Abstract

Near-infrared detectors based on metal-insulator-metal tunnel junctions integrated with planarized silicon nanowire waveguides are presented, which we believe to be the first of their kind. The junction is coupled to the waveguide via a thin-film metal antenna feeding a plasmonic travelling wave structure that includes the tunnel junction. These devices are inherently broadband; the design presented here operates throughout the 1500–1700 nm region. Careful design of the antenna and travelling wave region substantially eliminates losses due to poor mode matching and RC rolloff, allowing efficient operation. The antennas are made from multilayer stacks of gold and nickel, and the active devices are Ni-NiO-Ni edge junctions. The waveguides are made via shallow trench isolation technology, resulting in a planar oxide surface with the waveguides buried a few nanometres beneath. The antennas are fabricated using directional deposition through a suspended Ge shadow mask, using a single level of electron-beam lithography. The waveguides are patterned with conventional 248-nm optical lithography and reactive-ion etching, then planarized using shallow-trench isolation technology. We also present measurements showing overall quantum efficiencies of 6% (responsivity 0.08 A/W at 1.605 µm), thus demonstrating that the previously very low overall quantum efficiencies reported for antenna-coupled tunnel junction devices are due to poor electromagnetic coupling and poor choices of antenna metal, not to any inherent limitations of the technology.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J.W. Dees, "Detection and harmonic generation in the sub-millimeter wavelength region," Microwave J. 9, 48-55, 1966.
  2. V. Daneu, D. Sokoloff, A. Sanchez, and A. Javan, "Extension of laser harmonic-frequency mixing techniques into the 9 μ region with an infrared metal-metal point contact diode," Appl. Phys. Lett. 15 (12), 398-401 (1969)
    [CrossRef]
  3. A. Sanchez, C. F. Davis, Jr., K. C. Liu, and A. Javan "The MOM tunneling diode: Theoretical estimate of its performance at microwave and infrared frequencies," J. Appl. Phys. 49, 5270-5277 (1978)
    [CrossRef]
  4. M. Nagae, "Response time of metal-insulator-metal tunnel junctions," Japan. J. Appl. Phys. 11, 1611-1621 (1972)
    [CrossRef]
  5. J. C. Martinez, and E. Polatdemir, "Measurement of tunneling time via electron interferometry," Appl. Phys. Lett. 84, 1320-1322 (2004)
    [CrossRef]
  6. C. Fumeaux, W. Herrmann, F. K. Kneubuehl, H. Rothuizen, B. Lipphardt, and C. O. Weiss, "Mixing of 28 THz (10.7 μm) CO2-laser radiation by nanometer thin-film Ni-NiO-Ni diodes with difference frequencies up to 176 GHz," Infrared Phys. Technol. 38, 393-396 (1997)
    [CrossRef]
  7. S. Y. Wang, T. Izawa, T. K. Gustafson, "Coupling characteristics of thin-film metal-oxide-metal diodes at 10.6 μm," Appl. Phys. Lett. 27(9), 481-483 (1975)
    [CrossRef]
  8. I. Wilke, W. Herrmann, and F. K. Kneubuehl, "Integrated nanostrip dipole antennas for coherent 30 THz infrared radiation," Appl. Phys. B 58, 87-95 (1994)
  9. M. Abdel-Rahman, F. J. Gonzalez, G. Zummo, C. Middleton and G. D. Boreman, "Antenna-coupled MOM diodes for dual-band detection in MMW and LWIR," in Radar Sensor Technology VIII and Passive Millimeter-Wave Imaging Technology VII, R. Trebits, J. L. Kurtz, R. Appleby, N. Salmon, D. A. Wikner, Proc. SPIE 5410, 238-243 (2004)
  10. B. M. Kale, " Electron tunneling devices in optics," Opt. Eng. 24 (2), 267-274 (1985)
  11. G. D. Boreman, A. Dogariu, C. C. Christodoulou, D. Kotter "Dipole-on-dielectric model for infrared lithographic spiral antennas," Opt. Lett. 21, 309-311 (1996)
    [CrossRef]
  12. G. D. Boreman, C. Fumeaux, W. Herrmann, F. K. Kneubuehl, H. Rothuizen, "Tunable polarization response of a planar asymmetric-spiral infrared antenna," Opt. Lett. 23, 1912-1914 (1998)
    [CrossRef]
  13. F. J. González and G. D. Boreman, "Comparison of dipole, bowtie, spiral and log-periodic IR antennas," Infrared Phys. Technol. 46418-428 (2005)
    [CrossRef]
  14. C. Fumeaux, W. Herrmann, H. Rothuizen, P. De Natale, and F. K. Kneubuehl, "Mixing of 30 THz laser radiation with nanometer thin-film Ni-NiO-Ni diodes and integrated bow-tie antennas," Appl. Phys. B 63, 135-140 (1996)
    [CrossRef]
  15. C. Fumeaux, M. A. A. Gritz, I. Codreanu, W. L. Schaich, F. J. Gonzalez, and G. D. Boreman, "Measurement of the resonant lengths of infrared dipole antennas," Infrared Phys. Technol. 41, 271-281 (2000)
    [CrossRef]
  16. E. N. Grossman, L. R. Vale, D. A. Rudman, K. M. Evenson, and L. R. Zink, "30 THz mixing experiments on high temperature superconducting Josephson junctions," IEEE Trans. Appl. Supercond. 5, 3061-3064 (1995)
    [CrossRef]
  17. M. E. MacDonald, E. N. Grossman "Niobium microbolometers for far-infrared detection," IEEE Trans. Microwave Theory Techn. MTT-43(4), 893-896 (1995)
    [CrossRef]
  18. J. G. Small, G. M. Elchinger, A. Javan, A. Sanchez, F. J. Bachner, and D. L. Smythe, "AC electron tunneling at infrared frequencies: thin-film M-O-M diode structure with broad-band characteristics," Appl. Phys. Lett. 24, 275-279 (1974)
    [CrossRef]
  19. I. Wilke, Y. Oppliger, W. Herrmann, and F. K. Kneubuehl, "Nanometer thin-film Ni-NiO-Ni diodes for 30 THz radiation," Appl. Phys. A58, 329-341 (1994)
  20. E. N. Grossman, T. E. Harvey, and C. D. Reintsema, "Controlled barrier modification in Nb/NbOx/Ag metal insulator metal tunnel diodes," J. Appl. Phys. 91, 10134-10139 (2002)
    [CrossRef]
  21. E. D. Palik, Handbook of Optical Constants of Solids, Volume 1; New York, Academic, 1980.
  22. E. N. Grossman, J. A. Koch, C. D. Reintsema, A. and Green, "Lithographic dipole antenna properties at 10 μm wavelength: comparison of method-of-moments predictions with experiment," Intl. J. Infrared Milli. 19, 817-825 (1998)
    [CrossRef]
  23. J. G. Simmons, "Electric tunnel effect between dissimilar electrodes separated by a thin insulating film," J. Appl. Phys. 34, 2581-2590 (1963)
    [CrossRef]
  24. J. R. Tucker and M. J. Feldman, "Quantum detection at millimeter wavelengths," Rev. Mod. Phys. 57, 1055-1114 (1985)
    [CrossRef]
  25. A. Hartstein and Z. A. Weinberg, "Unified theory of internal photoemission and photon-assisted tunneling," Phys. Rev. B 20, 1335 - 1338 (1979)
    [CrossRef]
  26. M. Heiblum, S. Wang, J. R. Whinnery, and T. K. Gustafson, "Characteristics of integrated MOM junctions at dc and at optical frequencies," IEEE J. Quantum Electron. QE-14(3), 159-169 (1978)
    [CrossRef]
  27. A. Hartstein, Z. A. Weinberg, and D. J. DiMaria, "Experimental test of the quantum-mechanical image-force theory" Phys. Rev. B 25, 7174 - 7182 (1982)
    [CrossRef]
  28. F. E. Terman, Radio Engineers’ Handbook, New York, McGraw-Hill, 1943, 211-212
  29. P. C. D. Hobbs, R. B. Laibowitz, and F. R. Libsch, "Ni-NiO-Ni tunnel junctions for terahertz and infrared detection," Appl. Opt. 42, 6813-6822 (2005)
    [CrossRef]
  30. P. C. D. Hobbs, "POEMS: a programmable optimizing electromagnetic simulator," http://www.watson.ibm.com/actj.html
  31. S. J. McNab, N. Moll, and Y. A. Vlasov, "Ultra-low loss photonic integrated circuit with membrane-type photonic crystal waveguides," Opt. Express 11, 2927-2939 (2003)
    [CrossRef] [PubMed]
  32. K. Terakura, A. R. Williams, T. Oguchi, and J. Kuebler, "Transition-Metal Monoxides: Band or Mott Insulators," Phys. Rev. Lett. 52, 1830-1833 (1984)
    [CrossRef]

