Abstract

The transition rate of the stimulated emission at the higher energy levels of the excited states in a silica-based erbium-doped fiber can be enhanced by introducing fundamental-mode cutoff filtering mechanism. The electrons excited by optical pumping can more occupy the higher energy levels of the excited states when the transition rate for the lower energy levels (longer wavelengths) of the excited states is substantially suppressed. The achieved lasing wavelength can thus be moving toward the shorter wavelengths of the gain bandwidth. The laser transition between 4I13/24I15/2 multiplets of the silica-based erbium-doped fiber is known to emit fluorescence with the shortest wavelength around 1450 nm. We, for the first time, experimentally demonstrate a widely tunable fiber laser at the wavelength very close to 1450 nm by using a standard silica-based C-band erbium-doped fiber. The tuning range covers 1451.9–1548.1 nm, with the best temperature tuning efficiency as high as 57.3 nm/°C, by discretely introducing tunable fundamental-mode cutoff tapered fiber filters along a 16-m-long erbium-doped fiber under a 980 nm pump power around 200 mW. The signal-ASE-ratio can be higher than 45 dB whereas the FWHM of the laser lasing lights can be reduced below 0.2 nm by using an additional Fabry-Perot filter.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Y. Paithankar, J. M. Clifford, B. A. Saleh, E. V. Ross, C. A. Hardaway, and D. Barnette, "Subsurface skin renewal by treatment with a 1450-nm laser in combination with dynamic cooling," J. of Biomedical Opt. 8, 545-551 (2003).
    [CrossRef]
  2. N. Fournier, S. Dahan, G. Barneon, S. Diridollou, J. M. Lagarde, Y. Gall, and S. Mordon, "Nonablative remodeling: clinical, histologic, ultrasound imaging, and profilometric evalution of a 1540 nm Er: glass laser," Dermatol. Surg. 27, 799-806 (2001).
    [CrossRef] [PubMed]
  3. C. C. Wang, Y. M. Sue, C. H. Yang, and C. K. Chen, "A comparison of Q-switched alexandrite laser and intense pulsed light for the treatment of freckles and lentigines in Asian persons: A randomized, physician-blinded, split-face comparative trial," J. Am. Acad. Dermatol. 54, 804-810 (2006).
    [CrossRef]
  4. J. Rao and R. E. Fitzpatrick, "Use of the Q-switched 755-nm Alexandrite laser to treat recalcitrant pigment after depigmentation therapy for vitiligo," Dermatol. Surg. 30, 1043-1045 (2004).
    [CrossRef] [PubMed]
  5. S. Shen, A. Jha, L. Huang, and P. Joshi, "980-nm diode-pumped Tm3+/Yb3+-codoped tellurite fiber for S-band amplification," Opt. Lett. 30, 1437-1439 (2005).
    [CrossRef] [PubMed]
  6. E. R. M. Taylor, L. N. Ng, J. Nilsson, R. Caponi, A. Pagano, M. Potenza, and B. Sordo, "Thulium-doped tellurite fiber amplifier," IEEE Photon. Technol. Lett. 16, 777-779 (2004).
    [CrossRef]
  7. Y. Akasaka and S. Yam, "Gain bandwidth expansion to S-plus band using fiber OPA pumped by gain-clamping signal of a GS-TDFA," in Proc. of OFC 2002, ThGG30 (2002).
  8. J. Zhang, S. Dai, S. Li, S. Xu, G. Wang, and L. Hu, "Characterization of broadband amplified spontaneous emission of erbium-doped tellurite fiber with D-shape cladding," Mater. Lett. 58, 3532-3535 (2004).
    [CrossRef]
  9. J. Zhang, S. Dai, S. Xu, G. Wang, and L. Hu, "Fabrication and amplified spontaneous emission spectrum of Er3+-doped tellurite glass fiber with D-shape cladding," J. Alloys Compd. 387, 308-312 (2005).
    [CrossRef]
  10. M. C. Ho, K. Uesaka, M. Marhic, Y. Akasaka, and L. G. Kazovsky, "200-nm-Bandwidth fiber optic amplifier combining parametric and Raman gain," J. Lightwave Technol. 19, 977981 (2001).
  11. E. Desurvire and J. R. Simpson, "Evaluation of 4I15/2 and 4I13/2 Stark-level energies in erbium-doped aluminosilicate glass fibers," Opt. Lett. 15, 547-549 (1990).
    [CrossRef] [PubMed]
  12. N. K. Chen, K. C. Hsu, S. Chi, and Y. Lai, "Tunable Er3+-doped fiber amplifiers covering S and C + L bands over 1490-1610 nm based on discrete fundamental-mode cutoff filters," Opt. Lett. 31, 2842-2844 (2006).
    [CrossRef] [PubMed]
  13. M. A. Arbore, Y. Zhou, H. Thiele, J. Bromage, and L. Nelson, "S-band erbium-doped fiber amplifiers for WDM transmission between 1488 and 1508 nm," in Proc. of OFC 2003, WK2 (2003).
  14. M. Foroni, F. Poli, A. Cucinotta, and S. Selleri, "S-band depressed-cladding erbium-doped fiber amplifier with double-pass configuration," Opt. Lett. 31, 3228-3230 (2006).
    [CrossRef] [PubMed]
  15. E. Desurvire, Erbium-doped fiber amplifiers: Principles and applications (Wiley-Interscience, New York, 1994), Chap. 1.
  16. M. A. Arbore, "Application of fundamental-mode cutoff for novel amplifiers and lasers," in Proc. of OFC 2005, OFB4 (2005).
  17. D. S. Gasper, P. F. Wysocki, W. A. Reed, and A. M. Venqsarkar, "Evaluation of chromatic dispersion in erbium-doped fibers," in Proc. of LEOS 1993, FPW4.2 (1993).
    [CrossRef]
  18. N. K. Chen, S. Chi, and S. M. Tseng, "Wideband tunable fiber short-pass filter based on side-polished fiber with dispersive polymer overlay," Opt. Lett. 29, 2219-2221 (2004).
    [CrossRef] [PubMed]
  19. H. Ahmad, N. K. Saat, and S. W. Harun, "S-band erbium-doped fiber ring laser using a fiber Bragg grating," Laser Phys. Lett. 2, 369-371 (2005).
    [CrossRef]
  20. A. Bellemare, M. Karasek, C. Riviere, F. Babin, G. He, V. Roy, and G. W. Schinn, "A broadly tunable erbium-doped fiber ring laser: experimentation and modeling," IEEE J. Sel. Top. Quantum. Electron. 7, 22-29 (2001).
    [CrossRef]
  21. J. Yang, S. Dai, N. Dai, L. Wen, L. Hu, and Z. Jiang, "Investigation on nonradiative decay of 4I13/2 → 4I15/2 transition of Er3+-doped oxide glasses," J. Lumin. 106, 9-14 (2004).
    [CrossRef]
  22. S. Sudo, Optical Fiber Amplifiers: Materials, Devices, and Applications (Artech House, Boston, 1997), Chap. 1.
  23. N. K. Chen, S. Chi, and S. M. Tseng, "An efficient local fundamental-mode cutoff for thermo-optic tunable Er3+-doped fiber ring laser," Opt. Express 13, 7250-7255 (2005).
    [CrossRef] [PubMed]
  24. N. K. Chen and S. Chi, "Novel local liquid-core single mode fiber for dispersion engineering using submicron tapered fiber," in Proc. of OFC 2007, JThA5 (2007).
  25. W. L. Barnes, R. I. Laming, E. J. Tarbox, and P. R. Morkel, "Absorption and emission cross section of Er3+ doped silica fibers," IEEE J. Quan. Electron. 27, 1004-1010 (1991).
    [CrossRef]
  26. X. S. Jiang, Q Yang, G. Vienne, Y. H. Li, L. M. Tong, J. J. Zhang, and L. L. Hu, "Demonstration of microfiber knot laser," Appl. Phys. Lett. 89, Art. no. 143513 (2006).
    [CrossRef]

