an evanescent wave fiber-optic biosensor," Anal. Chem. 67, 2431-2435 (1995).
    [CrossRef]
  7. R. M. Wadkins, J. P. Golden, L. M. Pritsiolas, and F. S. Ligler, "Detection of multiple toxic agents using a planar array immunosensor," Biosens. Bioelectron. 13, 407-415 (1998).
    [CrossRef] [PubMed]
  8. S. Ekgasit, C. Thammacharoen, F. Yu, and W. Knoll, "Evanescent field in surface plasmon resonance and surface plasmon field-enhanced fluorescence spectroscopies," Anal. Chem. 76, 2210-2219 (2004).
    [CrossRef] [PubMed]
  9. N. Fang, Z. Liu, T.-J. Yen, and X. Zhang, "Experimental study of transmission enhancement of evanescent waves through silver films assisted by surface plasmon excitation," Appl. Phys. A 80, 1315-1325 (2005).
    [CrossRef]
  10. R. C. Jorgenson and S. S. Yee, "A fiber-optic chemical sensor based on surface plasmon resonance," Sens. Act. B,  12, 213-220 (1993).
    [CrossRef]
  11. R. Slavik, J. Homola, J. Ctyroky, and E. Brynda, "Novel spectral fiber optic sensor based on surface plasmon resonance," Sens. Act. B,  74, 106-111 (2001).
    [CrossRef]
  12. N. Calander and M. Willander, "Optical field enhancement by surface-plasmon resonance: Theory and application to micro-bioelectronics," in Proceedings of IEEE conference on Optoelectronic and Microelectronic Materials and Devices (IEEE 2002), 531-536 (2002).
  13. T. Ruckstuhl and D. Verdes, "Supercritical angle fluorescence (SAF) microscopy," Opt. Express 12, 4246-4254 (2004) http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-18-4246
    [CrossRef] [PubMed]
  14. R. Blue, N. Kent, L. Polerecky, H. McEvoy, D. Gray, and B.D. MacCraith, "Platform for enhanced detection efficiency in luminescence-based sensors," Electron. Lett. 41, 682-684 (2005).
    [CrossRef]
  15. J. -F. Gouin, A. Goyle, and B. D. MacCraith, "Fluorescence capture by planar waveguide as platform for optical sensors," Electron. Lett. 34, 1685-1686 (1998).
    [CrossRef]
  16. J. P. Golden, G. P. Anderson, S. Y. Rabbany, and F. S. Ligler, "An evanescent wave biosensor- Part II: Fluorescent signal acquisition from tapered fiber optic probes," IEEE Trans. Biomed. Eng. 41, 585-591 (1994).
    [CrossRef] [PubMed]
  17. Y. Raichlin, L. Fel, and A. Katzir, "Evanescent-wave infrared spectroscopy with flattened fibers as sensing elements," Opt. Lett. 28, 2297-2299 (2003).
    [CrossRef] [PubMed]
  18. See RAPTOR™ 4-channel bioassay system made by Research International, Inc., available at http://www.resrchintl.com/raptor-detection-system.html.
  19. E. E. Carlyon, C. R. Lowe, D. Reid, and I. Bennion, "A single mode fiber-optic evanescent wave biosensor," Biosens. Bioelectron. 7, 141-146 (1992).
    [CrossRef] [PubMed]
  20. Z. M. Hale, F. P. Payne, R. S. Marks, C. R. Lowe, and M. M. Levine, "The single mode tapered optical fiber loop immunosensor," Biosens. Bioelectron. 11, 137-148 (1996).
    [CrossRef]
  21. T. R. Glass, S. Lackie, and T. Hirschfeld, "Effect of numerical aperture on signal level in cylindrical waveguide evanescent fluorosensors," Appl. Opt. 26, 2181-2187 (1987).
    [CrossRef] [PubMed]
  22. J. Ma and W. Bock, "Reshaping sample fluid droplet: toward combined performance enhancement of evanescent-wave fiber-optic fluorometer", Opt. Lett. 32, 8-10 (2007).
    [CrossRef]
  23. D. Gloge, "Weakly guiding fibers," Appl. Opt. 10, 2252-2258 (1971).
    [CrossRef] [PubMed]
  24. A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman and Hall, 1983).
  25. G. Keiser, Optical fiber communications (McGraw-Hill Higher Education, third edition, 2000), Ch. 5.
  26. M. J. Adams, D. N. Payne, and F. M. E. Sladen, "Leaky rays on optical fibers of arbitrary (circularly symmetric) index profiles", Electron. Lett. 11, 238-240 (1975).
    [CrossRef]