2005

F. J. González and G. D. Boreman, "Comparison of dipole, bowtie, spiral and log-periodic IR antennas," Infrared Phys. Technol. 46418-428 (2005)
[CrossRef]

P. C. D. Hobbs, R. B. Laibowitz, and F. R. Libsch, "Ni-NiO-Ni tunnel junctions for terahertz and infrared detection," Appl. Opt. 42, 6813-6822 (2005)
[CrossRef]

2004

J. C. Martinez, and E. Polatdemir, "Measurement of tunneling time via electron interferometry," Appl. Phys. Lett. 84, 1320-1322 (2004)
[CrossRef]

M. Abdel-Rahman, F. J. Gonzalez, G. Zummo, C. Middleton and G. D. Boreman, "Antenna-coupled MOM diodes for dual-band detection in MMW and LWIR," in Radar Sensor Technology VIII and Passive Millimeter-Wave Imaging Technology VII, R. Trebits, J. L. Kurtz, R. Appleby, N. Salmon, D. A. Wikner, Proc. SPIE 5410, 238-243 (2004)

2003

2002

E. N. Grossman, T. E. Harvey, and C. D. Reintsema, "Controlled barrier modification in Nb/NbOx/Ag metal insulator metal tunnel diodes," J. Appl. Phys. 91, 10134-10139 (2002)
[CrossRef]

2000

C. Fumeaux, M. A. A. Gritz, I. Codreanu, W. L. Schaich, F. J. Gonzalez, and G. D. Boreman, "Measurement of the resonant lengths of infrared dipole antennas," Infrared Phys. Technol. 41, 271-281 (2000)
[CrossRef]

1998

E. N. Grossman, J. A. Koch, C. D. Reintsema, A. and Green, "Lithographic dipole antenna properties at 10 μm wavelength: comparison of method-of-moments predictions with experiment," Intl. J. Infrared Milli. 19, 817-825 (1998)
[CrossRef]

G. D. Boreman, C. Fumeaux, W. Herrmann, F. K. Kneubuehl, H. Rothuizen, "Tunable polarization response of a planar asymmetric-spiral infrared antenna," Opt. Lett. 23, 1912-1914 (1998)
[CrossRef]

1997

C. Fumeaux, W. Herrmann, F. K. Kneubuehl, H. Rothuizen, B. Lipphardt, and C. O. Weiss, "Mixing of 28 THz (10.7 μm) CO2-laser radiation by nanometer thin-film Ni-NiO-Ni diodes with difference frequencies up to 176 GHz," Infrared Phys. Technol. 38, 393-396 (1997)
[CrossRef]

1996

C. Fumeaux, W. Herrmann, H. Rothuizen, P. De Natale, and F. K. Kneubuehl, "Mixing of 30 THz laser radiation with nanometer thin-film Ni-NiO-Ni diodes and integrated bow-tie antennas," Appl. Phys. B 63, 135-140 (1996)
[CrossRef]

G. D. Boreman, A. Dogariu, C. C. Christodoulou, D. Kotter "Dipole-on-dielectric model for infrared lithographic spiral antennas," Opt. Lett. 21, 309-311 (1996)
[CrossRef]

1995

E. N. Grossman, L. R. Vale, D. A. Rudman, K. M. Evenson, and L. R. Zink, "30 THz mixing experiments on high temperature superconducting Josephson junctions," IEEE Trans. Appl. Supercond. 5, 3061-3064 (1995)
[CrossRef]

M. E. MacDonald, E. N. Grossman "Niobium microbolometers for far-infrared detection," IEEE Trans. Microwave Theory Techn. MTT-43(4), 893-896 (1995)
[CrossRef]

1994

I. Wilke, W. Herrmann, and F. K. Kneubuehl, "Integrated nanostrip dipole antennas for coherent 30 THz infrared radiation," Appl. Phys. B 58, 87-95 (1994)

I. Wilke, Y. Oppliger, W. Herrmann, and F. K. Kneubuehl, "Nanometer thin-film Ni-NiO-Ni diodes for 30 THz radiation," Appl. Phys. A58, 329-341 (1994)

