Abstract

Recent computations of the backscattering cross section (σb) of randomly-oriented disk-like particles (refractive index, 1.20) with small-scale periodic angular internal structure, have been repeated for similarly sized particles, but with the periodic structure replaced by an aperiodic structure. The latter is formed by randomly perturbing a periodic structure. Although σb for individual realizations of an aperiodic disk can differ significantly from that of its periodic counterpart, averaging over several realizations brings the two into confluence, unless the aperiodicity is too large. These computations suggest that using disks with perfectly periodic (as opposed to quasi-periodic) fine structure for modeling the backscattering of detached coccoliths from E. huxleyi is justified.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. R. Gordon and A. Y. Morel, Remote Assessment of Ocean Color for Interpretation of Satellite Visible Imagery: A Review (Springer-Verlag, 1983).
    [CrossRef]
  2. D. Stramski, E. Boss, D. Bogucki, and K. J. Voss, "The role of seawater constituents in light backscattering in the ocean," Prog. Oceanogr. 61, 27-56 (2004).
    [CrossRef]
  3. M. I. Mishchenko, L. D. Travis, and A. A. Lacis, Scattering, Absorption, and Emission of Light by Small Particles (Cambridge, 2002).
  4. H. R. Gordon and T. Du, "Light scattering by nonspherical particles: application to coccoliths detached from Emiliania huxleyi," Limnol. Oceanogr. 46, 1438-1454 (2001).
    [CrossRef]
  5. H. R. Gordon, "Backscattering of light from disk-like particles: is fine-scale structure or gross morphology more important?," Appl. Opt. 45, 7166-7173 (2006).
    [CrossRef] [PubMed]
  6. B. T. Draine, "The discrete-dipole approximation and its application to interstellar graphite grains," Astrophys. J. 333, 848-872 (1988).
    [CrossRef]
  7. B. T. Draine and P. Flatau, "Discrete-dipole approximation for scattering calculations," J. Opt. Soc. Am. A ll, 1491-1499 (1994).
    [CrossRef]
  8. H. R. Gordon, "Rayleigh-Gans scattering approximation: surprisingly useful for understanding backscattering from disk-like particles," Opt. Express 15, 5572-5588 (2007).
    [CrossRef] [PubMed]

2007

2006

2004

D. Stramski, E. Boss, D. Bogucki, and K. J. Voss, "The role of seawater constituents in light backscattering in the ocean," Prog. Oceanogr. 61, 27-56 (2004).
[CrossRef]

2001

H. R. Gordon and T. Du, "Light scattering by nonspherical particles: application to coccoliths detached from Emiliania huxleyi," Limnol. Oceanogr. 46, 1438-1454 (2001).
[CrossRef]

1994

B. T. Draine and P. Flatau, "Discrete-dipole approximation for scattering calculations," J. Opt. Soc. Am. A ll, 1491-1499 (1994).
[CrossRef]

1988

B. T. Draine, "The discrete-dipole approximation and its application to interstellar graphite grains," Astrophys. J. 333, 848-872 (1988).
[CrossRef]

Bogucki, D.

D. Stramski, E. Boss, D. Bogucki, and K. J. Voss, "The role of seawater constituents in light backscattering in the ocean," Prog. Oceanogr. 61, 27-56 (2004).
[CrossRef]

Boss, E.

D. Stramski, E. Boss, D. Bogucki, and K. J. Voss, "The role of seawater constituents in light backscattering in the ocean," Prog. Oceanogr. 61, 27-56 (2004).
[CrossRef]

Draine, B. T.

B. T. Draine and P. Flatau, "Discrete-dipole approximation for scattering calculations," J. Opt. Soc. Am. A ll, 1491-1499 (1994).
[CrossRef]

B. T. Draine, "The discrete-dipole approximation and its application to interstellar graphite grains," Astrophys. J. 333, 848-872 (1988).
[CrossRef]

Du, T.

H. R. Gordon and T. Du, "Light scattering by nonspherical particles: application to coccoliths detached from Emiliania huxleyi," Limnol. Oceanogr. 46, 1438-1454 (2001).
[CrossRef]

Flatau, P.

B. T. Draine and P. Flatau, "Discrete-dipole approximation for scattering calculations," J. Opt. Soc. Am. A ll, 1491-1499 (1994).
[CrossRef]

Gordon, H. R.

Stramski, D.

D. Stramski, E. Boss, D. Bogucki, and K. J. Voss, "The role of seawater constituents in light backscattering in the ocean," Prog. Oceanogr. 61, 27-56 (2004).
[CrossRef]

Voss, K. J.

D. Stramski, E. Boss, D. Bogucki, and K. J. Voss, "The role of seawater constituents in light backscattering in the ocean," Prog. Oceanogr. 61, 27-56 (2004).
[CrossRef]

Appl. Opt.

Astrophys. J.

B. T. Draine, "The discrete-dipole approximation and its application to interstellar graphite grains," Astrophys. J. 333, 848-872 (1988).
[CrossRef]

J. Opt. Soc. Am. A

B. T. Draine and P. Flatau, "Discrete-dipole approximation for scattering calculations," J. Opt. Soc. Am. A ll, 1491-1499 (1994).
[CrossRef]

Limnol. Oceanogr.

H. R. Gordon and T. Du, "Light scattering by nonspherical particles: application to coccoliths detached from Emiliania huxleyi," Limnol. Oceanogr. 46, 1438-1454 (2001).
[CrossRef]

Opt. Express

Prog. Oceanogr.

D. Stramski, E. Boss, D. Bogucki, and K. J. Voss, "The role of seawater constituents in light backscattering in the ocean," Prog. Oceanogr. 61, 27-56 (2004).
[CrossRef]

Other

M. I. Mishchenko, L. D. Travis, and A. A. Lacis, Scattering, Absorption, and Emission of Light by Small Particles (Cambridge, 2002).

H. R. Gordon and A. Y. Morel, Remote Assessment of Ocean Color for Interpretation of Satellite Visible Imagery: A Review (Springer-Verlag, 1983).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

The individual rows provide four realizations of the aperiodic pinwheels for n=5 and various values of ε. Periodic pinwheels are shown in the first column.

Fig. 2.
Fig. 2.

The backscattering cross section of four realizations of the aperiodic pinwheels shown in Fig.1 (D=1.5 µm) compared with that for a periodic pinwheel and for a homogeneous disk of the same size. The left panel is for ε=0.5 and the right panel is for ε=1.0.

Fig. 3.
Fig. 3.

The backscattering cross section of four realizations of the aperiodic pinwheels with ε=1.0, D=2.75 µm and n=6 compared with that for the associated periodic pinwheel.

Fig. 4.
Fig. 4.

The backscattering cross section 〈σb 〉 of an equal-number mixture of the four realizations of the aperiodic pinwheels compared with that for a periodic pinwheel (ε=0): left panel D=1.5 µm, t=0.15 µm and n=5; right panel D=2.75 µm, t=0.05 µm and n=6.

Tables (1)

Tables Icon

Table 1. The volume (µm3) of the two aperiodic pinwheels examined. The associated volumes for the periodic pinwheel (ε=0) are 0.1325 µm3 and 0.1485 µm3 for the 1.5 and 2.75 µm diameter pinwheels, respectively. D is the diameter and t is the thickness of the associated disk.

Metrics