Abstract

First observation of passive mode-locking in two-section quantum-dot lasers operating at wavelengths around 1.55 µm is reported. Pulse generation at 4.6 GHz from a 9 mm long device is verified by background-free autocorrelation, RF-spectra and real-time oscilloscope traces. The output pulses are stretched in time and heavily up-chirped with a value of 20 ps/nm, contrary to what is normally observed in passively mode-locked semiconductor lasers. The complete output spectrum is shown to be coherent over 10 nm. From a 7 mm long device Q-switching is observed over a large operating regime. The lasers have been realized using a fabrication technology that is compatible with further photonic integration. This makes the laser a promising candidate for e.g. a mode-comb generator in a complex photonic chip.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Kaiser, B. Hüttl, H. Heidrich, S. Fidorra, W. Rehbein, H. Stolpe, R. Stenzel, W. Ebert, and G. Sahin, “Tunable monolithic mode-locked lasers on InP with low timing jitter,” IEEE Photon. Technol. Lett. 15, 634–636 (2003).
    [CrossRef]
  2. R. Kaiser and B. Hüttl, “Monolithic 40-GHz mode-locked MQW DBR lasers for high-speed optical communication systems,” IEEE J. Sel. Top. Quantum Electron. 13, 125–135 (2007).
    [CrossRef]
  3. K.A. Williams, M.G. Thompson, and I.H. White, “Long-wavelength monolithic mode-locked diode lasers,” New J. Phys. 6, 179 (2004).
    [CrossRef]
  4. C. Gosset, K. Merghem, A. Martinez, G. Moreau, G. Patriarche, G. Aubin, A. Ramdane, J. Landreau, and F. Lelarge, “Subpicosecond pulse generation at 134 GHz using a quantum-dash-based Fabry-Perot laser emitting at 1.56 µm,” Appl. Phys. Lett. 88, 241105 (2006).
    [CrossRef]
  5. M.G. Thompson, A. Rae, R.L. Sellin, C. Marinelli, R.V. Penty, I.H. White, A.R. Kovsh, S.S. Mikhrin, D.A. Livshits, and I.L. Krestnikov, “Subpicosecond high-power mode locking using flared waveguide monolithic quantum-dot lasers,” Appl. Phys. Lett. 88, 133119 (2006).
    [CrossRef]
  6. Y. Barbarin, S. Anantathanasarn, E.A.J.M. Bente, Y.S. Oei, M.K. Smit, and R. Nötzel, “1.55-µm range InAs-InP (100) quantum-dot Fabry-Pérot and ring lasers using narrow deeply etched ridge waveguides,” IEEE Photon. Technol. Lett. 18, 2644–2646 (2006).
    [CrossRef]
  7. E.U. Rafailov, M.A. Cataluna, W. Sibbett, N.D. Il’inskaya, Y.M. Zadiranov, A.E. Zhukov, V.M. Ustinov, D.A. Livshits, A.R. Kovsh, and N.N. Ledentsov, “High-power picosecond and femtosecond pulse generation from a two-section mode-locked quantum-dot laser,” Appl. Phys. Lett. 87, 081107 (2005).
    [CrossRef]
  8. E.U. Rafailov, P. Loza-Alvarez, W. Sibbett, G.S. Sokolovskii, D.A. Livshits, A.E. Zhukov, and V.M. Ustinov, “Amplification of femtosecond pulses by over 18 dB in a quantum-dot semiconductor optical amplifier,” IEEE Photon. Technol. Lett. 15, 1023–1025 (2003).
    [CrossRef]
  9. S. Anantathanasarn, R. Nötzel, P.J. van Veldhoven, F.W.M. van Otten, Y. Barbarin, G. Servanton, T. de Vries, E. Smalbrugge, E.J. Geluk, T.J. Eijkemans, E.A.J.M. Bente, Y.S. Oei, M.K. Smit, and J.H. Wolter, “Lasing of wavelength-tunable (1.55 µm region) InAs/InGaAsP/InP (100) quantum dots grown by metal organic vapor-phase epitaxy,” Appl. Phys. Lett. 89, 073115 (2006).
    [CrossRef]
  10. J.J.M. Binsma, M. van Geemert, F. Heinrichsdorff, T. van Dongen, R.G. Broeke, and M.K. Smit, “MOVPE waveguide regrowth in InGaAsP/InP with extremely low butt joint loss,” in Proc. Symp. IEEE/LEOS Benelux Chapter (2001), pp. 245–248.
  11. Y. Barbarin, E.A.J.M. Bente, T. de Vries, J.H. den Besten, P.J. van Veldhoven, M.J.H. Sander-Jochem, E. Smalbrugge, F.W.M. van Otten, E.J. Geluk, M.J.R. Heck, X.J.M. Leijtens, J.G.M. van der Tol, F. Karouta, Y.S. Oei, R. Nötzel, and M.K. Smit, “Butt-joint interfaces in InP/InGaASP waveguides with very low reflectivity and low loss,” in Proc. Symp. IEEE/LEOS Benelux Chapter (2005), pp. 89–92.
  12. Y. Barbarin, E.A.J.M. Bente, M.J.R. Heck, Y.S. Oei, R. Nötzel, and M.K. Smit, “Characterization of a 15 GHz integrated bulk InGaAsP passively mode-locked ring laser at 1.53µm,” Opt. Express 14, 9716–9727 (2006).
    [CrossRef] [PubMed]
  13. E.A. Viktorov, P. Mandel, A.G. Vladimirov, and U. Bandelow, “Model for mode locking in quantum dot lasers,” Appl. Phys. Lett. 88, 201102 (2006).
    [CrossRef]
  14. E.A. Viktorov, P. Mandel, M. Kuntz, G. Fiol, D. Bimberg, A.G. Vladimirov, and M. Wolfram, “Stability of the modelocking regime in quantum dot laser,” in Conference on Lasers and Electro-Optics Europe, CLEO (2007), paper IG6.
  15. U. Bandelow, M. Radziunas, A. Vladimirov, B. Hüttl, and R. Kaiser, “40 GHz mode-locked semiconductor lasers: theory, simulations and experiment,” Opt. Quantum Electron. 38, 495–512 (2006).
    [CrossRef]