2006 (3)

C. C. Wang, Y. M. Sue, C. H. Yang, and C. K. Chen, "A comparison of Q-switched alexandrite laser and intense pulsed light for the treatment of freckles and lentigines in Asian persons: A randomized, physician-blinded, split-face comparative trial," J. Am. Acad. Dermatol. 54, 804-810 (2006).
[CrossRef]

N. K. Chen, K. C. Hsu, S. Chi, and Y. Lai, "Tunable Er3+-doped fiber amplifiers covering S and C + L bands over 1490-1610 nm based on discrete fundamental-mode cutoff filters," Opt. Lett. 31, 2842-2844 (2006).
[CrossRef] [PubMed]

M. Foroni, F. Poli, A. Cucinotta, and S. Selleri, "S-band depressed-cladding erbium-doped fiber amplifier with double-pass configuration," Opt. Lett. 31, 3228-3230 (2006).
[CrossRef] [PubMed]

2005 (4)

S. Shen, A. Jha, L. Huang, and P. Joshi, "980-nm diode-pumped Tm3+/Yb3+-codoped tellurite fiber for S-band amplification," Opt. Lett. 30, 1437-1439 (2005).
[CrossRef] [PubMed]

N. K. Chen, S. Chi, and S. M. Tseng, "An efficient local fundamental-mode cutoff for thermo-optic tunable Er3+-doped fiber ring laser," Opt. Express 13, 7250-7255 (2005).
[CrossRef] [PubMed]

H. Ahmad, N. K. Saat, and S. W. Harun, "S-band erbium-doped fiber ring laser using a fiber Bragg grating," Laser Phys. Lett. 2, 369-371 (2005).
[CrossRef]