1985

J. R. Tucker and M. J. Feldman, "Quantum detection at millimeter wavelengths," Rev. Mod. Phys. 57, 1055-1114 (1985)
[CrossRef]

B. M. Kale, " Electron tunneling devices in optics," Opt. Eng. 24 (2), 267-274 (1985)

1984

K. Terakura, A. R. Williams, T. Oguchi, and J. Kuebler, "Transition-Metal Monoxides: Band or Mott Insulators," Phys. Rev. Lett. 52, 1830-1833 (1984)
[CrossRef]

1982

A. Hartstein, Z. A. Weinberg, and D. J. DiMaria, "Experimental test of the quantum-mechanical image-force theory" Phys. Rev. B 25, 7174 - 7182 (1982)
[CrossRef]

1979

A. Hartstein and Z. A. Weinberg, "Unified theory of internal photoemission and photon-assisted tunneling," Phys. Rev. B 20, 1335 - 1338 (1979)
[CrossRef]

1978

M. Heiblum, S. Wang, J. R. Whinnery, and T. K. Gustafson, "Characteristics of integrated MOM junctions at dc and at optical frequencies," IEEE J. Quantum Electron. QE-14(3), 159-169 (1978)
[CrossRef]

A. Sanchez, C. F. Davis, Jr., K. C. Liu, and A. Javan "The MOM tunneling diode: Theoretical estimate of its performance at microwave and infrared frequencies," J. Appl. Phys. 49, 5270-5277 (1978)
[CrossRef]

1975

S. Y. Wang, T. Izawa, T. K. Gustafson, "Coupling characteristics of thin-film metal-oxide-metal diodes at 10.6 μm," Appl. Phys. Lett. 27(9), 481-483 (1975)
[CrossRef]

1974

J. G. Small, G. M. Elchinger, A. Javan, A. Sanchez, F. J. Bachner, and D. L. Smythe, "AC electron tunneling at infrared frequencies: thin-film M-O-M diode structure with broad-band characteristics," Appl. Phys. Lett. 24, 275-279 (1974)
[CrossRef]

1972

M. Nagae, "Response time of metal-insulator-metal tunnel junctions," Japan. J. Appl. Phys. 11, 1611-1621 (1972)
[CrossRef]

1969

V. Daneu, D. Sokoloff, A. Sanchez, and A. Javan, "Extension of laser harmonic-frequency mixing techniques into the 9 μ region with an infrared metal-metal point contact diode," Appl. Phys. Lett. 15 (12), 398-401 (1969)
[CrossRef]

1966

J.W. Dees, "Detection and harmonic generation in the sub-millimeter wavelength region," Microwave J. 9, 48-55, 1966.

1963

J. G. Simmons, "Electric tunnel effect between dissimilar electrodes separated by a thin insulating film," J. Appl. Phys. 34, 2581-2590 (1963)
[CrossRef]

Abdel-Rahman, M.

M. Abdel-Rahman, F. J. Gonzalez, G. Zummo, C. Middleton and G. D. Boreman, "Antenna-coupled MOM diodes for dual-band detection in MMW and LWIR," in Radar Sensor Technology VIII and Passive Millimeter-Wave Imaging Technology VII, R. Trebits, J. L. Kurtz, R. Appleby, N. Salmon, D. A. Wikner, Proc. SPIE 5410, 238-243 (2004)

Bachner, F. J.

J. G. Small, G. M. Elchinger, A. Javan, A. Sanchez, F. J. Bachner, and D. L. Smythe, "AC electron tunneling at infrared frequencies: thin-film M-O-M diode structure with broad-band characteristics," Appl. Phys. Lett. 24, 275-279 (1974)
[CrossRef]

Boreman, G. D.

F. J. González and G. D. Boreman, "Comparison of dipole, bowtie, spiral and log-periodic IR antennas," Infrared Phys. Technol. 46418-428 (2005)
[CrossRef]

M. Abdel-Rahman, F. J. Gonzalez, G. Zummo, C. Middleton and G. D. Boreman, "Antenna-coupled MOM diodes for dual-band detection in MMW and LWIR," in Radar Sensor Technology VIII and Passive Millimeter-Wave Imaging Technology VII, R. Trebits, J. L. Kurtz, R. Appleby, N. Salmon, D. A. Wikner, Proc. SPIE 5410, 238-243 (2004)

C. Fumeaux, M. A. A. Gritz, I. Codreanu, W. L. Schaich, F. J. Gonzalez, and G. D. Boreman, "Measurement of the resonant lengths of infrared dipole antennas," Infrared Phys. Technol. 41, 271-281 (2000)
[CrossRef]

G. D. Boreman, C. Fumeaux, W. Herrmann, F. K. Kneubuehl, H. Rothuizen, "Tunable polarization response of a planar asymmetric-spiral infrared antenna," Opt. Lett. 23, 1912-1914 (1998)
[CrossRef]

G. D. Boreman, A. Dogariu, C. C. Christodoulou, D. Kotter "Dipole-on-dielectric model for infrared lithographic spiral antennas," Opt. Lett. 21, 309-311 (1996)
[CrossRef]

Christodoulou, C. C.

Codreanu, I.

C. Fumeaux, M. A. A. Gritz, I. Codreanu, W. L. Schaich, F. J. Gonzalez, and G. D. Boreman, "Measurement of the resonant lengths of infrared dipole antennas," Infrared Phys. Technol. 41, 271-281 (2000)
[CrossRef]

Daneu, V.

V. Daneu, D. Sokoloff, A. Sanchez, and A. Javan, "Extension of laser harmonic-frequency mixing techniques into the 9 μ region with an infrared metal-metal point contact diode," Appl. Phys. Lett. 15 (12), 398-401 (1969)
[CrossRef]

Davis, C. F.

A. Sanchez, C. F. Davis, Jr., K. C. Liu, and A. Javan "The MOM tunneling diode: Theoretical estimate of its performance at microwave and infrared frequencies," J. Appl. Phys. 49, 5270-5277 (1978)
[CrossRef]

De Natale, P.

C. Fumeaux, W. Herrmann, H. Rothuizen, P. De Natale, and F. K. Kneubuehl, "Mixing of 30 THz laser radiation with nanometer thin-film Ni-NiO-Ni diodes and integrated bow-tie antennas," Appl. Phys. B 63, 135-140 (1996)
[CrossRef]

Dees, J.W.