2007 (1)

R. Kaiser and B. Hüttl, “Monolithic 40-GHz mode-locked MQW DBR lasers for high-speed optical communication systems,” IEEE J. Sel. Top. Quantum Electron. 13, 125–135 (2007).
[CrossRef]

2006 (7)

C. Gosset, K. Merghem, A. Martinez, G. Moreau, G. Patriarche, G. Aubin, A. Ramdane, J. Landreau, and F. Lelarge, “Subpicosecond pulse generation at 134 GHz using a quantum-dash-based Fabry-Perot laser emitting at 1.56 µm,” Appl. Phys. Lett. 88, 241105 (2006).
[CrossRef]

M.G. Thompson, A. Rae, R.L. Sellin, C. Marinelli, R.V. Penty, I.H. White, A.R. Kovsh, S.S. Mikhrin, D.A. Livshits, and I.L. Krestnikov, “Subpicosecond high-power mode locking using flared waveguide monolithic quantum-dot lasers,” Appl. Phys. Lett. 88, 133119 (2006).
[CrossRef]

Y. Barbarin, S. Anantathanasarn, E.A.J.M. Bente, Y.S. Oei, M.K. Smit, and R. Nötzel, “1.55-µm range InAs-InP (100) quantum-dot Fabry-Pérot and ring lasers using narrow deeply etched ridge waveguides,” IEEE Photon. Technol. Lett. 18, 2644–2646 (2006).
[CrossRef]

S. Anantathanasarn, R. Nötzel, P.J. van Veldhoven, F.W.M. van Otten, Y. Barbarin, G. Servanton, T. de Vries, E. Smalbrugge, E.J. Geluk, T.J. Eijkemans, E.A.J.M. Bente, Y.S. Oei, M.K. Smit, and J.H. Wolter, “Lasing of wavelength-tunable (1.55 µm region) InAs/InGaAsP/InP (100) quantum dots grown by metal organic vapor-phase epitaxy,” Appl. Phys. Lett. 89, 073115 (2006).
[CrossRef]

E.A. Viktorov, P. Mandel, A.G. Vladimirov, and U. Bandelow, “Model for mode locking in quantum dot lasers,” Appl. Phys. Lett. 88, 201102 (2006).
[CrossRef]

U. Bandelow, M. Radziunas, A. Vladimirov, B. Hüttl, and R. Kaiser, “40 GHz mode-locked semiconductor lasers: theory, simulations and experiment,” Opt. Quantum Electron. 38, 495–512 (2006).
[CrossRef]

Y. Barbarin, E.A.J.M. Bente, M.J.R. Heck, Y.S. Oei, R. Nötzel, and M.K. Smit, “Characterization of a 15 GHz integrated bulk InGaAsP passively mode-locked ring laser at 1.53µm,” Opt. Express 14, 9716–9727 (2006).
[CrossRef] [PubMed]

2005 (1)