J. Zhang, S. Dai, S. Xu, G. Wang, and L. Hu, "Fabrication and amplified spontaneous emission spectrum of Er3+-doped tellurite glass fiber with D-shape cladding," J. Alloys Compd. 387, 308-312 (2005).
[CrossRef]

2004 (5)

J. Rao and R. E. Fitzpatrick, "Use of the Q-switched 755-nm Alexandrite laser to treat recalcitrant pigment after depigmentation therapy for vitiligo," Dermatol. Surg. 30, 1043-1045 (2004).
[CrossRef] [PubMed]

E. R. M. Taylor, L. N. Ng, J. Nilsson, R. Caponi, A. Pagano, M. Potenza, and B. Sordo, "Thulium-doped tellurite fiber amplifier," IEEE Photon. Technol. Lett. 16, 777-779 (2004).
[CrossRef]

J. Zhang, S. Dai, S. Li, S. Xu, G. Wang, and L. Hu, "Characterization of broadband amplified spontaneous emission of erbium-doped tellurite fiber with D-shape cladding," Mater. Lett. 58, 3532-3535 (2004).
[CrossRef]

J. Yang, S. Dai, N. Dai, L. Wen, L. Hu, and Z. Jiang, "Investigation on nonradiative decay of 4I13/2 → 4I15/2 transition of Er3+-doped oxide glasses," J. Lumin. 106, 9-14 (2004).
[CrossRef]

N. K. Chen, S. Chi, and S. M. Tseng, "Wideband tunable fiber short-pass filter based on side-polished fiber with dispersive polymer overlay," Opt. Lett. 29, 2219-2221 (2004).
[CrossRef] [PubMed]

2003 (1)

D. Y. Paithankar, J. M. Clifford, B. A. Saleh, E. V. Ross, C. A. Hardaway, and D. Barnette, "Subsurface skin renewal by treatment with a 1450-nm laser in combination with dynamic cooling," J. of Biomedical Opt. 8, 545-551 (2003).
[CrossRef]

2001 (3)

N. Fournier, S. Dahan, G. Barneon, S. Diridollou, J. M. Lagarde, Y. Gall, and S. Mordon, "Nonablative remodeling: clinical, histologic, ultrasound imaging, and profilometric evalution of a 1540 nm Er: glass laser," Dermatol. Surg. 27, 799-806 (2001).
[CrossRef] [PubMed]

M. C. Ho, K. Uesaka, M. Marhic, Y. Akasaka, and L. G. Kazovsky, "200-nm-Bandwidth fiber optic amplifier combining parametric and Raman gain," J. Lightwave Technol. 19, 977981 (2001).

A. Bellemare, M. Karasek, C. Riviere, F. Babin, G. He, V. Roy, and G. W. Schinn, "A broadly tunable erbium-doped fiber ring laser: experimentation and modeling," IEEE J. Sel. Top. Quantum. Electron. 7, 22-29 (2001).
[CrossRef]

1991 (1)

W. L. Barnes, R. I. Laming, E. J. Tarbox, and P. R. Morkel, "Absorption and emission cross section of Er3+ doped silica fibers," IEEE J. Quan. Electron. 27, 1004-1010 (1991).
[CrossRef]

1990 (1)

Ahmad, H.

H. Ahmad, N. K. Saat, and S. W. Harun, "S-band erbium-doped fiber ring laser using a fiber Bragg grating," Laser Phys. Lett. 2, 369-371 (2005).
[CrossRef]

Akasaka, Y.

M. C. Ho, K. Uesaka, M. Marhic, Y. Akasaka, and L. G. Kazovsky, "200-nm-Bandwidth fiber optic amplifier combining parametric and Raman gain," J. Lightwave Technol. 19, 977981 (2001).

Babin, F.

A. Bellemare, M. Karasek, C. Riviere, F. Babin, G. He, V. Roy, and G. W. Schinn, "A broadly tunable erbium-doped fiber ring laser: experimentation and modeling," IEEE J. Sel. Top. Quantum. Electron. 7, 22-29 (2001).
[CrossRef]

Barneon, G.

N. Fournier, S. Dahan, G. Barneon, S. Diridollou, J. M. Lagarde, Y. Gall, and S. Mordon, "Nonablative remodeling: clinical, histologic, ultrasound imaging, and profilometric evalution of a 1540 nm Er: glass laser," Dermatol. Surg. 27, 799-806 (2001).
[CrossRef] [PubMed]

Barnes, W. L.

W. L. Barnes, R. I. Laming, E. J. Tarbox, and P. R. Morkel, "Absorption and emission cross section of Er3+ doped silica fibers," IEEE J. Quan. Electron. 27, 1004-1010 (1991).
[CrossRef]

Barnette, D.