J.W. Dees, "Detection and harmonic generation in the sub-millimeter wavelength region," Microwave J. 9, 48-55, 1966.

DiMaria, D. J.

A. Hartstein, Z. A. Weinberg, and D. J. DiMaria, "Experimental test of the quantum-mechanical image-force theory" Phys. Rev. B 25, 7174 - 7182 (1982)
[CrossRef]

Dogariu, A.

Elchinger, G. M.

J. G. Small, G. M. Elchinger, A. Javan, A. Sanchez, F. J. Bachner, and D. L. Smythe, "AC electron tunneling at infrared frequencies: thin-film M-O-M diode structure with broad-band characteristics," Appl. Phys. Lett. 24, 275-279 (1974)
[CrossRef]

Evenson, K. M.

E. N. Grossman, L. R. Vale, D. A. Rudman, K. M. Evenson, and L. R. Zink, "30 THz mixing experiments on high temperature superconducting Josephson junctions," IEEE Trans. Appl. Supercond. 5, 3061-3064 (1995)
[CrossRef]

Feldman, M. J.

J. R. Tucker and M. J. Feldman, "Quantum detection at millimeter wavelengths," Rev. Mod. Phys. 57, 1055-1114 (1985)
[CrossRef]

Fumeaux, C.

C. Fumeaux, M. A. A. Gritz, I. Codreanu, W. L. Schaich, F. J. Gonzalez, and G. D. Boreman, "Measurement of the resonant lengths of infrared dipole antennas," Infrared Phys. Technol. 41, 271-281 (2000)
[CrossRef]

G. D. Boreman, C. Fumeaux, W. Herrmann, F. K. Kneubuehl, H. Rothuizen, "Tunable polarization response of a planar asymmetric-spiral infrared antenna," Opt. Lett. 23, 1912-1914 (1998)
[CrossRef]

C. Fumeaux, W. Herrmann, F. K. Kneubuehl, H. Rothuizen, B. Lipphardt, and C. O. Weiss, "Mixing of 28 THz (10.7 μm) CO2-laser radiation by nanometer thin-film Ni-NiO-Ni diodes with difference frequencies up to 176 GHz," Infrared Phys. Technol. 38, 393-396 (1997)
[CrossRef]

C. Fumeaux, W. Herrmann, H. Rothuizen, P. De Natale, and F. K. Kneubuehl, "Mixing of 30 THz laser radiation with nanometer thin-film Ni-NiO-Ni diodes and integrated bow-tie antennas," Appl. Phys. B 63, 135-140 (1996)
[CrossRef]

Gonzalez, F. J.

M. Abdel-Rahman, F. J. Gonzalez, G. Zummo, C. Middleton and G. D. Boreman, "Antenna-coupled MOM diodes for dual-band detection in MMW and LWIR," in Radar Sensor Technology VIII and Passive Millimeter-Wave Imaging Technology VII, R. Trebits, J. L. Kurtz, R. Appleby, N. Salmon, D. A. Wikner, Proc. SPIE 5410, 238-243 (2004)

C. Fumeaux, M. A. A. Gritz, I. Codreanu, W. L. Schaich, F. J. Gonzalez, and G. D. Boreman, "Measurement of the resonant lengths of infrared dipole antennas," Infrared Phys. Technol. 41, 271-281 (2000)
[CrossRef]

González, F. J.

F. J. González and G. D. Boreman, "Comparison of dipole, bowtie, spiral and log-periodic IR antennas," Infrared Phys. Technol. 46418-428 (2005)
[CrossRef]

Gritz, M. A. A.

C. Fumeaux, M. A. A. Gritz, I. Codreanu, W. L. Schaich, F. J. Gonzalez, and G. D. Boreman, "Measurement of the resonant lengths of infrared dipole antennas," Infrared Phys. Technol. 41, 271-281 (2000)
[CrossRef]

Grossman, E. N.

E. N. Grossman, T. E. Harvey, and C. D. Reintsema, "Controlled barrier modification in Nb/NbOx/Ag metal insulator metal tunnel diodes," J. Appl. Phys. 91, 10134-10139 (2002)
[CrossRef]

E. N. Grossman, J. A. Koch, C. D. Reintsema, A. and Green, "Lithographic dipole antenna properties at 10 μm wavelength: comparison of method-of-moments predictions with experiment," Intl. J. Infrared Milli. 19, 817-825 (1998)
[CrossRef]

E. N. Grossman, L. R. Vale, D. A. Rudman, K. M. Evenson, and L. R. Zink, "30 THz mixing experiments on high temperature superconducting Josephson junctions," IEEE Trans. Appl. Supercond. 5, 3061-3064 (1995)
[CrossRef]

M. E. MacDonald, E. N. Grossman "Niobium microbolometers for far-infrared detection," IEEE Trans. Microwave Theory Techn. MTT-43(4), 893-896 (1995)
[CrossRef]

Gustafson, T. K.

M. Heiblum, S. Wang, J. R. Whinnery, and T. K. Gustafson, "Characteristics of integrated MOM junctions at dc and at optical frequencies," IEEE J. Quantum Electron. QE-14(3), 159-169 (1978)
[CrossRef]

S. Y. Wang, T. Izawa, T. K. Gustafson, "Coupling characteristics of thin-film metal-oxide-metal diodes at 10.6 μm," Appl. Phys. Lett. 27(9), 481-483 (1975)
[CrossRef]

Hartstein, A.

A. Hartstein, Z. A. Weinberg, and D. J. DiMaria, "Experimental test of the quantum-mechanical image-force theory" Phys. Rev. B 25, 7174 - 7182 (1982)
[CrossRef]

A. Hartstein and Z. A. Weinberg, "Unified theory of internal photoemission and photon-assisted tunneling," Phys. Rev. B 20, 1335 - 1338 (1979)
[CrossRef]

Harvey, T. E.

E. N. Grossman, T. E. Harvey, and C. D. Reintsema, "Controlled barrier modification in Nb/NbOx/Ag metal insulator metal tunnel diodes," J. Appl. Phys. 91, 10134-10139 (2002)
[CrossRef]

Heiblum, M.

M. Heiblum, S. Wang, J. R. Whinnery, and T. K. Gustafson, "Characteristics of integrated MOM junctions at dc and at optical frequencies," IEEE J. Quantum Electron. QE-14(3), 159-169 (1978)
[CrossRef]

Herrmann, W.