2007 (1)

2005 (3)

C. R. Taitt, G. P. Anderson, and F. S. Ligler, "Evanescent wave fluorescence biosensors," Biosens. Bioelectron. 20, 2470-2487 (2005).
[CrossRef] [PubMed]

N. Fang, Z. Liu, T.-J. Yen, and X. Zhang, "Experimental study of transmission enhancement of evanescent waves through silver films assisted by surface plasmon excitation," Appl. Phys. A 80, 1315-1325 (2005).
[CrossRef]

R. Blue, N. Kent, L. Polerecky, H. McEvoy, D. Gray, and B.D. MacCraith, "Platform for enhanced detection efficiency in luminescence-based sensors," Electron. Lett. 41, 682-684 (2005).
[CrossRef]

2004 (2)

S. Ekgasit, C. Thammacharoen, F. Yu, and W. Knoll, "Evanescent field in surface plasmon resonance and surface plasmon field-enhanced fluorescence spectroscopies," Anal. Chem. 76, 2210-2219 (2004).
[CrossRef] [PubMed]

T. Ruckstuhl and D. Verdes, "Supercritical angle fluorescence (SAF) microscopy," Opt. Express 12, 4246-4254 (2004) http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-18-4246
[CrossRef] [PubMed]

2003 (1)

2001 (1)

R. Slavik, J. Homola, J. Ctyroky, and E. Brynda, "Novel spectral fiber optic sensor based on surface plasmon resonance," Sens. Act. B,  74, 106-111 (2001).
[CrossRef]

2000 (1)

1999 (1)

1998 (2)

R. M. Wadkins, J. P. Golden, L. M. Pritsiolas, and F. S. Ligler, "Detection of multiple toxic agents using a planar array immunosensor," Biosens. Bioelectron. 13, 407-415 (1998).
[CrossRef] [PubMed]

J. -F. Gouin, A. Goyle, and B. D. MacCraith, "Fluorescence capture by planar waveguide as platform for optical sensors," Electron. Lett. 34, 1685-1686 (1998).
[CrossRef]

1996 (1)

Z. M. Hale, F. P. Payne, R. S. Marks, C. R. Lowe, and M. M. Levine, "The single mode tapered optical fiber loop immunosensor," Biosens. Bioelectron. 11, 137-148 (1996).
[CrossRef]

1995 (1)

L. C. Shriver-Lake, K. A. Breslin, P. T. Charles, D. W. Conrad, J. P. Golden, and F. S. Ligler, "Detection of TNT in water using an evanescent wave fiber-optic biosensor," Anal. Chem. 67, 2431-2435 (1995).
[CrossRef]

1994 (1)

J. P. Golden, G. P. Anderson, S. Y. Rabbany, and F. S. Ligler, "An evanescent wave biosensor- Part II: Fluorescent signal acquisition from tapered fiber optic probes," IEEE Trans. Biomed. Eng. 41, 585-591 (1994).
[CrossRef] [PubMed]

1993 (1)

R. C. Jorgenson and S. S. Yee, "A fiber-optic chemical sensor based on surface plasmon resonance," Sens. Act. B,  12, 213-220 (1993).
[CrossRef]

1992 (1)

E. E. Carlyon, C. R. Lowe, D. Reid, and I. Bennion, "A single mode fiber-optic evanescent wave biosensor," Biosens. Bioelectron. 7, 141-146 (1992).
[CrossRef] [PubMed]

1988 (1)

D. Marcuse, "Launching light into fiber cores from sources located in the cladding," IEEE J. Lightwave Technol. 6, 1273-1279 (1988).
[CrossRef]

1987 (1)

1979 (1)

1975 (1)

M. J. Adams, D. N. Payne, and F. M. E. Sladen, "Leaky rays on optical fibers of arbitrary (circularly symmetric) index profiles", Electron. Lett. 11, 238-240 (1975).
[CrossRef]

1971 (1)

Adams, M. J.

M. J. Adams, D. N. Payne, and F. M. E. Sladen, "Leaky rays on optical fibers of arbitrary (circularly symmetric) index profiles", Electron. Lett. 11, 238-240 (1975).
[CrossRef]

Anderson, G. P.

