Abstract

We investigate the polarisation-mode dynamics and Lamb’s mode coupling constant for orthogonally polarised laser states in a dual-mode (100)-cut Nd:YAG laser with feedback, and compare with an anisotropic rate equation model. The anisotropic (100)-cut Nd:YAG exhibits thermally-induced depolarisation and polarisation-mode coupling dependent on the pump polarisation, crystal angle and laser polarisation directions. Here, the links between the depolarisation and polarisation-mode coupling are discussed with reference to a rate equation model which includes gain anisotropy in a quasi-isotropic laser cavity.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. L. Tang, H. Statz, and G. deMars, "Spectral output and spiking behavor of solid-state lasers," J. Appl. Phys. 34, 2289-2295 (1963).
    [CrossRef]
  2. K. Otsuka, P. Mandel, S. Bielawski, D. Derozier, and P. Glorieux, "Alternate time scale in multimode lasers," Phys. Rev. A 46, 1692-1696 (1992).
    [CrossRef] [PubMed]
  3. M. Brunel, A. Amon, and M. Vallet, "Dual-polarization microchip laser at 1.53 m," Opt. Lett. 30, 2418-2420 (2005).
    [CrossRef] [PubMed]
  4. L. Morvan, N. D. Lai, D. Dolfi, J.-P. Huignard, M. Brunel, F. Bretenaker, and A. Le Floch, "Building blocks for a two-frequency laser lidar-radar: a preliminary study," Appl. Opt. 41, 5702-5712 (2002).
    [CrossRef] [PubMed]
  5. W. Du, S. Zhang, and Y. Li, "Principles and realization of a novel instrument for high performance displacement measurement—nanometer laser ruler," Opt. Laser Eng. 43, 1214-1225 (2005).
    [CrossRef]
  6. M. Brunel, O. Emile, F. Bretenaker, A. Le Floch, B. Ferrand, and E. Molva, "Tunable two-frequency lasers for lifetime measurements," Opt. Rev. 4, 550-552 (1997).
    [CrossRef]
  7. M. Alouini, F. Bretenaker, M. Brunel, A. Le Floch, M. Vallet, and P. Thony, "Existence of two coupling constants in microchip lasers," Opt. Lett. 25, 896-898 (2000).
    [CrossRef]
  8. W. E. Lamb, "Theory of an optical maser," Phys. Rev. A 134, A1429-A1450 (1964).
  9. R. Bayerer, J. Heber, and D. Mateika, "Crystal-field analysis of Tb3+ doped Yttrium aluminium garnet using site-selective polarized spectroscopy," Z. Phys. B Con. Mat. 64, 201-210 (1986).
    [CrossRef]
  10. R. Dalgliesh, A. D. May, and G. Stephan, "Polarization states of a single-mode (microchip) Nd3+:YAG laser— Part II: Comparison of Theory and Experiment," IEEE J. Quantum Electron. 34, 1493-1502 (1998).
    [CrossRef]
  11. R. Dalgliesh, A. D. May, and G. Stephan, "Polarization states of a single-mode (microchip) Nd3+:YAG laser— Part I: Theory," IEEE J. Quantum Electron. 34, 1485-1492 (1998).
    [CrossRef]
  12. A. McKay, P. Dekker, D.W. Coutts, and J. M. Dawes, "Enhanced self-heterodyne performance using a Nd-doped ceramic YAG laser," Opt. Commun. 272, 425-430 (2007).
    [CrossRef]
  13. G.W. Baxter, J.M. Dawes, P. Dekker, and D. S. Knowles, "Dual-polarization frequency-modulated laser source," IEEE Photon Technol. Lett. 8, 1015-1017 (1996).
    [CrossRef]
  14. M. Brunel, M. Vallet, A. Le Floch, and F. Bretenaker, "Differential measurement of the coupling constant between laser eigenstates," Appl. Phys. Lett. 70, 2070-2072 (1997).
    [CrossRef]
  15. M. A. van Eijkelenborg, C. A. Scharama, and J. P. Woerdman, "Quantum mechanical diffusion of the polarization of a laser," Opt. Commun. 119, 97-103 (1995).
    [CrossRef]
  16. W. KoechnerSolid-state laser engineering (Springer, 1999).
  17. G. Verschaffelt, G. van der Sande, J. Danckaert, T. Erneux, B. Ségard, and P. Glorieux, "Polarization switching in Nd:YAG lasers by means of modulating the pump polarization," Proc. SPIE 6184, 61841V-1-61841V-9 (2006).
  18. I. Shoji and T. Taira, "Intrinsic reduction of the depolarization loss in solid-state lasers by use of a (110)-cut Y3Al5O12 crystal," Appl. Phys. Lett. 80, 3048-3050 (2002).
    [CrossRef]
  19. I. B. Mukhin, O. V. Palashov, E. A. Khazanov, and I. A. Ivanov, "Influence of the orientation of a crystal on thermal polarization effects in high-power solid-state lasers," JETP Lett. V81, 90-94 (2005).
    [CrossRef]