E.U. Rafailov, M.A. Cataluna, W. Sibbett, N.D. Il’inskaya, Y.M. Zadiranov, A.E. Zhukov, V.M. Ustinov, D.A. Livshits, A.R. Kovsh, and N.N. Ledentsov, “High-power picosecond and femtosecond pulse generation from a two-section mode-locked quantum-dot laser,” Appl. Phys. Lett. 87, 081107 (2005).
[CrossRef]

2004 (1)

K.A. Williams, M.G. Thompson, and I.H. White, “Long-wavelength monolithic mode-locked diode lasers,” New J. Phys. 6, 179 (2004).
[CrossRef]

2003 (2)

R. Kaiser, B. Hüttl, H. Heidrich, S. Fidorra, W. Rehbein, H. Stolpe, R. Stenzel, W. Ebert, and G. Sahin, “Tunable monolithic mode-locked lasers on InP with low timing jitter,” IEEE Photon. Technol. Lett. 15, 634–636 (2003).
[CrossRef]

E.U. Rafailov, P. Loza-Alvarez, W. Sibbett, G.S. Sokolovskii, D.A. Livshits, A.E. Zhukov, and V.M. Ustinov, “Amplification of femtosecond pulses by over 18 dB in a quantum-dot semiconductor optical amplifier,” IEEE Photon. Technol. Lett. 15, 1023–1025 (2003).
[CrossRef]

Anantathanasarn, S.

Y. Barbarin, S. Anantathanasarn, E.A.J.M. Bente, Y.S. Oei, M.K. Smit, and R. Nötzel, “1.55-µm range InAs-InP (100) quantum-dot Fabry-Pérot and ring lasers using narrow deeply etched ridge waveguides,” IEEE Photon. Technol. Lett. 18, 2644–2646 (2006).
[CrossRef]

S. Anantathanasarn, R. Nötzel, P.J. van Veldhoven, F.W.M. van Otten, Y. Barbarin, G. Servanton, T. de Vries, E. Smalbrugge, E.J. Geluk, T.J. Eijkemans, E.A.J.M. Bente, Y.S. Oei, M.K. Smit, and J.H. Wolter, “Lasing of wavelength-tunable (1.55 µm region) InAs/InGaAsP/InP (100) quantum dots grown by metal organic vapor-phase epitaxy,” Appl. Phys. Lett. 89, 073115 (2006).
[CrossRef]

Aubin, G.

C. Gosset, K. Merghem, A. Martinez, G. Moreau, G. Patriarche, G. Aubin, A. Ramdane, J. Landreau, and F. Lelarge, “Subpicosecond pulse generation at 134 GHz using a quantum-dash-based Fabry-Perot laser emitting at 1.56 µm,” Appl. Phys. Lett. 88, 241105 (2006).
[CrossRef]

Bandelow, U.

E.A. Viktorov, P. Mandel, A.G. Vladimirov, and U. Bandelow, “Model for mode locking in quantum dot lasers,” Appl. Phys. Lett. 88, 201102 (2006).
[CrossRef]

U. Bandelow, M. Radziunas, A. Vladimirov, B. Hüttl, and R. Kaiser, “40 GHz mode-locked semiconductor lasers: theory, simulations and experiment,” Opt. Quantum Electron. 38, 495–512 (2006).
[CrossRef]

Barbarin, Y.

Y. Barbarin, E.A.J.M. Bente, M.J.R. Heck, Y.S. Oei, R. Nötzel, and M.K. Smit, “Characterization of a 15 GHz integrated bulk InGaAsP passively mode-locked ring laser at 1.53µm,” Opt. Express 14, 9716–9727 (2006).
[CrossRef] [PubMed]

S. Anantathanasarn, R. Nötzel, P.J. van Veldhoven, F.W.M. van Otten, Y. Barbarin, G. Servanton, T. de Vries, E. Smalbrugge, E.J. Geluk, T.J. Eijkemans, E.A.J.M. Bente, Y.S. Oei, M.K. Smit, and J.H. Wolter, “Lasing of wavelength-tunable (1.55 µm region) InAs/InGaAsP/InP (100) quantum dots grown by metal organic vapor-phase epitaxy,” Appl. Phys. Lett. 89, 073115 (2006).
[CrossRef]

Y. Barbarin, S. Anantathanasarn, E.A.J.M. Bente, Y.S. Oei, M.K. Smit, and R. Nötzel, “1.55-µm range InAs-InP (100) quantum-dot Fabry-Pérot and ring lasers using narrow deeply etched ridge waveguides,” IEEE Photon. Technol. Lett. 18, 2644–2646 (2006).
[CrossRef]

Y. Barbarin, E.A.J.M. Bente, T. de Vries, J.H. den Besten, P.J. van Veldhoven, M.J.H. Sander-Jochem, E. Smalbrugge, F.W.M. van Otten, E.J. Geluk, M.J.R. Heck, X.J.M. Leijtens, J.G.M. van der Tol, F. Karouta, Y.S. Oei, R. Nötzel, and M.K. Smit, “Butt-joint interfaces in InP/InGaASP waveguides with very low reflectivity and low loss,” in Proc. Symp. IEEE/LEOS Benelux Chapter (2005), pp. 89–92.