C. R. Taitt, G. P. Anderson, and F. S. Ligler, "Evanescent wave fluorescence biosensors," Biosens. Bioelectron. 20, 2470-2487 (2005).
[CrossRef] [PubMed]

J. P. Golden, G. P. Anderson, S. Y. Rabbany, and F. S. Ligler, "An evanescent wave biosensor- Part II: Fluorescent signal acquisition from tapered fiber optic probes," IEEE Trans. Biomed. Eng. 41, 585-591 (1994).
[CrossRef] [PubMed]

Benner, R. E.

Bennion, I.

E. E. Carlyon, C. R. Lowe, D. Reid, and I. Bennion, "A single mode fiber-optic evanescent wave biosensor," Biosens. Bioelectron. 7, 141-146 (1992).
[CrossRef] [PubMed]

Blue, R.

R. Blue, N. Kent, L. Polerecky, H. McEvoy, D. Gray, and B.D. MacCraith, "Platform for enhanced detection efficiency in luminescence-based sensors," Electron. Lett. 41, 682-684 (2005).
[CrossRef]

Bock, W.

Breslin, K. A.

L. C. Shriver-Lake, K. A. Breslin, P. T. Charles, D. W. Conrad, J. P. Golden, and F. S. Ligler, "Detection of TNT in water using an evanescent wave fiber-optic biosensor," Anal. Chem. 67, 2431-2435 (1995).
[CrossRef]

Brynda, E.

R. Slavik, J. Homola, J. Ctyroky, and E. Brynda, "Novel spectral fiber optic sensor based on surface plasmon resonance," Sens. Act. B,  74, 106-111 (2001).
[CrossRef]

Carlyon, E. E.

E. E. Carlyon, C. R. Lowe, D. Reid, and I. Bennion, "A single mode fiber-optic evanescent wave biosensor," Biosens. Bioelectron. 7, 141-146 (1992).
[CrossRef] [PubMed]

Change, R. K.

Charles, P. T.

L. C. Shriver-Lake, K. A. Breslin, P. T. Charles, D. W. Conrad, J. P. Golden, and F. S. Ligler, "Detection of TNT in water using an evanescent wave fiber-optic biosensor," Anal. Chem. 67, 2431-2435 (1995).
[CrossRef]

Conrad, D. W.

L. C. Shriver-Lake, K. A. Breslin, P. T. Charles, D. W. Conrad, J. P. Golden, and F. S. Ligler, "Detection of TNT in water using an evanescent wave fiber-optic biosensor," Anal. Chem. 67, 2431-2435 (1995).
[CrossRef]

Ctyroky, J.

R. Slavik, J. Homola, J. Ctyroky, and E. Brynda, "Novel spectral fiber optic sensor based on surface plasmon resonance," Sens. Act. B,  74, 106-111 (2001).
[CrossRef]

Ekgasit, S.

S. Ekgasit, C. Thammacharoen, F. Yu, and W. Knoll, "Evanescent field in surface plasmon resonance and surface plasmon field-enhanced fluorescence spectroscopies," Anal. Chem. 76, 2210-2219 (2004).
[CrossRef] [PubMed]

Enderlein, J.

Fang, N.

N. Fang, Z. Liu, T.-J. Yen, and X. Zhang, "Experimental study of transmission enhancement of evanescent waves through silver films assisted by surface plasmon excitation," Appl. Phys. A 80, 1315-1325 (2005).
[CrossRef]

Fel, L.

Fenn, J. B.

Glass, T. R.

Gloge, D.

Golden, J. P.

R. M. Wadkins, J. P. Golden, L. M. Pritsiolas, and F. S. Ligler, "Detection of multiple toxic agents using a planar array immunosensor," Biosens. Bioelectron. 13, 407-415 (1998).
[CrossRef] [PubMed]

L. C. Shriver-Lake, K. A. Breslin, P. T. Charles, D. W. Conrad, J. P. Golden, and F. S. Ligler, "Detection of TNT in water using an evanescent wave fiber-optic biosensor," Anal. Chem. 67, 2431-2435 (1995).
[CrossRef]

J. P. Golden, G. P. Anderson, S. Y. Rabbany, and F. S. Ligler, "An evanescent wave biosensor- Part II: Fluorescent signal acquisition from tapered fiber optic probes," IEEE Trans. Biomed. Eng. 41, 585-591 (1994).
[CrossRef] [PubMed]

Gouin, J. -F.