G. D. Boreman, C. Fumeaux, W. Herrmann, F. K. Kneubuehl, H. Rothuizen, "Tunable polarization response of a planar asymmetric-spiral infrared antenna," Opt. Lett. 23, 1912-1914 (1998)
[CrossRef]

C. Fumeaux, W. Herrmann, F. K. Kneubuehl, H. Rothuizen, B. Lipphardt, and C. O. Weiss, "Mixing of 28 THz (10.7 μm) CO2-laser radiation by nanometer thin-film Ni-NiO-Ni diodes with difference frequencies up to 176 GHz," Infrared Phys. Technol. 38, 393-396 (1997)
[CrossRef]

C. Fumeaux, W. Herrmann, H. Rothuizen, P. De Natale, and F. K. Kneubuehl, "Mixing of 30 THz laser radiation with nanometer thin-film Ni-NiO-Ni diodes and integrated bow-tie antennas," Appl. Phys. B 63, 135-140 (1996)
[CrossRef]

I. Wilke, Y. Oppliger, W. Herrmann, and F. K. Kneubuehl, "Nanometer thin-film Ni-NiO-Ni diodes for 30 THz radiation," Appl. Phys. A58, 329-341 (1994)

I. Wilke, W. Herrmann, and F. K. Kneubuehl, "Integrated nanostrip dipole antennas for coherent 30 THz infrared radiation," Appl. Phys. B 58, 87-95 (1994)

Hobbs, P. C. D.

P. C. D. Hobbs, R. B. Laibowitz, and F. R. Libsch, "Ni-NiO-Ni tunnel junctions for terahertz and infrared detection," Appl. Opt. 42, 6813-6822 (2005)
[CrossRef]

Izawa, T.

S. Y. Wang, T. Izawa, T. K. Gustafson, "Coupling characteristics of thin-film metal-oxide-metal diodes at 10.6 μm," Appl. Phys. Lett. 27(9), 481-483 (1975)
[CrossRef]

Javan, A.

A. Sanchez, C. F. Davis, Jr., K. C. Liu, and A. Javan "The MOM tunneling diode: Theoretical estimate of its performance at microwave and infrared frequencies," J. Appl. Phys. 49, 5270-5277 (1978)
[CrossRef]

J. G. Small, G. M. Elchinger, A. Javan, A. Sanchez, F. J. Bachner, and D. L. Smythe, "AC electron tunneling at infrared frequencies: thin-film M-O-M diode structure with broad-band characteristics," Appl. Phys. Lett. 24, 275-279 (1974)
[CrossRef]

V. Daneu, D. Sokoloff, A. Sanchez, and A. Javan, "Extension of laser harmonic-frequency mixing techniques into the 9 μ region with an infrared metal-metal point contact diode," Appl. Phys. Lett. 15 (12), 398-401 (1969)
[CrossRef]

Kale, B. M.

B. M. Kale, " Electron tunneling devices in optics," Opt. Eng. 24 (2), 267-274 (1985)

Kneubuehl, F. K.

G. D. Boreman, C. Fumeaux, W. Herrmann, F. K. Kneubuehl, H. Rothuizen, "Tunable polarization response of a planar asymmetric-spiral infrared antenna," Opt. Lett. 23, 1912-1914 (1998)
[CrossRef]

C. Fumeaux, W. Herrmann, F. K. Kneubuehl, H. Rothuizen, B. Lipphardt, and C. O. Weiss, "Mixing of 28 THz (10.7 μm) CO2-laser radiation by nanometer thin-film Ni-NiO-Ni diodes with difference frequencies up to 176 GHz," Infrared Phys. Technol. 38, 393-396 (1997)
[CrossRef]

C. Fumeaux, W. Herrmann, H. Rothuizen, P. De Natale, and F. K. Kneubuehl, "Mixing of 30 THz laser radiation with nanometer thin-film Ni-NiO-Ni diodes and integrated bow-tie antennas," Appl. Phys. B 63, 135-140 (1996)
[CrossRef]

I. Wilke, Y. Oppliger, W. Herrmann, and F. K. Kneubuehl, "Nanometer thin-film Ni-NiO-Ni diodes for 30 THz radiation," Appl. Phys. A58, 329-341 (1994)

I. Wilke, W. Herrmann, and F. K. Kneubuehl, "Integrated nanostrip dipole antennas for coherent 30 THz infrared radiation," Appl. Phys. B 58, 87-95 (1994)

Koch, J. A.

E. N. Grossman, J. A. Koch, C. D. Reintsema, A. and Green, "Lithographic dipole antenna properties at 10 μm wavelength: comparison of method-of-moments predictions with experiment," Intl. J. Infrared Milli. 19, 817-825 (1998)
[CrossRef]

Kotter, D.

Kuebler, J.

K. Terakura, A. R. Williams, T. Oguchi, and J. Kuebler, "Transition-Metal Monoxides: Band or Mott Insulators," Phys. Rev. Lett. 52, 1830-1833 (1984)
[CrossRef]

Laibowitz, R. B.

P. C. D. Hobbs, R. B. Laibowitz, and F. R. Libsch, "Ni-NiO-Ni tunnel junctions for terahertz and infrared detection," Appl. Opt. 42, 6813-6822 (2005)
[CrossRef]

Libsch, F. R.

P. C. D. Hobbs, R. B. Laibowitz, and F. R. Libsch, "Ni-NiO-Ni tunnel junctions for terahertz and infrared detection," Appl. Opt. 42, 6813-6822 (2005)
[CrossRef]

Lipphardt, B.

C. Fumeaux, W. Herrmann, F. K. Kneubuehl, H. Rothuizen, B. Lipphardt, and C. O. Weiss, "Mixing of 28 THz (10.7 μm) CO2-laser radiation by nanometer thin-film Ni-NiO-Ni diodes with difference frequencies up to 176 GHz," Infrared Phys. Technol. 38, 393-396 (1997)
[CrossRef]

Liu, K. C.

A. Sanchez, C. F. Davis, Jr., K. C. Liu, and A. Javan "The MOM tunneling diode: Theoretical estimate of its performance at microwave and infrared frequencies," J. Appl. Phys. 49, 5270-5277 (1978)
[CrossRef]

MacDonald, M. E.

M. E. MacDonald, E. N. Grossman "Niobium microbolometers for far-infrared detection," IEEE Trans. Microwave Theory Techn. MTT-43(4), 893-896 (1995)
[CrossRef]

Martinez, J. C.