2007 (1)

A. McKay, P. Dekker, D.W. Coutts, and J. M. Dawes, "Enhanced self-heterodyne performance using a Nd-doped ceramic YAG laser," Opt. Commun. 272, 425-430 (2007).
[CrossRef]

2005 (3)

M. Brunel, A. Amon, and M. Vallet, "Dual-polarization microchip laser at 1.53 m," Opt. Lett. 30, 2418-2420 (2005).
[CrossRef] [PubMed]

W. Du, S. Zhang, and Y. Li, "Principles and realization of a novel instrument for high performance displacement measurement—nanometer laser ruler," Opt. Laser Eng. 43, 1214-1225 (2005).
[CrossRef]

I. B. Mukhin, O. V. Palashov, E. A. Khazanov, and I. A. Ivanov, "Influence of the orientation of a crystal on thermal polarization effects in high-power solid-state lasers," JETP Lett. V81, 90-94 (2005).
[CrossRef]

2002 (2)

L. Morvan, N. D. Lai, D. Dolfi, J.-P. Huignard, M. Brunel, F. Bretenaker, and A. Le Floch, "Building blocks for a two-frequency laser lidar-radar: a preliminary study," Appl. Opt. 41, 5702-5712 (2002).
[CrossRef] [PubMed]

I. Shoji and T. Taira, "Intrinsic reduction of the depolarization loss in solid-state lasers by use of a (110)-cut Y3Al5O12 crystal," Appl. Phys. Lett. 80, 3048-3050 (2002).
[CrossRef]

2000 (1)

1998 (2)

R. Dalgliesh, A. D. May, and G. Stephan, "Polarization states of a single-mode (microchip) Nd3+:YAG laser— Part II: Comparison of Theory and Experiment," IEEE J. Quantum Electron. 34, 1493-1502 (1998).
[CrossRef]

R. Dalgliesh, A. D. May, and G. Stephan, "Polarization states of a single-mode (microchip) Nd3+:YAG laser— Part I: Theory," IEEE J. Quantum Electron. 34, 1485-1492 (1998).
[CrossRef]

1997 (2)

M. Brunel, M. Vallet, A. Le Floch, and F. Bretenaker, "Differential measurement of the coupling constant between laser eigenstates," Appl. Phys. Lett. 70, 2070-2072 (1997).
[CrossRef]

M. Brunel, O. Emile, F. Bretenaker, A. Le Floch, B. Ferrand, and E. Molva, "Tunable two-frequency lasers for lifetime measurements," Opt. Rev. 4, 550-552 (1997).
[CrossRef]

1996 (1)

G.W. Baxter, J.M. Dawes, P. Dekker, and D. S. Knowles, "Dual-polarization frequency-modulated laser source," IEEE Photon Technol. Lett. 8, 1015-1017 (1996).
[CrossRef]