J. -F. Gouin, A. Goyle, and B. D. MacCraith, "Fluorescence capture by planar waveguide as platform for optical sensors," Electron. Lett. 34, 1685-1686 (1998).
[CrossRef]

Goyle, A.

J. -F. Gouin, A. Goyle, and B. D. MacCraith, "Fluorescence capture by planar waveguide as platform for optical sensors," Electron. Lett. 34, 1685-1686 (1998).
[CrossRef]

Gray, D.

R. Blue, N. Kent, L. Polerecky, H. McEvoy, D. Gray, and B.D. MacCraith, "Platform for enhanced detection efficiency in luminescence-based sensors," Electron. Lett. 41, 682-684 (2005).
[CrossRef]

Hale, Z. M.

Z. M. Hale, F. P. Payne, R. S. Marks, C. R. Lowe, and M. M. Levine, "The single mode tapered optical fiber loop immunosensor," Biosens. Bioelectron. 11, 137-148 (1996).
[CrossRef]

Hamrle, J.

Hirschfeld, T.

Homola, J.

R. Slavik, J. Homola, J. Ctyroky, and E. Brynda, "Novel spectral fiber optic sensor based on surface plasmon resonance," Sens. Act. B,  74, 106-111 (2001).
[CrossRef]

Jorgenson, R. C.

R. C. Jorgenson and S. S. Yee, "A fiber-optic chemical sensor based on surface plasmon resonance," Sens. Act. B,  12, 213-220 (1993).
[CrossRef]

Katzir, A.

Kent, N.

R. Blue, N. Kent, L. Polerecky, H. McEvoy, D. Gray, and B.D. MacCraith, "Platform for enhanced detection efficiency in luminescence-based sensors," Electron. Lett. 41, 682-684 (2005).
[CrossRef]

Knoll, W.

S. Ekgasit, C. Thammacharoen, F. Yu, and W. Knoll, "Evanescent field in surface plasmon resonance and surface plasmon field-enhanced fluorescence spectroscopies," Anal. Chem. 76, 2210-2219 (2004).
[CrossRef] [PubMed]

Lackie, S.

Lee, E. H.

Levine, M. M.

Z. M. Hale, F. P. Payne, R. S. Marks, C. R. Lowe, and M. M. Levine, "The single mode tapered optical fiber loop immunosensor," Biosens. Bioelectron. 11, 137-148 (1996).
[CrossRef]

Ligler, F. S.

C. R. Taitt, G. P. Anderson, and F. S. Ligler, "Evanescent wave fluorescence biosensors," Biosens. Bioelectron. 20, 2470-2487 (2005).
[CrossRef] [PubMed]

R. M. Wadkins, J. P. Golden, L. M. Pritsiolas, and F. S. Ligler, "Detection of multiple toxic agents using a planar array immunosensor," Biosens. Bioelectron. 13, 407-415 (1998).
[CrossRef] [PubMed]

L. C. Shriver-Lake, K. A. Breslin, P. T. Charles, D. W. Conrad, J. P. Golden, and F. S. Ligler, "Detection of TNT in water using an evanescent wave fiber-optic biosensor," Anal. Chem. 67, 2431-2435 (1995).
[CrossRef]

J. P. Golden, G. P. Anderson, S. Y. Rabbany, and F. S. Ligler, "An evanescent wave biosensor- Part II: Fluorescent signal acquisition from tapered fiber optic probes," IEEE Trans. Biomed. Eng. 41, 585-591 (1994).
[CrossRef] [PubMed]

Liu, Z.

N. Fang, Z. Liu, T.-J. Yen, and X. Zhang, "Experimental study of transmission enhancement of evanescent waves through silver films assisted by surface plasmon excitation," Appl. Phys. A 80, 1315-1325 (2005).
[CrossRef]

Lowe, C. R.

Z. M. Hale, F. P. Payne, R. S. Marks, C. R. Lowe, and M. M. Levine, "The single mode tapered optical fiber loop immunosensor," Biosens. Bioelectron. 11, 137-148 (1996).
[CrossRef]

E. E. Carlyon, C. R. Lowe, D. Reid, and I. Bennion, "A single mode fiber-optic evanescent wave biosensor," Biosens. Bioelectron. 7, 141-146 (1992).
[CrossRef] [PubMed]

Ma, J.