D. Y. Paithankar, J. M. Clifford, B. A. Saleh, E. V. Ross, C. A. Hardaway, and D. Barnette, "Subsurface skin renewal by treatment with a 1450-nm laser in combination with dynamic cooling," J. of Biomedical Opt. 8, 545-551 (2003).
[CrossRef]

Bellemare, A.

A. Bellemare, M. Karasek, C. Riviere, F. Babin, G. He, V. Roy, and G. W. Schinn, "A broadly tunable erbium-doped fiber ring laser: experimentation and modeling," IEEE J. Sel. Top. Quantum. Electron. 7, 22-29 (2001).
[CrossRef]

Caponi, R.

E. R. M. Taylor, L. N. Ng, J. Nilsson, R. Caponi, A. Pagano, M. Potenza, and B. Sordo, "Thulium-doped tellurite fiber amplifier," IEEE Photon. Technol. Lett. 16, 777-779 (2004).
[CrossRef]

Chen, C. K.

C. C. Wang, Y. M. Sue, C. H. Yang, and C. K. Chen, "A comparison of Q-switched alexandrite laser and intense pulsed light for the treatment of freckles and lentigines in Asian persons: A randomized, physician-blinded, split-face comparative trial," J. Am. Acad. Dermatol. 54, 804-810 (2006).
[CrossRef]

Chen, N. K.

Chi, S.

Clifford, J. M.

D. Y. Paithankar, J. M. Clifford, B. A. Saleh, E. V. Ross, C. A. Hardaway, and D. Barnette, "Subsurface skin renewal by treatment with a 1450-nm laser in combination with dynamic cooling," J. of Biomedical Opt. 8, 545-551 (2003).
[CrossRef]

Cucinotta, A.

Dahan, S.

N. Fournier, S. Dahan, G. Barneon, S. Diridollou, J. M. Lagarde, Y. Gall, and S. Mordon, "Nonablative remodeling: clinical, histologic, ultrasound imaging, and profilometric evalution of a 1540 nm Er: glass laser," Dermatol. Surg. 27, 799-806 (2001).
[CrossRef] [PubMed]

Dai, N.

J. Yang, S. Dai, N. Dai, L. Wen, L. Hu, and Z. Jiang, "Investigation on nonradiative decay of 4I13/2 → 4I15/2 transition of Er3+-doped oxide glasses," J. Lumin. 106, 9-14 (2004).
[CrossRef]

Dai, S.

J. Zhang, S. Dai, S. Xu, G. Wang, and L. Hu, "Fabrication and amplified spontaneous emission spectrum of Er3+-doped tellurite glass fiber with D-shape cladding," J. Alloys Compd. 387, 308-312 (2005).
[CrossRef]

J. Yang, S. Dai, N. Dai, L. Wen, L. Hu, and Z. Jiang, "Investigation on nonradiative decay of 4I13/2 → 4I15/2 transition of Er3+-doped oxide glasses," J. Lumin. 106, 9-14 (2004).
[CrossRef]

J. Zhang, S. Dai, S. Li, S. Xu, G. Wang, and L. Hu, "Characterization of broadband amplified spontaneous emission of erbium-doped tellurite fiber with D-shape cladding," Mater. Lett. 58, 3532-3535 (2004).
[CrossRef]

Desurvire, E.

Diridollou, S.

N. Fournier, S. Dahan, G. Barneon, S. Diridollou, J. M. Lagarde, Y. Gall, and S. Mordon, "Nonablative remodeling: clinical, histologic, ultrasound imaging, and profilometric evalution of a 1540 nm Er: glass laser," Dermatol. Surg. 27, 799-806 (2001).
[CrossRef] [PubMed]

Fitzpatrick, R. E.

J. Rao and R. E. Fitzpatrick, "Use of the Q-switched 755-nm Alexandrite laser to treat recalcitrant pigment after depigmentation therapy for vitiligo," Dermatol. Surg. 30, 1043-1045 (2004).
[CrossRef] [PubMed]

Foroni, M.

Fournier, N.

N. Fournier, S. Dahan, G. Barneon, S. Diridollou, J. M. Lagarde, Y. Gall, and S. Mordon, "Nonablative remodeling: clinical, histologic, ultrasound imaging, and profilometric evalution of a 1540 nm Er: glass laser," Dermatol. Surg. 27, 799-806 (2001).
[CrossRef] [PubMed]

Gall, Y.

N. Fournier, S. Dahan, G. Barneon, S. Diridollou, J. M. Lagarde, Y. Gall, and S. Mordon, "Nonablative remodeling: clinical, histologic, ultrasound imaging, and profilometric evalution of a 1540 nm Er: glass laser," Dermatol. Surg. 27, 799-806 (2001).
[CrossRef] [PubMed]

Hardaway, C. A.

D. Y. Paithankar, J. M. Clifford, B. A. Saleh, E. V. Ross, C. A. Hardaway, and D. Barnette, "Subsurface skin renewal by treatment with a 1450-nm laser in combination with dynamic cooling," J. of Biomedical Opt. 8, 545-551 (2003).
[CrossRef]

Harun, S. W.