1995 (1)

M. A. van Eijkelenborg, C. A. Scharama, and J. P. Woerdman, "Quantum mechanical diffusion of the polarization of a laser," Opt. Commun. 119, 97-103 (1995).
[CrossRef]

1992 (1)

K. Otsuka, P. Mandel, S. Bielawski, D. Derozier, and P. Glorieux, "Alternate time scale in multimode lasers," Phys. Rev. A 46, 1692-1696 (1992).
[CrossRef] [PubMed]

1986 (1)

R. Bayerer, J. Heber, and D. Mateika, "Crystal-field analysis of Tb3+ doped Yttrium aluminium garnet using site-selective polarized spectroscopy," Z. Phys. B Con. Mat. 64, 201-210 (1986).
[CrossRef]

1964 (1)

W. E. Lamb, "Theory of an optical maser," Phys. Rev. A 134, A1429-A1450 (1964).

1963 (1)

C. L. Tang, H. Statz, and G. deMars, "Spectral output and spiking behavor of solid-state lasers," J. Appl. Phys. 34, 2289-2295 (1963).
[CrossRef]

Alouini, M.

Amon, A.

Baxter, G.W.

G.W. Baxter, J.M. Dawes, P. Dekker, and D. S. Knowles, "Dual-polarization frequency-modulated laser source," IEEE Photon Technol. Lett. 8, 1015-1017 (1996).
[CrossRef]

Bayerer, R.

R. Bayerer, J. Heber, and D. Mateika, "Crystal-field analysis of Tb3+ doped Yttrium aluminium garnet using site-selective polarized spectroscopy," Z. Phys. B Con. Mat. 64, 201-210 (1986).
[CrossRef]

Bielawski, S.

K. Otsuka, P. Mandel, S. Bielawski, D. Derozier, and P. Glorieux, "Alternate time scale in multimode lasers," Phys. Rev. A 46, 1692-1696 (1992).
[CrossRef] [PubMed]

Bretenaker, F.

L. Morvan, N. D. Lai, D. Dolfi, J.-P. Huignard, M. Brunel, F. Bretenaker, and A. Le Floch, "Building blocks for a two-frequency laser lidar-radar: a preliminary study," Appl. Opt. 41, 5702-5712 (2002).
[CrossRef] [PubMed]

M. Alouini, F. Bretenaker, M. Brunel, A. Le Floch, M. Vallet, and P. Thony, "Existence of two coupling constants in microchip lasers," Opt. Lett. 25, 896-898 (2000).
[CrossRef]

M. Brunel, M. Vallet, A. Le Floch, and F. Bretenaker, "Differential measurement of the coupling constant between laser eigenstates," Appl. Phys. Lett. 70, 2070-2072 (1997).
[CrossRef]

M. Brunel, O. Emile, F. Bretenaker, A. Le Floch, B. Ferrand, and E. Molva, "Tunable two-frequency lasers for lifetime measurements," Opt. Rev. 4, 550-552 (1997).
[CrossRef]

Brunel, M.

Coutts, D.W.

A. McKay, P. Dekker, D.W. Coutts, and J. M. Dawes, "Enhanced self-heterodyne performance using a Nd-doped ceramic YAG laser," Opt. Commun. 272, 425-430 (2007).
[CrossRef]

Dalgliesh, R.

R. Dalgliesh, A. D. May, and G. Stephan, "Polarization states of a single-mode (microchip) Nd3+:YAG laser— Part II: Comparison of Theory and Experiment," IEEE J. Quantum Electron. 34, 1493-1502 (1998).
[CrossRef]

R. Dalgliesh, A. D. May, and G. Stephan, "Polarization states of a single-mode (microchip) Nd3+:YAG laser— Part I: Theory," IEEE J. Quantum Electron. 34, 1485-1492 (1998).
[CrossRef]

Dawes, J. M.