MacCraith, B. D.

L. Polerecky, J. Hamrle, and B. D. MacCraith, "Theory of the radiation of dipoles placed within a multilayer system," Appl. Opt. 39, 3968-3977 (2000).
[CrossRef]

J. -F. Gouin, A. Goyle, and B. D. MacCraith, "Fluorescence capture by planar waveguide as platform for optical sensors," Electron. Lett. 34, 1685-1686 (1998).
[CrossRef]

MacCraith, B.D.

R. Blue, N. Kent, L. Polerecky, H. McEvoy, D. Gray, and B.D. MacCraith, "Platform for enhanced detection efficiency in luminescence-based sensors," Electron. Lett. 41, 682-684 (2005).
[CrossRef]

Marcuse, D.

D. Marcuse, "Launching light into fiber cores from sources located in the cladding," IEEE J. Lightwave Technol. 6, 1273-1279 (1988).
[CrossRef]

Marks, R. S.

Z. M. Hale, F. P. Payne, R. S. Marks, C. R. Lowe, and M. M. Levine, "The single mode tapered optical fiber loop immunosensor," Biosens. Bioelectron. 11, 137-148 (1996).
[CrossRef]

McEvoy, H.

R. Blue, N. Kent, L. Polerecky, H. McEvoy, D. Gray, and B.D. MacCraith, "Platform for enhanced detection efficiency in luminescence-based sensors," Electron. Lett. 41, 682-684 (2005).
[CrossRef]

Payne, D. N.

M. J. Adams, D. N. Payne, and F. M. E. Sladen, "Leaky rays on optical fibers of arbitrary (circularly symmetric) index profiles", Electron. Lett. 11, 238-240 (1975).
[CrossRef]

Payne, F. P.

Z. M. Hale, F. P. Payne, R. S. Marks, C. R. Lowe, and M. M. Levine, "The single mode tapered optical fiber loop immunosensor," Biosens. Bioelectron. 11, 137-148 (1996).
[CrossRef]

Polerecky, L.

R. Blue, N. Kent, L. Polerecky, H. McEvoy, D. Gray, and B.D. MacCraith, "Platform for enhanced detection efficiency in luminescence-based sensors," Electron. Lett. 41, 682-684 (2005).
[CrossRef]

L. Polerecky, J. Hamrle, and B. D. MacCraith, "Theory of the radiation of dipoles placed within a multilayer system," Appl. Opt. 39, 3968-3977 (2000).
[CrossRef]

Pritsiolas, L. M.

R. M. Wadkins, J. P. Golden, L. M. Pritsiolas, and F. S. Ligler, "Detection of multiple toxic agents using a planar array immunosensor," Biosens. Bioelectron. 13, 407-415 (1998).
[CrossRef] [PubMed]

Rabbany, S. Y.

J. P. Golden, G. P. Anderson, S. Y. Rabbany, and F. S. Ligler, "An evanescent wave biosensor- Part II: Fluorescent signal acquisition from tapered fiber optic probes," IEEE Trans. Biomed. Eng. 41, 585-591 (1994).
[CrossRef] [PubMed]

Raichlin, Y.

Reid, D.

E. E. Carlyon, C. R. Lowe, D. Reid, and I. Bennion, "A single mode fiber-optic evanescent wave biosensor," Biosens. Bioelectron. 7, 141-146 (1992).
[CrossRef] [PubMed]

Ruckstuhl, T.

Shriver-Lake, L. C.

L. C. Shriver-Lake, K. A. Breslin, P. T. Charles, D. W. Conrad, J. P. Golden, and F. S. Ligler, "Detection of TNT in water using an evanescent wave fiber-optic biosensor," Anal. Chem. 67, 2431-2435 (1995).
[CrossRef]

Sladen, F. M. E.

M. J. Adams, D. N. Payne, and F. M. E. Sladen, "Leaky rays on optical fibers of arbitrary (circularly symmetric) index profiles", Electron. Lett. 11, 238-240 (1975).
[CrossRef]

Slavik, R.

R. Slavik, J. Homola, J. Ctyroky, and E. Brynda, "Novel spectral fiber optic sensor based on surface plasmon resonance," Sens. Act. B,  74, 106-111 (2001).
[CrossRef]

Stefean, S.