H. Ahmad, N. K. Saat, and S. W. Harun, "S-band erbium-doped fiber ring laser using a fiber Bragg grating," Laser Phys. Lett. 2, 369-371 (2005).
[CrossRef]

He, G.

A. Bellemare, M. Karasek, C. Riviere, F. Babin, G. He, V. Roy, and G. W. Schinn, "A broadly tunable erbium-doped fiber ring laser: experimentation and modeling," IEEE J. Sel. Top. Quantum. Electron. 7, 22-29 (2001).
[CrossRef]

Ho, M. C.

M. C. Ho, K. Uesaka, M. Marhic, Y. Akasaka, and L. G. Kazovsky, "200-nm-Bandwidth fiber optic amplifier combining parametric and Raman gain," J. Lightwave Technol. 19, 977981 (2001).

Hsu, K. C.

Hu, L.

J. Zhang, S. Dai, S. Xu, G. Wang, and L. Hu, "Fabrication and amplified spontaneous emission spectrum of Er3+-doped tellurite glass fiber with D-shape cladding," J. Alloys Compd. 387, 308-312 (2005).
[CrossRef]

J. Zhang, S. Dai, S. Li, S. Xu, G. Wang, and L. Hu, "Characterization of broadband amplified spontaneous emission of erbium-doped tellurite fiber with D-shape cladding," Mater. Lett. 58, 3532-3535 (2004).
[CrossRef]

J. Yang, S. Dai, N. Dai, L. Wen, L. Hu, and Z. Jiang, "Investigation on nonradiative decay of 4I13/2 → 4I15/2 transition of Er3+-doped oxide glasses," J. Lumin. 106, 9-14 (2004).
[CrossRef]

Huang, L.

Jha, A.

Jiang, Z.

J. Yang, S. Dai, N. Dai, L. Wen, L. Hu, and Z. Jiang, "Investigation on nonradiative decay of 4I13/2 → 4I15/2 transition of Er3+-doped oxide glasses," J. Lumin. 106, 9-14 (2004).
[CrossRef]

Joshi, P.

Karasek, M.

A. Bellemare, M. Karasek, C. Riviere, F. Babin, G. He, V. Roy, and G. W. Schinn, "A broadly tunable erbium-doped fiber ring laser: experimentation and modeling," IEEE J. Sel. Top. Quantum. Electron. 7, 22-29 (2001).
[CrossRef]

Kazovsky, L. G.

M. C. Ho, K. Uesaka, M. Marhic, Y. Akasaka, and L. G. Kazovsky, "200-nm-Bandwidth fiber optic amplifier combining parametric and Raman gain," J. Lightwave Technol. 19, 977981 (2001).

Lagarde, J. M.

N. Fournier, S. Dahan, G. Barneon, S. Diridollou, J. M. Lagarde, Y. Gall, and S. Mordon, "Nonablative remodeling: clinical, histologic, ultrasound imaging, and profilometric evalution of a 1540 nm Er: glass laser," Dermatol. Surg. 27, 799-806 (2001).
[CrossRef] [PubMed]

Lai, Y.

Laming, R. I.

W. L. Barnes, R. I. Laming, E. J. Tarbox, and P. R. Morkel, "Absorption and emission cross section of Er3+ doped silica fibers," IEEE J. Quan. Electron. 27, 1004-1010 (1991).
[CrossRef]

Li, S.

J. Zhang, S. Dai, S. Li, S. Xu, G. Wang, and L. Hu, "Characterization of broadband amplified spontaneous emission of erbium-doped tellurite fiber with D-shape cladding," Mater. Lett. 58, 3532-3535 (2004).
[CrossRef]

Marhic, M.

M. C. Ho, K. Uesaka, M. Marhic, Y. Akasaka, and L. G. Kazovsky, "200-nm-Bandwidth fiber optic amplifier combining parametric and Raman gain," J. Lightwave Technol. 19, 977981 (2001).

Mordon, S.

N. Fournier, S. Dahan, G. Barneon, S. Diridollou, J. M. Lagarde, Y. Gall, and S. Mordon, "Nonablative remodeling: clinical, histologic, ultrasound imaging, and profilometric evalution of a 1540 nm Er: glass laser," Dermatol. Surg. 27, 799-806 (2001).
[CrossRef] [PubMed]

Morkel, P. R.

W. L. Barnes, R. I. Laming, E. J. Tarbox, and P. R. Morkel, "Absorption and emission cross section of Er3+ doped silica fibers," IEEE J. Quan. Electron. 27, 1004-1010 (1991).
[CrossRef]

Ng, L. N.

E. R. M. Taylor, L. N. Ng, J. Nilsson, R. Caponi, A. Pagano, M. Potenza, and B. Sordo, "Thulium-doped tellurite fiber amplifier," IEEE Photon. Technol. Lett. 16, 777-779 (2004).
[CrossRef]

Nilsson, J.