A. McKay, P. Dekker, D.W. Coutts, and J. M. Dawes, "Enhanced self-heterodyne performance using a Nd-doped ceramic YAG laser," Opt. Commun. 272, 425-430 (2007).
[CrossRef]

Dawes, J.M.

G.W. Baxter, J.M. Dawes, P. Dekker, and D. S. Knowles, "Dual-polarization frequency-modulated laser source," IEEE Photon Technol. Lett. 8, 1015-1017 (1996).
[CrossRef]

Dekker, P.

A. McKay, P. Dekker, D.W. Coutts, and J. M. Dawes, "Enhanced self-heterodyne performance using a Nd-doped ceramic YAG laser," Opt. Commun. 272, 425-430 (2007).
[CrossRef]

G.W. Baxter, J.M. Dawes, P. Dekker, and D. S. Knowles, "Dual-polarization frequency-modulated laser source," IEEE Photon Technol. Lett. 8, 1015-1017 (1996).
[CrossRef]

deMars, G.

C. L. Tang, H. Statz, and G. deMars, "Spectral output and spiking behavor of solid-state lasers," J. Appl. Phys. 34, 2289-2295 (1963).
[CrossRef]

Derozier, D.

K. Otsuka, P. Mandel, S. Bielawski, D. Derozier, and P. Glorieux, "Alternate time scale in multimode lasers," Phys. Rev. A 46, 1692-1696 (1992).
[CrossRef] [PubMed]

Dolfi, D.

Du, W.

W. Du, S. Zhang, and Y. Li, "Principles and realization of a novel instrument for high performance displacement measurement—nanometer laser ruler," Opt. Laser Eng. 43, 1214-1225 (2005).
[CrossRef]

Emile, O.

M. Brunel, O. Emile, F. Bretenaker, A. Le Floch, B. Ferrand, and E. Molva, "Tunable two-frequency lasers for lifetime measurements," Opt. Rev. 4, 550-552 (1997).
[CrossRef]

Ferrand, B.

M. Brunel, O. Emile, F. Bretenaker, A. Le Floch, B. Ferrand, and E. Molva, "Tunable two-frequency lasers for lifetime measurements," Opt. Rev. 4, 550-552 (1997).
[CrossRef]

Glorieux, P.

K. Otsuka, P. Mandel, S. Bielawski, D. Derozier, and P. Glorieux, "Alternate time scale in multimode lasers," Phys. Rev. A 46, 1692-1696 (1992).
[CrossRef] [PubMed]

Heber, J.

R. Bayerer, J. Heber, and D. Mateika, "Crystal-field analysis of Tb3+ doped Yttrium aluminium garnet using site-selective polarized spectroscopy," Z. Phys. B Con. Mat. 64, 201-210 (1986).
[CrossRef]

Huignard, J.-P.

Ivanov, I. A.

I. B. Mukhin, O. V. Palashov, E. A. Khazanov, and I. A. Ivanov, "Influence of the orientation of a crystal on thermal polarization effects in high-power solid-state lasers," JETP Lett. V81, 90-94 (2005).
[CrossRef]

Khazanov, E. A.

I. B. Mukhin, O. V. Palashov, E. A. Khazanov, and I. A. Ivanov, "Influence of the orientation of a crystal on thermal polarization effects in high-power solid-state lasers," JETP Lett. V81, 90-94 (2005).
[CrossRef]

Knowles, D. S.

G.W. Baxter, J.M. Dawes, P. Dekker, and D. S. Knowles, "Dual-polarization frequency-modulated laser source," IEEE Photon Technol. Lett. 8, 1015-1017 (1996).
[CrossRef]

Lai, N. D.

Lamb, W. E.

W. E. Lamb, "Theory of an optical maser," Phys. Rev. A 134, A1429-A1450 (1964).

Le Floch, A.

