Abstract

Speckle imaging was investigated by using dynamic holography and photorefractive AlGaAs/GaAs multiple quantum wells in a holographic optical imaging system. We showed that the speckle contrast depends on holographic fringes and the photorefractive effect. We further demonstrated that a moving grating technique can be used to suppress the random speckle.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. I. Lahiri, L. Pyrak-Nolte, D. D. Nolte, M. Melloch, R. Kruger, G. Bacher, and M. Klein, "Laser-based ultrasound detection using photorefractive quantum wells," Appl. Phys. Lett. 73, 1041-1043 (1998).
    [CrossRef]
  2. P. Yu, L. Peng, D. D. Nolte, and M. R. Melloch, "Ultrasound detection through turbid media," Opt. Lett. 28, 819-821 (2003).
    [CrossRef] [PubMed]
  3. T. Shimura, F. Grappin, P. Delaye, S. Iwamoto, Y. Arakawa, K. Kuroda, and G. Roosen, "Simultaneous determination of the index and absorption gratings in multiple quantum well photorefractive devices designed for laser ultrasonic sensor," Opt. Commun. 242, 7-12 (2004).
    [CrossRef]
  4. M. Gross, F. Ramaz, B. Forget, M. Atlan, A. Boccara, P. Delaye, and G. Roosen, "Theoretical description of the photorefractive detection of the ultrasound modulated photons in scattering media," Opt. Express 13, 7097-7112 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-18-7097.
    [CrossRef] [PubMed]
  5. L. Peng, P. Yu, M. R. Melloch, and D. D. Nolte, "High speed adaptive interferometer for optical coherence-domain reflectometry through turbid media," Opt. Lett. 28, 396-398 (2003).
    [CrossRef] [PubMed]
  6. L. Peng, P. Yu, M. R. Melloch, and D. D. Nolte, "Adaptive interferometer for optical coherence-domain reflectometry," J. Opt. Soc. Am. B 21, 1953-1963 (2004).
    [CrossRef]
  7. R. Jones, N. P. Barry, S. C. W. Hyde, P. M. W. French, K. M. Kwolek, D. D. Nolte, and M. R. Melloch, "Direct-to-video holographic readout in quantum wells for 3-D imaging through turbid media," Opt. Lett. 23, 103-105 (1998).
    [CrossRef]
  8. M. Tziraki, R. Jones, P. French, D. Nolte, and M. Melloch, "Short-coherence photorefractive holography in multiple-quantum-well devices using light-emitting diodes," Appl. Phys. Lett. 75, 363-365 (1999).
    [CrossRef]
  9. P. Yu, M. Mustata, J. J. Turek, P. M. W. French, M. R. Melloch, and D. D. Nolte, "Holographic optical coherence imaging of tumor spheroids," Appl. Phys. Lett. 83, 575-577 (2003).
    [CrossRef]
  10. P. Yu, M. Mustata, L. Peng, J. J. Turek, M. R. Melloch, P. M. W. French, and D. D. Nolte, "Holographic optical coherence imaging of rat osteogenic sarcoma tumor spheroids," Appl. Opt. 43, 4862-4873 (2004).
    [CrossRef] [PubMed]
  11. P. Yu, L. Peng, M. Mustata, J. J. Turek, M. R. Melloch, and D. D. Nolte, "Time-dependent speckle in holographic optical coherence imaging and the state of health of tumor tissue," Opt. Lett. 29, 68-70, (2004).
    [CrossRef] [PubMed]
  12. W. Rabinovich, M. Bashkansky, S. Bowman, R. Mahon, and P. Battle, "Speckle photography using optically addressed multiple quantum well spatial light modulators," Opt. Express 2, 449-453 (1998), http://www.opticsinfobase.org/abstract.cfm?URI=oe-2-11-449.
    [CrossRef] [PubMed]
  13. C. De Matos, L. Bramerie, and A. Le Corre, "Theoretical and experimental study of spatial resolution in quantum-well spatial light modulators," J. Opt. Soc. Am. B 15, 2586-2592 (1998).
    [CrossRef]
  14. http://www.newport.com/Optics/Filters%20and%20Attenuators/1/3561/product.aspx.
  15. Y. Piederrière, J. Le Meur, J. Cariou, J. Abgrall, and M. Blouch, "Particle aggregation monitoring by speckle size measurement; application to blood platelets aggregation," Opt. Express 12, 4596-4601 (2004), http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-19-4596.
    [CrossRef] [PubMed]
  16. A. D. Ducharme, G. D. Boreman, and D. R. Snyder, "Effects of intensity thresholding on the power spectrum of laser speckle," Appl. Opt. 33, 2715-2720 (1994).
    [CrossRef] [PubMed]
  17. Terri L. Alexander, "Average speckle size as a function of intensity threshold level: comparison of experimental measurements with theory," Appl. Opt. 33, 8240-8250 (1994).
    [CrossRef] [PubMed]
  18. A. D. Ducharme, G. D. Boreman, and S. S. Yang, "Elimination of threshold-induced distortion in the power spectrum of narrow-band laser speckle," Appl. Opt. 34, 6538-6541 (1995).
    [CrossRef] [PubMed]
  19. J. W. Goodman, "Speckle phenomena in optics, theory and applications," Ben Roberts & Company, (2007).
  20. D. D. Nolte, "Semi-insulating semiconductor heterostructures: optoelectronic properties and applications," J. Appl. Phys. 85, 6259-6289 (1999).
    [CrossRef]