J. C. Martinez, and E. Polatdemir, "Measurement of tunneling time via electron interferometry," Appl. Phys. Lett. 84, 1320-1322 (2004)
[CrossRef]

McNab, S. J.

Middleton, C.

M. Abdel-Rahman, F. J. Gonzalez, G. Zummo, C. Middleton and G. D. Boreman, "Antenna-coupled MOM diodes for dual-band detection in MMW and LWIR," in Radar Sensor Technology VIII and Passive Millimeter-Wave Imaging Technology VII, R. Trebits, J. L. Kurtz, R. Appleby, N. Salmon, D. A. Wikner, Proc. SPIE 5410, 238-243 (2004)

Moll, N.

Nagae, M.

M. Nagae, "Response time of metal-insulator-metal tunnel junctions," Japan. J. Appl. Phys. 11, 1611-1621 (1972)
[CrossRef]

Oguchi, T.

K. Terakura, A. R. Williams, T. Oguchi, and J. Kuebler, "Transition-Metal Monoxides: Band or Mott Insulators," Phys. Rev. Lett. 52, 1830-1833 (1984)
[CrossRef]

Oppliger, Y.

I. Wilke, Y. Oppliger, W. Herrmann, and F. K. Kneubuehl, "Nanometer thin-film Ni-NiO-Ni diodes for 30 THz radiation," Appl. Phys. A58, 329-341 (1994)

Polatdemir, E.

J. C. Martinez, and E. Polatdemir, "Measurement of tunneling time via electron interferometry," Appl. Phys. Lett. 84, 1320-1322 (2004)
[CrossRef]

Reintsema, C. D.

E. N. Grossman, T. E. Harvey, and C. D. Reintsema, "Controlled barrier modification in Nb/NbOx/Ag metal insulator metal tunnel diodes," J. Appl. Phys. 91, 10134-10139 (2002)
[CrossRef]

E. N. Grossman, J. A. Koch, C. D. Reintsema, A. and Green, "Lithographic dipole antenna properties at 10 μm wavelength: comparison of method-of-moments predictions with experiment," Intl. J. Infrared Milli. 19, 817-825 (1998)
[CrossRef]

Rothuizen, H.

G. D. Boreman, C. Fumeaux, W. Herrmann, F. K. Kneubuehl, H. Rothuizen, "Tunable polarization response of a planar asymmetric-spiral infrared antenna," Opt. Lett. 23, 1912-1914 (1998)
[CrossRef]

C. Fumeaux, W. Herrmann, F. K. Kneubuehl, H. Rothuizen, B. Lipphardt, and C. O. Weiss, "Mixing of 28 THz (10.7 μm) CO2-laser radiation by nanometer thin-film Ni-NiO-Ni diodes with difference frequencies up to 176 GHz," Infrared Phys. Technol. 38, 393-396 (1997)
[CrossRef]

C. Fumeaux, W. Herrmann, H. Rothuizen, P. De Natale, and F. K. Kneubuehl, "Mixing of 30 THz laser radiation with nanometer thin-film Ni-NiO-Ni diodes and integrated bow-tie antennas," Appl. Phys. B 63, 135-140 (1996)
[CrossRef]

Rudman, D. A.

E. N. Grossman, L. R. Vale, D. A. Rudman, K. M. Evenson, and L. R. Zink, "30 THz mixing experiments on high temperature superconducting Josephson junctions," IEEE Trans. Appl. Supercond. 5, 3061-3064 (1995)
[CrossRef]

Sanchez, A.

A. Sanchez, C. F. Davis, Jr., K. C. Liu, and A. Javan "The MOM tunneling diode: Theoretical estimate of its performance at microwave and infrared frequencies," J. Appl. Phys. 49, 5270-5277 (1978)
[CrossRef]

J. G. Small, G. M. Elchinger, A. Javan, A. Sanchez, F. J. Bachner, and D. L. Smythe, "AC electron tunneling at infrared frequencies: thin-film M-O-M diode structure with broad-band characteristics," Appl. Phys. Lett. 24, 275-279 (1974)
[CrossRef]

V. Daneu, D. Sokoloff, A. Sanchez, and A. Javan, "Extension of laser harmonic-frequency mixing techniques into the 9 μ region with an infrared metal-metal point contact diode," Appl. Phys. Lett. 15 (12), 398-401 (1969)
[CrossRef]

Schaich, W. L.

C. Fumeaux, M. A. A. Gritz, I. Codreanu, W. L. Schaich, F. J. Gonzalez, and G. D. Boreman, "Measurement of the resonant lengths of infrared dipole antennas," Infrared Phys. Technol. 41, 271-281 (2000)
[CrossRef]

Simmons, J. G.

J. G. Simmons, "Electric tunnel effect between dissimilar electrodes separated by a thin insulating film," J. Appl. Phys. 34, 2581-2590 (1963)
[CrossRef]

Small, J. G.

J. G. Small, G. M. Elchinger, A. Javan, A. Sanchez, F. J. Bachner, and D. L. Smythe, "AC electron tunneling at infrared frequencies: thin-film M-O-M diode structure with broad-band characteristics," Appl. Phys. Lett. 24, 275-279 (1974)
[CrossRef]

Smythe, D. L.

J. G. Small, G. M. Elchinger, A. Javan, A. Sanchez, F. J. Bachner, and D. L. Smythe, "AC electron tunneling at infrared frequencies: thin-film M-O-M diode structure with broad-band characteristics," Appl. Phys. Lett. 24, 275-279 (1974)
[CrossRef]

Sokoloff, D.

V. Daneu, D. Sokoloff, A. Sanchez, and A. Javan, "Extension of laser harmonic-frequency mixing techniques into the 9 μ region with an infrared metal-metal point contact diode," Appl. Phys. Lett. 15 (12), 398-401 (1969)
[CrossRef]

Terakura, K.

K. Terakura, A. R. Williams, T. Oguchi, and J. Kuebler, "Transition-Metal Monoxides: Band or Mott Insulators," Phys. Rev. Lett. 52, 1830-1833 (1984)
[CrossRef]

Tucker, J. R.

J. R. Tucker and M. J. Feldman, "Quantum detection at millimeter wavelengths," Rev. Mod. Phys. 57, 1055-1114 (1985)
[CrossRef]

Vale, L. R.

E. N. Grossman, L. R. Vale, D. A. Rudman, K. M. Evenson, and L. R. Zink, "30 THz mixing experiments on high temperature superconducting Josephson junctions," IEEE Trans. Appl. Supercond. 5, 3061-3064 (1995)
[CrossRef]

Vlasov, Y. A.