L. Morvan, N. D. Lai, D. Dolfi, J.-P. Huignard, M. Brunel, F. Bretenaker, and A. Le Floch, "Building blocks for a two-frequency laser lidar-radar: a preliminary study," Appl. Opt. 41, 5702-5712 (2002).
[CrossRef] [PubMed]

M. Alouini, F. Bretenaker, M. Brunel, A. Le Floch, M. Vallet, and P. Thony, "Existence of two coupling constants in microchip lasers," Opt. Lett. 25, 896-898 (2000).
[CrossRef]

M. Brunel, M. Vallet, A. Le Floch, and F. Bretenaker, "Differential measurement of the coupling constant between laser eigenstates," Appl. Phys. Lett. 70, 2070-2072 (1997).
[CrossRef]

M. Brunel, O. Emile, F. Bretenaker, A. Le Floch, B. Ferrand, and E. Molva, "Tunable two-frequency lasers for lifetime measurements," Opt. Rev. 4, 550-552 (1997).
[CrossRef]

Li, Y.

W. Du, S. Zhang, and Y. Li, "Principles and realization of a novel instrument for high performance displacement measurement—nanometer laser ruler," Opt. Laser Eng. 43, 1214-1225 (2005).
[CrossRef]

Mandel, P.

K. Otsuka, P. Mandel, S. Bielawski, D. Derozier, and P. Glorieux, "Alternate time scale in multimode lasers," Phys. Rev. A 46, 1692-1696 (1992).
[CrossRef] [PubMed]

Mateika, D.

R. Bayerer, J. Heber, and D. Mateika, "Crystal-field analysis of Tb3+ doped Yttrium aluminium garnet using site-selective polarized spectroscopy," Z. Phys. B Con. Mat. 64, 201-210 (1986).
[CrossRef]

May, A. D.

R. Dalgliesh, A. D. May, and G. Stephan, "Polarization states of a single-mode (microchip) Nd3+:YAG laser— Part II: Comparison of Theory and Experiment," IEEE J. Quantum Electron. 34, 1493-1502 (1998).
[CrossRef]

R. Dalgliesh, A. D. May, and G. Stephan, "Polarization states of a single-mode (microchip) Nd3+:YAG laser— Part I: Theory," IEEE J. Quantum Electron. 34, 1485-1492 (1998).
[CrossRef]

McKay, A.

A. McKay, P. Dekker, D.W. Coutts, and J. M. Dawes, "Enhanced self-heterodyne performance using a Nd-doped ceramic YAG laser," Opt. Commun. 272, 425-430 (2007).
[CrossRef]

Molva, E.

M. Brunel, O. Emile, F. Bretenaker, A. Le Floch, B. Ferrand, and E. Molva, "Tunable two-frequency lasers for lifetime measurements," Opt. Rev. 4, 550-552 (1997).
[CrossRef]

Morvan, L.

Mukhin, I. B.

I. B. Mukhin, O. V. Palashov, E. A. Khazanov, and I. A. Ivanov, "Influence of the orientation of a crystal on thermal polarization effects in high-power solid-state lasers," JETP Lett. V81, 90-94 (2005).
[CrossRef]

Otsuka, K.

K. Otsuka, P. Mandel, S. Bielawski, D. Derozier, and P. Glorieux, "Alternate time scale in multimode lasers," Phys. Rev. A 46, 1692-1696 (1992).
[CrossRef] [PubMed]

Palashov, O. V.

I. B. Mukhin, O. V. Palashov, E. A. Khazanov, and I. A. Ivanov, "Influence of the orientation of a crystal on thermal polarization effects in high-power solid-state lasers," JETP Lett. V81, 90-94 (2005).
[CrossRef]

Scharama, C. A.

M. A. van Eijkelenborg, C. A. Scharama, and J. P. Woerdman, "Quantum mechanical diffusion of the polarization of a laser," Opt. Commun. 119, 97-103 (1995).
[CrossRef]

Shoji, I.