E. R. M. Taylor, L. N. Ng, J. Nilsson, R. Caponi, A. Pagano, M. Potenza, and B. Sordo, "Thulium-doped tellurite fiber amplifier," IEEE Photon. Technol. Lett. 16, 777-779 (2004).
[CrossRef]

Pagano, A.

E. R. M. Taylor, L. N. Ng, J. Nilsson, R. Caponi, A. Pagano, M. Potenza, and B. Sordo, "Thulium-doped tellurite fiber amplifier," IEEE Photon. Technol. Lett. 16, 777-779 (2004).
[CrossRef]

Paithankar, D. Y.

D. Y. Paithankar, J. M. Clifford, B. A. Saleh, E. V. Ross, C. A. Hardaway, and D. Barnette, "Subsurface skin renewal by treatment with a 1450-nm laser in combination with dynamic cooling," J. of Biomedical Opt. 8, 545-551 (2003).
[CrossRef]

Poli, F.

Potenza, M.

E. R. M. Taylor, L. N. Ng, J. Nilsson, R. Caponi, A. Pagano, M. Potenza, and B. Sordo, "Thulium-doped tellurite fiber amplifier," IEEE Photon. Technol. Lett. 16, 777-779 (2004).
[CrossRef]

Rao, J.

J. Rao and R. E. Fitzpatrick, "Use of the Q-switched 755-nm Alexandrite laser to treat recalcitrant pigment after depigmentation therapy for vitiligo," Dermatol. Surg. 30, 1043-1045 (2004).
[CrossRef] [PubMed]

Riviere, C.

A. Bellemare, M. Karasek, C. Riviere, F. Babin, G. He, V. Roy, and G. W. Schinn, "A broadly tunable erbium-doped fiber ring laser: experimentation and modeling," IEEE J. Sel. Top. Quantum. Electron. 7, 22-29 (2001).
[CrossRef]

Ross, E. V.

D. Y. Paithankar, J. M. Clifford, B. A. Saleh, E. V. Ross, C. A. Hardaway, and D. Barnette, "Subsurface skin renewal by treatment with a 1450-nm laser in combination with dynamic cooling," J. of Biomedical Opt. 8, 545-551 (2003).
[CrossRef]

Roy, V.

A. Bellemare, M. Karasek, C. Riviere, F. Babin, G. He, V. Roy, and G. W. Schinn, "A broadly tunable erbium-doped fiber ring laser: experimentation and modeling," IEEE J. Sel. Top. Quantum. Electron. 7, 22-29 (2001).
[CrossRef]

Saat, N. K.

H. Ahmad, N. K. Saat, and S. W. Harun, "S-band erbium-doped fiber ring laser using a fiber Bragg grating," Laser Phys. Lett. 2, 369-371 (2005).
[CrossRef]

Saleh, B. A.

D. Y. Paithankar, J. M. Clifford, B. A. Saleh, E. V. Ross, C. A. Hardaway, and D. Barnette, "Subsurface skin renewal by treatment with a 1450-nm laser in combination with dynamic cooling," J. of Biomedical Opt. 8, 545-551 (2003).
[CrossRef]

Schinn, G. W.

A. Bellemare, M. Karasek, C. Riviere, F. Babin, G. He, V. Roy, and G. W. Schinn, "A broadly tunable erbium-doped fiber ring laser: experimentation and modeling," IEEE J. Sel. Top. Quantum. Electron. 7, 22-29 (2001).
[CrossRef]

Selleri, S.

Shen, S.

Simpson, J. R.

Sordo, B.

E. R. M. Taylor, L. N. Ng, J. Nilsson, R. Caponi, A. Pagano, M. Potenza, and B. Sordo, "Thulium-doped tellurite fiber amplifier," IEEE Photon. Technol. Lett. 16, 777-779 (2004).
[CrossRef]

Sue, Y. M.

C. C. Wang, Y. M. Sue, C. H. Yang, and C. K. Chen, "A comparison of Q-switched alexandrite laser and intense pulsed light for the treatment of freckles and lentigines in Asian persons: A randomized, physician-blinded, split-face comparative trial," J. Am. Acad. Dermatol. 54, 804-810 (2006).
[CrossRef]

Tarbox, E. J.

W. L. Barnes, R. I. Laming, E. J. Tarbox, and P. R. Morkel, "Absorption and emission cross section of Er3+ doped silica fibers," IEEE J. Quan. Electron. 27, 1004-1010 (1991).
[CrossRef]

Taylor, E. R. M.

E. R. M. Taylor, L. N. Ng, J. Nilsson, R. Caponi, A. Pagano, M. Potenza, and B. Sordo, "Thulium-doped tellurite fiber amplifier," IEEE Photon. Technol. Lett. 16, 777-779 (2004).
[CrossRef]

Tseng, S. M.