Wang, S.

M. Heiblum, S. Wang, J. R. Whinnery, and T. K. Gustafson, "Characteristics of integrated MOM junctions at dc and at optical frequencies," IEEE J. Quantum Electron. QE-14(3), 159-169 (1978)
[CrossRef]

Wang, S. Y.

S. Y. Wang, T. Izawa, T. K. Gustafson, "Coupling characteristics of thin-film metal-oxide-metal diodes at 10.6 μm," Appl. Phys. Lett. 27(9), 481-483 (1975)
[CrossRef]

Weinberg, Z. A.

A. Hartstein, Z. A. Weinberg, and D. J. DiMaria, "Experimental test of the quantum-mechanical image-force theory" Phys. Rev. B 25, 7174 - 7182 (1982)
[CrossRef]

A. Hartstein and Z. A. Weinberg, "Unified theory of internal photoemission and photon-assisted tunneling," Phys. Rev. B 20, 1335 - 1338 (1979)
[CrossRef]

Weiss, C. O.

C. Fumeaux, W. Herrmann, F. K. Kneubuehl, H. Rothuizen, B. Lipphardt, and C. O. Weiss, "Mixing of 28 THz (10.7 μm) CO2-laser radiation by nanometer thin-film Ni-NiO-Ni diodes with difference frequencies up to 176 GHz," Infrared Phys. Technol. 38, 393-396 (1997)
[CrossRef]

Whinnery, J. R.

M. Heiblum, S. Wang, J. R. Whinnery, and T. K. Gustafson, "Characteristics of integrated MOM junctions at dc and at optical frequencies," IEEE J. Quantum Electron. QE-14(3), 159-169 (1978)
[CrossRef]

Wilke, I.

I. Wilke, W. Herrmann, and F. K. Kneubuehl, "Integrated nanostrip dipole antennas for coherent 30 THz infrared radiation," Appl. Phys. B 58, 87-95 (1994)

I. Wilke, Y. Oppliger, W. Herrmann, and F. K. Kneubuehl, "Nanometer thin-film Ni-NiO-Ni diodes for 30 THz radiation," Appl. Phys. A58, 329-341 (1994)

Williams, A. R.

K. Terakura, A. R. Williams, T. Oguchi, and J. Kuebler, "Transition-Metal Monoxides: Band or Mott Insulators," Phys. Rev. Lett. 52, 1830-1833 (1984)
[CrossRef]

Zink, L. R.

E. N. Grossman, L. R. Vale, D. A. Rudman, K. M. Evenson, and L. R. Zink, "30 THz mixing experiments on high temperature superconducting Josephson junctions," IEEE Trans. Appl. Supercond. 5, 3061-3064 (1995)
[CrossRef]

Zummo, G.

M. Abdel-Rahman, F. J. Gonzalez, G. Zummo, C. Middleton and G. D. Boreman, "Antenna-coupled MOM diodes for dual-band detection in MMW and LWIR," in Radar Sensor Technology VIII and Passive Millimeter-Wave Imaging Technology VII, R. Trebits, J. L. Kurtz, R. Appleby, N. Salmon, D. A. Wikner, Proc. SPIE 5410, 238-243 (2004)

Appl. Opt.

P. C. D. Hobbs, R. B. Laibowitz, and F. R. Libsch, "Ni-NiO-Ni tunnel junctions for terahertz and infrared detection," Appl. Opt. 42, 6813-6822 (2005)
[CrossRef]

Appl. Phys.

I. Wilke, Y. Oppliger, W. Herrmann, and F. K. Kneubuehl, "Nanometer thin-film Ni-NiO-Ni diodes for 30 THz radiation," Appl. Phys. A58, 329-341 (1994)

Appl. Phys. B

I. Wilke, W. Herrmann, and F. K. Kneubuehl, "Integrated nanostrip dipole antennas for coherent 30 THz infrared radiation," Appl. Phys. B 58, 87-95 (1994)

C. Fumeaux, W. Herrmann, H. Rothuizen, P. De Natale, and F. K. Kneubuehl, "Mixing of 30 THz laser radiation with nanometer thin-film Ni-NiO-Ni diodes and integrated bow-tie antennas," Appl. Phys. B 63, 135-140 (1996)
[CrossRef]

Appl. Phys. Lett.

J. G. Small, G. M. Elchinger, A. Javan, A. Sanchez, F. J. Bachner, and D. L. Smythe, "AC electron tunneling at infrared frequencies: thin-film M-O-M diode structure with broad-band characteristics," Appl. Phys. Lett. 24, 275-279 (1974)
[CrossRef]

S. Y. Wang, T. Izawa, T. K. Gustafson, "Coupling characteristics of thin-film metal-oxide-metal diodes at 10.6 μm," Appl. Phys. Lett. 27(9), 481-483 (1975)
[CrossRef]

V. Daneu, D. Sokoloff, A. Sanchez, and A. Javan, "Extension of laser harmonic-frequency mixing techniques into the 9 μ region with an infrared metal-metal point contact diode," Appl. Phys. Lett. 15 (12), 398-401 (1969)
[CrossRef]

J. C. Martinez, and E. Polatdemir, "Measurement of tunneling time via electron interferometry," Appl. Phys. Lett. 84, 1320-1322 (2004)
[CrossRef]

IEEE J. Quantum Electron.

M. Heiblum, S. Wang, J. R. Whinnery, and T. K. Gustafson, "Characteristics of integrated MOM junctions at dc and at optical frequencies," IEEE J. Quantum Electron. QE-14(3), 159-169 (1978)
[CrossRef]

IEEE Trans. Appl. Supercond.

E. N. Grossman, L. R. Vale, D. A. Rudman, K. M. Evenson, and L. R. Zink, "30 THz mixing experiments on high temperature superconducting Josephson junctions," IEEE Trans. Appl. Supercond. 5, 3061-3064 (1995)
[CrossRef]

IEEE Trans. Microwave Theory Techn.

M. E. MacDonald, E. N. Grossman "Niobium microbolometers for far-infrared detection," IEEE Trans. Microwave Theory Techn. MTT-43(4), 893-896 (1995)
[CrossRef]

Infrared Phys. Technol.