I. Shoji and T. Taira, "Intrinsic reduction of the depolarization loss in solid-state lasers by use of a (110)-cut Y3Al5O12 crystal," Appl. Phys. Lett. 80, 3048-3050 (2002).
[CrossRef]

Statz, H.

C. L. Tang, H. Statz, and G. deMars, "Spectral output and spiking behavor of solid-state lasers," J. Appl. Phys. 34, 2289-2295 (1963).
[CrossRef]

Stephan, G.

R. Dalgliesh, A. D. May, and G. Stephan, "Polarization states of a single-mode (microchip) Nd3+:YAG laser— Part I: Theory," IEEE J. Quantum Electron. 34, 1485-1492 (1998).
[CrossRef]

R. Dalgliesh, A. D. May, and G. Stephan, "Polarization states of a single-mode (microchip) Nd3+:YAG laser— Part II: Comparison of Theory and Experiment," IEEE J. Quantum Electron. 34, 1493-1502 (1998).
[CrossRef]

Taira, T.

I. Shoji and T. Taira, "Intrinsic reduction of the depolarization loss in solid-state lasers by use of a (110)-cut Y3Al5O12 crystal," Appl. Phys. Lett. 80, 3048-3050 (2002).
[CrossRef]

Tang, C. L.

C. L. Tang, H. Statz, and G. deMars, "Spectral output and spiking behavor of solid-state lasers," J. Appl. Phys. 34, 2289-2295 (1963).
[CrossRef]

Thony, P.

Vallet, M.

van Eijkelenborg, M. A.

M. A. van Eijkelenborg, C. A. Scharama, and J. P. Woerdman, "Quantum mechanical diffusion of the polarization of a laser," Opt. Commun. 119, 97-103 (1995).
[CrossRef]

Woerdman, J. P.

M. A. van Eijkelenborg, C. A. Scharama, and J. P. Woerdman, "Quantum mechanical diffusion of the polarization of a laser," Opt. Commun. 119, 97-103 (1995).
[CrossRef]

Zhang, S.

W. Du, S. Zhang, and Y. Li, "Principles and realization of a novel instrument for high performance displacement measurement—nanometer laser ruler," Opt. Laser Eng. 43, 1214-1225 (2005).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

M. Brunel, M. Vallet, A. Le Floch, and F. Bretenaker, "Differential measurement of the coupling constant between laser eigenstates," Appl. Phys. Lett. 70, 2070-2072 (1997).
[CrossRef]

I. Shoji and T. Taira, "Intrinsic reduction of the depolarization loss in solid-state lasers by use of a (110)-cut Y3Al5O12 crystal," Appl. Phys. Lett. 80, 3048-3050 (2002).
[CrossRef]

IEEE J. Quantum Electron. (2)

R. Dalgliesh, A. D. May, and G. Stephan, "Polarization states of a single-mode (microchip) Nd3+:YAG laser— Part II: Comparison of Theory and Experiment," IEEE J. Quantum Electron. 34, 1493-1502 (1998).
[CrossRef]

R. Dalgliesh, A. D. May, and G. Stephan, "Polarization states of a single-mode (microchip) Nd3+:YAG laser— Part I: Theory," IEEE J. Quantum Electron. 34, 1485-1492 (1998).
[CrossRef]

IEEE Photon Technol. Lett. (1)

G.W. Baxter, J.M. Dawes, P. Dekker, and D. S. Knowles, "Dual-polarization frequency-modulated laser source," IEEE Photon Technol. Lett. 8, 1015-1017 (1996).
[CrossRef]

J. Appl. Phys. (1)

C. L. Tang, H. Statz, and G. deMars, "Spectral output and spiking behavor of solid-state lasers," J. Appl. Phys. 34, 2289-2295 (1963).
[CrossRef]

JETP Lett. (1)

I. B. Mukhin, O. V. Palashov, E. A. Khazanov, and I. A. Ivanov, "Influence of the orientation of a crystal on thermal polarization effects in high-power solid-state lasers," JETP Lett. V81, 90-94 (2005).
[CrossRef]