2005

2004

2003

1999

D. D. Nolte, "Semi-insulating semiconductor heterostructures: optoelectronic properties and applications," J. Appl. Phys. 85, 6259-6289 (1999).
[CrossRef]

M. Tziraki, R. Jones, P. French, D. Nolte, and M. Melloch, "Short-coherence photorefractive holography in multiple-quantum-well devices using light-emitting diodes," Appl. Phys. Lett. 75, 363-365 (1999).
[CrossRef]

1998

1995

1994

Abgrall, J.

Alexander, Terri L.

Arakawa, Y.

T. Shimura, F. Grappin, P. Delaye, S. Iwamoto, Y. Arakawa, K. Kuroda, and G. Roosen, "Simultaneous determination of the index and absorption gratings in multiple quantum well photorefractive devices designed for laser ultrasonic sensor," Opt. Commun. 242, 7-12 (2004).
[CrossRef]

Atlan, M.

Bacher, G.

I. Lahiri, L. Pyrak-Nolte, D. D. Nolte, M. Melloch, R. Kruger, G. Bacher, and M. Klein, "Laser-based ultrasound detection using photorefractive quantum wells," Appl. Phys. Lett. 73, 1041-1043 (1998).
[CrossRef]

Barry, N. P.

Bashkansky, M.

Battle, P.

Blouch, M.

Boccara, A.

Boreman, G. D.

Bowman, S.

Bramerie, L.

Cariou, J.

De Matos, C.

Delaye, P.

M. Gross, F. Ramaz, B. Forget, M. Atlan, A. Boccara, P. Delaye, and G. Roosen, "Theoretical description of the photorefractive detection of the ultrasound modulated photons in scattering media," Opt. Express 13, 7097-7112 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-18-7097.
[CrossRef] [PubMed]

T. Shimura, F. Grappin, P. Delaye, S. Iwamoto, Y. Arakawa, K. Kuroda, and G. Roosen, "Simultaneous determination of the index and absorption gratings in multiple quantum well photorefractive devices designed for laser ultrasonic sensor," Opt. Commun. 242, 7-12 (2004).
[CrossRef]

Ducharme, A. D.

Forget, B.

French, P.

M. Tziraki, R. Jones, P. French, D. Nolte, and M. Melloch, "Short-coherence photorefractive holography in multiple-quantum-well devices using light-emitting diodes," Appl. Phys. Lett. 75, 363-365 (1999).
[CrossRef]

French, P. M. W.

Grappin, F.

T. Shimura, F. Grappin, P. Delaye, S. Iwamoto, Y. Arakawa, K. Kuroda, and G. Roosen, "Simultaneous determination of the index and absorption gratings in multiple quantum well photorefractive devices designed for laser ultrasonic sensor," Opt. Commun. 242, 7-12 (2004).
[CrossRef]

Gross, M.

Hyde, S. C. W.

Iwamoto, S.

T. Shimura, F. Grappin, P. Delaye, S. Iwamoto, Y. Arakawa, K. Kuroda, and G. Roosen, "Simultaneous determination of the index and absorption gratings in multiple quantum well photorefractive devices designed for laser ultrasonic sensor," Opt. Commun. 242, 7-12 (2004).
[CrossRef]

Jones, R.

M. Tziraki, R. Jones, P. French, D. Nolte, and M. Melloch, "Short-coherence photorefractive holography in multiple-quantum-well devices using light-emitting diodes," Appl. Phys. Lett. 75, 363-365 (1999).
[CrossRef]

R. Jones, N. P. Barry, S. C. W. Hyde, P. M. W. French, K. M. Kwolek, D. D. Nolte, and M. R. Melloch, "Direct-to-video holographic readout in quantum wells for 3-D imaging through turbid media," Opt. Lett. 23, 103-105 (1998).
[CrossRef]

Klein, M.