Taitt, C. R.

C. R. Taitt, G. P. Anderson, and F. S. Ligler, "Evanescent wave fluorescence biosensors," Biosens. Bioelectron. 20, 2470-2487 (2005).
[CrossRef] [PubMed]

Thammacharoen, C.

S. Ekgasit, C. Thammacharoen, F. Yu, and W. Knoll, "Evanescent field in surface plasmon resonance and surface plasmon field-enhanced fluorescence spectroscopies," Anal. Chem. 76, 2210-2219 (2004).
[CrossRef] [PubMed]

Verdes, D.

Wadkins, R. M.

R. M. Wadkins, J. P. Golden, L. M. Pritsiolas, and F. S. Ligler, "Detection of multiple toxic agents using a planar array immunosensor," Biosens. Bioelectron. 13, 407-415 (1998).
[CrossRef] [PubMed]

Yee, S. S.

R. C. Jorgenson and S. S. Yee, "A fiber-optic chemical sensor based on surface plasmon resonance," Sens. Act. B,  12, 213-220 (1993).
[CrossRef]

Yen, T.-J.

N. Fang, Z. Liu, T.-J. Yen, and X. Zhang, "Experimental study of transmission enhancement of evanescent waves through silver films assisted by surface plasmon excitation," Appl. Phys. A 80, 1315-1325 (2005).
[CrossRef]

Yu, F.

S. Ekgasit, C. Thammacharoen, F. Yu, and W. Knoll, "Evanescent field in surface plasmon resonance and surface plasmon field-enhanced fluorescence spectroscopies," Anal. Chem. 76, 2210-2219 (2004).
[CrossRef] [PubMed]

Zhang, X.

N. Fang, Z. Liu, T.-J. Yen, and X. Zhang, "Experimental study of transmission enhancement of evanescent waves through silver films assisted by surface plasmon excitation," Appl. Phys. A 80, 1315-1325 (2005).
[CrossRef]

Anal. Chem. (2)

S. Ekgasit, C. Thammacharoen, F. Yu, and W. Knoll, "Evanescent field in surface plasmon resonance and surface plasmon field-enhanced fluorescence spectroscopies," Anal. Chem. 76, 2210-2219 (2004).
[CrossRef] [PubMed]

L. C. Shriver-Lake, K. A. Breslin, P. T. Charles, D. W. Conrad, J. P. Golden, and F. S. Ligler, "Detection of TNT in water using an evanescent wave fiber-optic biosensor," Anal. Chem. 67, 2431-2435 (1995).
[CrossRef]

Appl. Opt. (5)

Appl. Phys. A (1)

N. Fang, Z. Liu, T.-J. Yen, and X. Zhang, "Experimental study of transmission enhancement of evanescent waves through silver films assisted by surface plasmon excitation," Appl. Phys. A 80, 1315-1325 (2005).
[CrossRef]

Biosens. Bioelectron. (4)

C. R. Taitt, G. P. Anderson, and F. S. Ligler, "Evanescent wave fluorescence biosensors," Biosens. Bioelectron. 20, 2470-2487 (2005).
[CrossRef] [PubMed]

R. M. Wadkins, J. P. Golden, L. M. Pritsiolas, and F. S. Ligler, "Detection of multiple toxic agents using a planar array immunosensor," Biosens. Bioelectron. 13, 407-415 (1998).
[CrossRef] [PubMed]

E. E. Carlyon, C. R. Lowe, D. Reid, and I. Bennion, "A single mode fiber-optic evanescent wave biosensor," Biosens. Bioelectron. 7, 141-146 (1992).
[CrossRef] [PubMed]

Z. M. Hale, F. P. Payne, R. S. Marks, C. R. Lowe, and M. M. Levine, "The single mode tapered optical fiber loop immunosensor," Biosens. Bioelectron. 11, 137-148 (1996).
[CrossRef]

Electron. Lett. (3)

R. Blue, N. Kent, L. Polerecky, H. McEvoy, D. Gray, and B.D. MacCraith, "Platform for enhanced detection efficiency in luminescence-based sensors," Electron. Lett. 41, 682-684 (2005).
[CrossRef]

J. -F. Gouin, A. Goyle, and B. D. MacCraith, "Fluorescence capture by planar waveguide as platform for optical sensors," Electron. Lett. 34, 1685-1686 (1998).
[CrossRef]