Uesaka, K.

M. C. Ho, K. Uesaka, M. Marhic, Y. Akasaka, and L. G. Kazovsky, "200-nm-Bandwidth fiber optic amplifier combining parametric and Raman gain," J. Lightwave Technol. 19, 977981 (2001).

Wang, C. C.

C. C. Wang, Y. M. Sue, C. H. Yang, and C. K. Chen, "A comparison of Q-switched alexandrite laser and intense pulsed light for the treatment of freckles and lentigines in Asian persons: A randomized, physician-blinded, split-face comparative trial," J. Am. Acad. Dermatol. 54, 804-810 (2006).
[CrossRef]

Wang, G.

J. Zhang, S. Dai, S. Xu, G. Wang, and L. Hu, "Fabrication and amplified spontaneous emission spectrum of Er3+-doped tellurite glass fiber with D-shape cladding," J. Alloys Compd. 387, 308-312 (2005).
[CrossRef]

J. Zhang, S. Dai, S. Li, S. Xu, G. Wang, and L. Hu, "Characterization of broadband amplified spontaneous emission of erbium-doped tellurite fiber with D-shape cladding," Mater. Lett. 58, 3532-3535 (2004).
[CrossRef]

Wen, L.

J. Yang, S. Dai, N. Dai, L. Wen, L. Hu, and Z. Jiang, "Investigation on nonradiative decay of 4I13/2 → 4I15/2 transition of Er3+-doped oxide glasses," J. Lumin. 106, 9-14 (2004).
[CrossRef]

Xu, S.

J. Zhang, S. Dai, S. Xu, G. Wang, and L. Hu, "Fabrication and amplified spontaneous emission spectrum of Er3+-doped tellurite glass fiber with D-shape cladding," J. Alloys Compd. 387, 308-312 (2005).
[CrossRef]

J. Zhang, S. Dai, S. Li, S. Xu, G. Wang, and L. Hu, "Characterization of broadband amplified spontaneous emission of erbium-doped tellurite fiber with D-shape cladding," Mater. Lett. 58, 3532-3535 (2004).
[CrossRef]

Yang, C. H.

C. C. Wang, Y. M. Sue, C. H. Yang, and C. K. Chen, "A comparison of Q-switched alexandrite laser and intense pulsed light for the treatment of freckles and lentigines in Asian persons: A randomized, physician-blinded, split-face comparative trial," J. Am. Acad. Dermatol. 54, 804-810 (2006).
[CrossRef]

Yang, J.

J. Yang, S. Dai, N. Dai, L. Wen, L. Hu, and Z. Jiang, "Investigation on nonradiative decay of 4I13/2 → 4I15/2 transition of Er3+-doped oxide glasses," J. Lumin. 106, 9-14 (2004).
[CrossRef]

Zhang, J.

J. Zhang, S. Dai, S. Xu, G. Wang, and L. Hu, "Fabrication and amplified spontaneous emission spectrum of Er3+-doped tellurite glass fiber with D-shape cladding," J. Alloys Compd. 387, 308-312 (2005).
[CrossRef]

J. Zhang, S. Dai, S. Li, S. Xu, G. Wang, and L. Hu, "Characterization of broadband amplified spontaneous emission of erbium-doped tellurite fiber with D-shape cladding," Mater. Lett. 58, 3532-3535 (2004).
[CrossRef]

Dermatol. Surg. (2)

N. Fournier, S. Dahan, G. Barneon, S. Diridollou, J. M. Lagarde, Y. Gall, and S. Mordon, "Nonablative remodeling: clinical, histologic, ultrasound imaging, and profilometric evalution of a 1540 nm Er: glass laser," Dermatol. Surg. 27, 799-806 (2001).
[CrossRef] [PubMed]

J. Rao and R. E. Fitzpatrick, "Use of the Q-switched 755-nm Alexandrite laser to treat recalcitrant pigment after depigmentation therapy for vitiligo," Dermatol. Surg. 30, 1043-1045 (2004).
[CrossRef] [PubMed]

IEEE J. Quan. Electron. (1)

W. L. Barnes, R. I. Laming, E. J. Tarbox, and P. R. Morkel, "Absorption and emission cross section of Er3+ doped silica fibers," IEEE J. Quan. Electron. 27, 1004-1010 (1991).
[CrossRef]

IEEE J. Sel. Top. Quantum. Electron. (1)

A. Bellemare, M. Karasek, C. Riviere, F. Babin, G. He, V. Roy, and G. W. Schinn, "A broadly tunable erbium-doped fiber ring laser: experimentation and modeling," IEEE J. Sel. Top. Quantum. Electron. 7, 22-29 (2001).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

E. R. M. Taylor, L. N. Ng, J. Nilsson, R. Caponi, A. Pagano, M. Potenza, and B. Sordo, "Thulium-doped tellurite fiber amplifier," IEEE Photon. Technol. Lett. 16, 777-779 (2004).
[CrossRef]