I. Lahiri, L. Pyrak-Nolte, D. D. Nolte, M. Melloch, R. Kruger, G. Bacher, and M. Klein, "Laser-based ultrasound detection using photorefractive quantum wells," Appl. Phys. Lett. 73, 1041-1043 (1998).
[CrossRef]

Kruger, R.

I. Lahiri, L. Pyrak-Nolte, D. D. Nolte, M. Melloch, R. Kruger, G. Bacher, and M. Klein, "Laser-based ultrasound detection using photorefractive quantum wells," Appl. Phys. Lett. 73, 1041-1043 (1998).
[CrossRef]

Kuroda, K.

T. Shimura, F. Grappin, P. Delaye, S. Iwamoto, Y. Arakawa, K. Kuroda, and G. Roosen, "Simultaneous determination of the index and absorption gratings in multiple quantum well photorefractive devices designed for laser ultrasonic sensor," Opt. Commun. 242, 7-12 (2004).
[CrossRef]

Kwolek, K. M.

Lahiri, I.

I. Lahiri, L. Pyrak-Nolte, D. D. Nolte, M. Melloch, R. Kruger, G. Bacher, and M. Klein, "Laser-based ultrasound detection using photorefractive quantum wells," Appl. Phys. Lett. 73, 1041-1043 (1998).
[CrossRef]

Le Corre, A.

Le Meur, J.

Mahon, R.

Melloch, M.

M. Tziraki, R. Jones, P. French, D. Nolte, and M. Melloch, "Short-coherence photorefractive holography in multiple-quantum-well devices using light-emitting diodes," Appl. Phys. Lett. 75, 363-365 (1999).
[CrossRef]

I. Lahiri, L. Pyrak-Nolte, D. D. Nolte, M. Melloch, R. Kruger, G. Bacher, and M. Klein, "Laser-based ultrasound detection using photorefractive quantum wells," Appl. Phys. Lett. 73, 1041-1043 (1998).
[CrossRef]

Melloch, M. R.

Mustata, M.

Nolte, D.

M. Tziraki, R. Jones, P. French, D. Nolte, and M. Melloch, "Short-coherence photorefractive holography in multiple-quantum-well devices using light-emitting diodes," Appl. Phys. Lett. 75, 363-365 (1999).
[CrossRef]

Nolte, D. D.

P. Yu, M. Mustata, L. Peng, J. J. Turek, M. R. Melloch, P. M. W. French, and D. D. Nolte, "Holographic optical coherence imaging of rat osteogenic sarcoma tumor spheroids," Appl. Opt. 43, 4862-4873 (2004).
[CrossRef] [PubMed]

P. Yu, L. Peng, M. Mustata, J. J. Turek, M. R. Melloch, and D. D. Nolte, "Time-dependent speckle in holographic optical coherence imaging and the state of health of tumor tissue," Opt. Lett. 29, 68-70, (2004).
[CrossRef] [PubMed]

L. Peng, P. Yu, M. R. Melloch, and D. D. Nolte, "Adaptive interferometer for optical coherence-domain reflectometry," J. Opt. Soc. Am. B 21, 1953-1963 (2004).
[CrossRef]

P. Yu, L. Peng, D. D. Nolte, and M. R. Melloch, "Ultrasound detection through turbid media," Opt. Lett. 28, 819-821 (2003).
[CrossRef] [PubMed]

L. Peng, P. Yu, M. R. Melloch, and D. D. Nolte, "High speed adaptive interferometer for optical coherence-domain reflectometry through turbid media," Opt. Lett. 28, 396-398 (2003).
[CrossRef] [PubMed]

P. Yu, M. Mustata, J. J. Turek, P. M. W. French, M. R. Melloch, and D. D. Nolte, "Holographic optical coherence imaging of tumor spheroids," Appl. Phys. Lett. 83, 575-577 (2003).
[CrossRef]

D. D. Nolte, "Semi-insulating semiconductor heterostructures: optoelectronic properties and applications," J. Appl. Phys. 85, 6259-6289 (1999).
[CrossRef]

R. Jones, N. P. Barry, S. C. W. Hyde, P. M. W. French, K. M. Kwolek, D. D. Nolte, and M. R. Melloch, "Direct-to-video holographic readout in quantum wells for 3-D imaging through turbid media," Opt. Lett. 23, 103-105 (1998).
[CrossRef]

I. Lahiri, L. Pyrak-Nolte, D. D. Nolte, M. Melloch, R. Kruger, G. Bacher, and M. Klein, "Laser-based ultrasound detection using photorefractive quantum wells," Appl. Phys. Lett. 73, 1041-1043 (1998).
[CrossRef]

Peng, L.