M. J. Adams, D. N. Payne, and F. M. E. Sladen, "Leaky rays on optical fibers of arbitrary (circularly symmetric) index profiles", Electron. Lett. 11, 238-240 (1975).
[CrossRef]

IEEE J. Lightwave Technol. (1)

D. Marcuse, "Launching light into fiber cores from sources located in the cladding," IEEE J. Lightwave Technol. 6, 1273-1279 (1988).
[CrossRef]

IEEE Trans. Biomed. Eng. (1)

J. P. Golden, G. P. Anderson, S. Y. Rabbany, and F. S. Ligler, "An evanescent wave biosensor- Part II: Fluorescent signal acquisition from tapered fiber optic probes," IEEE Trans. Biomed. Eng. 41, 585-591 (1994).
[CrossRef] [PubMed]

Opt. Express (1)

Opt. Lett. (2)

Sens. Act. B (2)

R. C. Jorgenson and S. S. Yee, "A fiber-optic chemical sensor based on surface plasmon resonance," Sens. Act. B,  12, 213-220 (1993).
[CrossRef]

R. Slavik, J. Homola, J. Ctyroky, and E. Brynda, "Novel spectral fiber optic sensor based on surface plasmon resonance," Sens. Act. B,  74, 106-111 (2001).
[CrossRef]

Other (4)

N. Calander and M. Willander, "Optical field enhancement by surface-plasmon resonance: Theory and application to micro-bioelectronics," in Proceedings of IEEE conference on Optoelectronic and Microelectronic Materials and Devices (IEEE 2002), 531-536 (2002).

See RAPTOR™ 4-channel bioassay system made by Research International, Inc., available at http://www.resrchintl.com/raptor-detection-system.html.

A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman and Hall, 1983).

G. Keiser, Optical fiber communications (McGraw-Hill Higher Education, third edition, 2000), Ch. 5.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Representation of rays in the EW field, indicating deeper penetration of EW field when ray incident angles approach the critical angle.

Fig. 2.
Fig. 2.

Analysis of a skew ray under TIR and a tunnelling ray with associated mode just below cutoff. (a) Analysis of a skew ray formation at the position r under TIR. (b) Local wave-vector decomposition for a ray incident on any position r of a step-indexed fiber core end face.

Fig. 3.
Fig. 3.

Photos showing several typical fiber alignment angles used to illustrate experimental results in Fig. 5 (i-fiber: illuminating fiber; r-fiber: receiving fiber; FOSED: fiber-optic side-emitting diffuser).

Fig. 4.
Fig. 4.

Experimental setup (i-fiber: illuminating fiber; r-fiber: receiving fiber; LVF: linear variable filter).

Fig. 5.
Fig. 5.

Experimental curves associated with different fiber alignment angles. (a) Poor signal quality when the r-fiber is illuminated by the strong excitation power directly launched from the core of the i-fiber; (b) Dramatic improvement of signal quality when the r-fiber is illuminated by the FOSED.

Equations (17)

Equations on this page are rendered with MathJax. Learn more.

E 2 = E 20 exp ( γ 2 · x ) exp ( i β z ) ,
γ 2 = n 2 k 0 ( n 1 n 2 ) 2 sin 2 θ 1 1 ,
P clad P core + P clad 1.33 N 1.89 V
V = 2 π λ r n 1 2 n 2 2
N = V 2 2
P clad P core + P clad 0.2 % .
N tnl N g 1 + ( 2 Δ ) 1 2 3 π ,
N A mdn = n 0 sin θ 0 mdn = n 1 2 n 2 2
cos γ · sin θ t = cos ϕ = 1 n 2 2 n 1 2
n 0 sin θ skw n 1 2 n 2 2 cos γ = N A mdn cos γ N A mdn 0 < γ < π 2
n 2 2 k 0 2 β r 2 β ϕ 2 β < n 2 k 0
β ϕ = ν ρ
n 2 2 k 0 2 v 2 ρ 2 β < n 2 k 0
n 1 2 n 2 2 1 ( r ρ ) 2 cos 2 φ n 0 sin θ i > n 1 2 n 2 2
N A mdn 1 ( r ρ ) 2 cos 2 φ n 0 sin θ i > N A mdn
sin 1 N A mdn θ i < π 2
B ( θ ) = B 0 cos n θ

Metrics