J. Alloys Compd. (1)

J. Zhang, S. Dai, S. Xu, G. Wang, and L. Hu, "Fabrication and amplified spontaneous emission spectrum of Er3+-doped tellurite glass fiber with D-shape cladding," J. Alloys Compd. 387, 308-312 (2005).
[CrossRef]

J. Am. Acad. Dermatol. (1)

C. C. Wang, Y. M. Sue, C. H. Yang, and C. K. Chen, "A comparison of Q-switched alexandrite laser and intense pulsed light for the treatment of freckles and lentigines in Asian persons: A randomized, physician-blinded, split-face comparative trial," J. Am. Acad. Dermatol. 54, 804-810 (2006).
[CrossRef]

J. Lightwave Technol. (1)

M. C. Ho, K. Uesaka, M. Marhic, Y. Akasaka, and L. G. Kazovsky, "200-nm-Bandwidth fiber optic amplifier combining parametric and Raman gain," J. Lightwave Technol. 19, 977981 (2001).

J. Lumin. (1)

J. Yang, S. Dai, N. Dai, L. Wen, L. Hu, and Z. Jiang, "Investigation on nonradiative decay of 4I13/2 → 4I15/2 transition of Er3+-doped oxide glasses," J. Lumin. 106, 9-14 (2004).
[CrossRef]

J. of Biomedical Opt. (1)

D. Y. Paithankar, J. M. Clifford, B. A. Saleh, E. V. Ross, C. A. Hardaway, and D. Barnette, "Subsurface skin renewal by treatment with a 1450-nm laser in combination with dynamic cooling," J. of Biomedical Opt. 8, 545-551 (2003).
[CrossRef]

Laser Phys. Lett. (1)

H. Ahmad, N. K. Saat, and S. W. Harun, "S-band erbium-doped fiber ring laser using a fiber Bragg grating," Laser Phys. Lett. 2, 369-371 (2005).
[CrossRef]

Mater. Lett. (1)

J. Zhang, S. Dai, S. Li, S. Xu, G. Wang, and L. Hu, "Characterization of broadband amplified spontaneous emission of erbium-doped tellurite fiber with D-shape cladding," Mater. Lett. 58, 3532-3535 (2004).
[CrossRef]

Opt. Express (1)

Opt. Lett. (5)

Other (8)

X. S. Jiang, Q Yang, G. Vienne, Y. H. Li, L. M. Tong, J. J. Zhang, and L. L. Hu, "Demonstration of microfiber knot laser," Appl. Phys. Lett. 89, Art. no. 143513 (2006).
[CrossRef]

S. Sudo, Optical Fiber Amplifiers: Materials, Devices, and Applications (Artech House, Boston, 1997), Chap. 1.

M. A. Arbore, Y. Zhou, H. Thiele, J. Bromage, and L. Nelson, "S-band erbium-doped fiber amplifiers for WDM transmission between 1488 and 1508 nm," in Proc. of OFC 2003, WK2 (2003).

N. K. Chen and S. Chi, "Novel local liquid-core single mode fiber for dispersion engineering using submicron tapered fiber," in Proc. of OFC 2007, JThA5 (2007).

E. Desurvire, Erbium-doped fiber amplifiers: Principles and applications (Wiley-Interscience, New York, 1994), Chap. 1.

M. A. Arbore, "Application of fundamental-mode cutoff for novel amplifiers and lasers," in Proc. of OFC 2005, OFB4 (2005).

D. S. Gasper, P. F. Wysocki, W. A. Reed, and A. M. Venqsarkar, "Evaluation of chromatic dispersion in erbium-doped fibers," in Proc. of LEOS 1993, FPW4.2 (1993).
[CrossRef]

Y. Akasaka and S. Yam, "Gain bandwidth expansion to S-plus band using fiber OPA pumped by gain-clamping signal of a GS-TDFA," in Proc. of OFC 2002, ThGG30 (2002).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

Experimental set-up of the tunable EDF ring laser towards the short-wavelength limit at 1450 nm. Each 4-m-long EDF and short-pass filter forms a gain stage and there are four gain stages totally in the ring cavity. The FP filter is used for narrowing the laser linewidth down below 0.2 nm.

Fig. 2.
Fig. 2.

Spectral responses of the grouped four tapered fiber short-pass filters covered by Cargille liquid (nD=1.456) at different temperatures (RES: 1 nm) for (a) the first set and (b) the second set. (c) Transmission spectra of the FP filter at different applying electric voltages (RES: 1 nm).

Fig. 3.
Fig. 3.

Evolution of the output laser spectra by (a) cooling down the optical liquid and bending the splicing point using the first set of tapered fibers (RES: 0.1 nm) and by (b) cooling down the optical liquid and tuning the FP filter using the second set of tapered fibers (RES: 0.1 nm).

Metrics