Piederrière, Y.

Pyrak-Nolte, L.

I. Lahiri, L. Pyrak-Nolte, D. D. Nolte, M. Melloch, R. Kruger, G. Bacher, and M. Klein, "Laser-based ultrasound detection using photorefractive quantum wells," Appl. Phys. Lett. 73, 1041-1043 (1998).
[CrossRef]

Rabinovich, W.

Ramaz, F.

Roosen, G.

M. Gross, F. Ramaz, B. Forget, M. Atlan, A. Boccara, P. Delaye, and G. Roosen, "Theoretical description of the photorefractive detection of the ultrasound modulated photons in scattering media," Opt. Express 13, 7097-7112 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-18-7097.
[CrossRef] [PubMed]

T. Shimura, F. Grappin, P. Delaye, S. Iwamoto, Y. Arakawa, K. Kuroda, and G. Roosen, "Simultaneous determination of the index and absorption gratings in multiple quantum well photorefractive devices designed for laser ultrasonic sensor," Opt. Commun. 242, 7-12 (2004).
[CrossRef]

Shimura, T.

T. Shimura, F. Grappin, P. Delaye, S. Iwamoto, Y. Arakawa, K. Kuroda, and G. Roosen, "Simultaneous determination of the index and absorption gratings in multiple quantum well photorefractive devices designed for laser ultrasonic sensor," Opt. Commun. 242, 7-12 (2004).
[CrossRef]

Snyder, D. R.

Turek, J. J.

Tziraki, M.

M. Tziraki, R. Jones, P. French, D. Nolte, and M. Melloch, "Short-coherence photorefractive holography in multiple-quantum-well devices using light-emitting diodes," Appl. Phys. Lett. 75, 363-365 (1999).
[CrossRef]

Yang, S. S.

Yu, P.

Appl. Opt.

Appl. Phys. Lett.

M. Tziraki, R. Jones, P. French, D. Nolte, and M. Melloch, "Short-coherence photorefractive holography in multiple-quantum-well devices using light-emitting diodes," Appl. Phys. Lett. 75, 363-365 (1999).
[CrossRef]

P. Yu, M. Mustata, J. J. Turek, P. M. W. French, M. R. Melloch, and D. D. Nolte, "Holographic optical coherence imaging of tumor spheroids," Appl. Phys. Lett. 83, 575-577 (2003).
[CrossRef]

I. Lahiri, L. Pyrak-Nolte, D. D. Nolte, M. Melloch, R. Kruger, G. Bacher, and M. Klein, "Laser-based ultrasound detection using photorefractive quantum wells," Appl. Phys. Lett. 73, 1041-1043 (1998).
[CrossRef]

J. Appl. Phys.

D. D. Nolte, "Semi-insulating semiconductor heterostructures: optoelectronic properties and applications," J. Appl. Phys. 85, 6259-6289 (1999).
[CrossRef]

J. Opt. Soc. Am. B

Opt. Commun.

T. Shimura, F. Grappin, P. Delaye, S. Iwamoto, Y. Arakawa, K. Kuroda, and G. Roosen, "Simultaneous determination of the index and absorption gratings in multiple quantum well photorefractive devices designed for laser ultrasonic sensor," Opt. Commun. 242, 7-12 (2004).
[CrossRef]

Opt. Express

Opt. Lett.

Other

http://www.newport.com/Optics/Filters%20and%20Attenuators/1/3561/product.aspx.

J. W. Goodman, "Speckle phenomena in optics, theory and applications," Ben Roberts & Company, (2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Experimental setup of holographic optical imaging system. BS: 50/50 beamsplitter.

Fig. 2.
Fig. 2.

(a) Direct speckle image, (b) horizontal speckle size, and (c) vertical speckle size.

Fig. 3.
Fig. 3.

(a) Holographic speckle image, (b) horizontal speckle size, and (c) vertical speckle size.

Fig. 4.
Fig. 4.

Comparison of theoretical predictions with experimental measurements. (a) Direct speckle image, (b) Holographic speckle image.

Fig. 5.
Fig. 5.

FWM efficiency as a function of (a) fringe spacing and (b) speckle size.

Fig. 6.
Fig. 6.

Comparison of holographic images of USAF test chart without moving grating ((a) and (b)) and with moving grating ((c) and (d)). (e) Simulation of speckle intensities with and without moving grating.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Λ = λ 2 sin θ

Metrics