Opt. Commun. (2)

M. A. van Eijkelenborg, C. A. Scharama, and J. P. Woerdman, "Quantum mechanical diffusion of the polarization of a laser," Opt. Commun. 119, 97-103 (1995).
[CrossRef]

A. McKay, P. Dekker, D.W. Coutts, and J. M. Dawes, "Enhanced self-heterodyne performance using a Nd-doped ceramic YAG laser," Opt. Commun. 272, 425-430 (2007).
[CrossRef]

Opt. Laser Eng. (1)

W. Du, S. Zhang, and Y. Li, "Principles and realization of a novel instrument for high performance displacement measurement—nanometer laser ruler," Opt. Laser Eng. 43, 1214-1225 (2005).
[CrossRef]

Opt. Lett. (2)

Opt. Rev. (1)

M. Brunel, O. Emile, F. Bretenaker, A. Le Floch, B. Ferrand, and E. Molva, "Tunable two-frequency lasers for lifetime measurements," Opt. Rev. 4, 550-552 (1997).
[CrossRef]

Phys. Rev. A (2)

K. Otsuka, P. Mandel, S. Bielawski, D. Derozier, and P. Glorieux, "Alternate time scale in multimode lasers," Phys. Rev. A 46, 1692-1696 (1992).
[CrossRef] [PubMed]

W. E. Lamb, "Theory of an optical maser," Phys. Rev. A 134, A1429-A1450 (1964).

Z. Phys. B Con. Mat. (1)

R. Bayerer, J. Heber, and D. Mateika, "Crystal-field analysis of Tb3+ doped Yttrium aluminium garnet using site-selective polarized spectroscopy," Z. Phys. B Con. Mat. 64, 201-210 (1986).
[CrossRef]

Other (2)

W. KoechnerSolid-state laser engineering (Springer, 1999).

G. Verschaffelt, G. van der Sande, J. Danckaert, T. Erneux, B. Ségard, and P. Glorieux, "Polarization switching in Nd:YAG lasers by means of modulating the pump polarization," Proc. SPIE 6184, 61841V-1-61841V-9 (2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1.
Fig. 1.

(a) In- and anti-phase relaxation oscillations due to the polarisation-mode coupling dynamics as a function of the incident pump power. (b) Experimental and modelled coupling constant as a function of incident pump power. Crystal and pump polarisation angles were set to 56° and 45° relative to the laser axes respectively.

Fig. 2.
Fig. 2.

(a) Comparison of polarisation-mode coupling (modelled—red line and experimental data—squares) and pump-induced birefringence (modelled—blue line and experimental data—triangles) as a function of crystal angle in a (100)-cut Nd:YAG laser. Pump polarisation direction at 45° to the laser polarisation axes. (b) Influence of the pump polarisation on the normalised orthogonal polarisation modes at a crystal angle of 45° with the incident pump power set to 240 mW (circles), 310 mW (squares) and 380 mW (triangles). Red and blue data points refer to the orthogonal polarisation directions.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

d ϕ j d t = ϕ j t r ( 2 i = 1 6 ( c j q i σ q + c j r i σ r + c j s i σ s ) n i l ln ( 1 R ) L j )
d n i d t = Λ i γ c ( ( c x q i σ q + c x r i σ r + c x s i σ s ) ϕ x + ( c y q i σ q + c y r i σ r + c y s i σ s ) ϕ y ) n i n i τ s
Λ i = 2 γ abs γ abs 2 + Δ ω 2 [ p pq 2 ( E pxq 2 + E pyq 2 ) + p pr 2 ( E pxr 2 + E pyr 2 ) + p ps 2 ( E pxs 2 + E pys 2 ) +
2 ( p pq 2 E pxq E pyq + p pr 2 E pxr E pyr + p ps 2 E pxs E pys ) ]

Metrics