F. J. González and G. D. Boreman, "Comparison of dipole, bowtie, spiral and log-periodic IR antennas," Infrared Phys. Technol. 46418-428 (2005)
[CrossRef]

C. Fumeaux, M. A. A. Gritz, I. Codreanu, W. L. Schaich, F. J. Gonzalez, and G. D. Boreman, "Measurement of the resonant lengths of infrared dipole antennas," Infrared Phys. Technol. 41, 271-281 (2000)
[CrossRef]

C. Fumeaux, W. Herrmann, F. K. Kneubuehl, H. Rothuizen, B. Lipphardt, and C. O. Weiss, "Mixing of 28 THz (10.7 μm) CO2-laser radiation by nanometer thin-film Ni-NiO-Ni diodes with difference frequencies up to 176 GHz," Infrared Phys. Technol. 38, 393-396 (1997)
[CrossRef]

Intl. J. Infrared Milli.

E. N. Grossman, J. A. Koch, C. D. Reintsema, A. and Green, "Lithographic dipole antenna properties at 10 μm wavelength: comparison of method-of-moments predictions with experiment," Intl. J. Infrared Milli. 19, 817-825 (1998)
[CrossRef]

J. Appl. Phys.

J. G. Simmons, "Electric tunnel effect between dissimilar electrodes separated by a thin insulating film," J. Appl. Phys. 34, 2581-2590 (1963)
[CrossRef]

E. N. Grossman, T. E. Harvey, and C. D. Reintsema, "Controlled barrier modification in Nb/NbOx/Ag metal insulator metal tunnel diodes," J. Appl. Phys. 91, 10134-10139 (2002)
[CrossRef]

A. Sanchez, C. F. Davis, Jr., K. C. Liu, and A. Javan "The MOM tunneling diode: Theoretical estimate of its performance at microwave and infrared frequencies," J. Appl. Phys. 49, 5270-5277 (1978)
[CrossRef]

Japan. J. Appl. Phys.

M. Nagae, "Response time of metal-insulator-metal tunnel junctions," Japan. J. Appl. Phys. 11, 1611-1621 (1972)
[CrossRef]

Microwave J.

J.W. Dees, "Detection and harmonic generation in the sub-millimeter wavelength region," Microwave J. 9, 48-55, 1966.

Opt. Eng.

B. M. Kale, " Electron tunneling devices in optics," Opt. Eng. 24 (2), 267-274 (1985)

Opt. Express

Opt. Lett.

Phys. Rev. B

A. Hartstein and Z. A. Weinberg, "Unified theory of internal photoemission and photon-assisted tunneling," Phys. Rev. B 20, 1335 - 1338 (1979)
[CrossRef]

A. Hartstein, Z. A. Weinberg, and D. J. DiMaria, "Experimental test of the quantum-mechanical image-force theory" Phys. Rev. B 25, 7174 - 7182 (1982)
[CrossRef]

Phys. Rev. Lett.

K. Terakura, A. R. Williams, T. Oguchi, and J. Kuebler, "Transition-Metal Monoxides: Band or Mott Insulators," Phys. Rev. Lett. 52, 1830-1833 (1984)
[CrossRef]

Proc. SPIE

M. Abdel-Rahman, F. J. Gonzalez, G. Zummo, C. Middleton and G. D. Boreman, "Antenna-coupled MOM diodes for dual-band detection in MMW and LWIR," in Radar Sensor Technology VIII and Passive Millimeter-Wave Imaging Technology VII, R. Trebits, J. L. Kurtz, R. Appleby, N. Salmon, D. A. Wikner, Proc. SPIE 5410, 238-243 (2004)

Rev. Mod. Phys.

J. R. Tucker and M. J. Feldman, "Quantum detection at millimeter wavelengths," Rev. Mod. Phys. 57, 1055-1114 (1985)
[CrossRef]

Other

E. D. Palik, Handbook of Optical Constants of Solids, Volume 1; New York, Academic, 1980.

F. E. Terman, Radio Engineers’ Handbook, New York, McGraw-Hill, 1943, 211-212

P. C. D. Hobbs, "POEMS: a programmable optimizing electromagnetic simulator," http://www.watson.ibm.com/actj.html

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

Outline drawing of the waveguide, antenna, and tunnel junction structure. The waveguide is 0.45 µm wide and 0.22 µm tall.

Fig. 2.
Fig. 2.

SEM of a Ge shadow mask on the wafer used in Fig. 4, after Ge and PMMA etch steps, but before metal deposition. The undercut region is clearly visible through the 50-nm Ge layer, as is PMMA residue adhering to the bottom of the Ge.

Fig. 3.
Fig. 3.

A bridge structure from the same wafer as that of Fig. 4, after the Ni adhesion layer and two 60-nm gold evaporations. The undercut and bottom-side resist residue are now invisible beneath the thick metal.

Fig. 4.
Fig. 4.

SEM of one of the devices used in this work. The faint vertical stripe is the Si waveguide; lightest areas gold, and darker areas Ni and bare substrate. The extent of the undercut in the PMMA support layer (before liftoff) is visible as a line of carbon residue. The extra antenna arms outside the waveguide region are useless but harmless, and result from the multiple-angle deposition technique.

Fig. 5.
Fig. 5.

Waveguide layout showing curves and adiabatic tapers for coupling into polymer waveguide. (a) Layout of each waveguide; (b) detail of taper point; (c) detail of curve and taper.

Fig. 6.
Fig. 6.

Optical micrograph showing one end of the coupling structure, with the lensed tapered optical fibre at left, and the silicon waveguide as the very small line at right, between the two areas of fill pattern. This shows a cleaved edge, which did not quite reach the straight region of the guide.

Fig. 7.
Fig. 7.

Current-voltage plot of a waveguide-integrated detector, with a Simmons-equation fit. V21 is the bias voltage across the junction.

Fig. 8.
Fig. 8.

Junction resistance and optical responsivity (in the impedance-matched condition) calculated from the DC I-V curve fit of Fig. 7.

Fig. 9.
Fig. 9.

Total responsivity vs bias, for 27 µW @ 1.605 µm incident in the Si waveguide. End-to-end quantum efficiency is over 6%, which is 1–2 orders of magnitude higher than previously reported devices. The dashed curve is derived from a fitting procedure like that in Fig. 8.

Fig. 10.
Fig. 10.

Low frequency (50–90 kHz) noise voltage of a 4500-Ω junction. similar to that of Fig. 8. The noise has a 1/f character.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

η = η a η s η c η j ,
τ = ε 0 ε r RA d
H ( ν ) = 1 1 + ( 2 π ν τ ) 2 .
R = Δ V j r j P g

Metrics