Bente, E.A.J.M.

Y. Barbarin, E.A.J.M. Bente, M.J.R. Heck, Y.S. Oei, R. Nötzel, and M.K. Smit, “Characterization of a 15 GHz integrated bulk InGaAsP passively mode-locked ring laser at 1.53µm,” Opt. Express 14, 9716–9727 (2006).
[CrossRef] [PubMed]

S. Anantathanasarn, R. Nötzel, P.J. van Veldhoven, F.W.M. van Otten, Y. Barbarin, G. Servanton, T. de Vries, E. Smalbrugge, E.J. Geluk, T.J. Eijkemans, E.A.J.M. Bente, Y.S. Oei, M.K. Smit, and J.H. Wolter, “Lasing of wavelength-tunable (1.55 µm region) InAs/InGaAsP/InP (100) quantum dots grown by metal organic vapor-phase epitaxy,” Appl. Phys. Lett. 89, 073115 (2006).
[CrossRef]

Y. Barbarin, S. Anantathanasarn, E.A.J.M. Bente, Y.S. Oei, M.K. Smit, and R. Nötzel, “1.55-µm range InAs-InP (100) quantum-dot Fabry-Pérot and ring lasers using narrow deeply etched ridge waveguides,” IEEE Photon. Technol. Lett. 18, 2644–2646 (2006).
[CrossRef]

Y. Barbarin, E.A.J.M. Bente, T. de Vries, J.H. den Besten, P.J. van Veldhoven, M.J.H. Sander-Jochem, E. Smalbrugge, F.W.M. van Otten, E.J. Geluk, M.J.R. Heck, X.J.M. Leijtens, J.G.M. van der Tol, F. Karouta, Y.S. Oei, R. Nötzel, and M.K. Smit, “Butt-joint interfaces in InP/InGaASP waveguides with very low reflectivity and low loss,” in Proc. Symp. IEEE/LEOS Benelux Chapter (2005), pp. 89–92.

Bimberg, D.

E.A. Viktorov, P. Mandel, M. Kuntz, G. Fiol, D. Bimberg, A.G. Vladimirov, and M. Wolfram, “Stability of the modelocking regime in quantum dot laser,” in Conference on Lasers and Electro-Optics Europe, CLEO (2007), paper IG6.

Binsma, J.J.M.

J.J.M. Binsma, M. van Geemert, F. Heinrichsdorff, T. van Dongen, R.G. Broeke, and M.K. Smit, “MOVPE waveguide regrowth in InGaAsP/InP with extremely low butt joint loss,” in Proc. Symp. IEEE/LEOS Benelux Chapter (2001), pp. 245–248.

Broeke, R.G.

J.J.M. Binsma, M. van Geemert, F. Heinrichsdorff, T. van Dongen, R.G. Broeke, and M.K. Smit, “MOVPE waveguide regrowth in InGaAsP/InP with extremely low butt joint loss,” in Proc. Symp. IEEE/LEOS Benelux Chapter (2001), pp. 245–248.

Cataluna, M.A.

E.U. Rafailov, M.A. Cataluna, W. Sibbett, N.D. Il’inskaya, Y.M. Zadiranov, A.E. Zhukov, V.M. Ustinov, D.A. Livshits, A.R. Kovsh, and N.N. Ledentsov, “High-power picosecond and femtosecond pulse generation from a two-section mode-locked quantum-dot laser,” Appl. Phys. Lett. 87, 081107 (2005).
[CrossRef]

de Vries, T.

S. Anantathanasarn, R. Nötzel, P.J. van Veldhoven, F.W.M. van Otten, Y. Barbarin, G. Servanton, T. de Vries, E. Smalbrugge, E.J. Geluk, T.J. Eijkemans, E.A.J.M. Bente, Y.S. Oei, M.K. Smit, and J.H. Wolter, “Lasing of wavelength-tunable (1.55 µm region) InAs/InGaAsP/InP (100) quantum dots grown by metal organic vapor-phase epitaxy,” Appl. Phys. Lett. 89, 073115 (2006).
[CrossRef]

Y. Barbarin, E.A.J.M. Bente, T. de Vries, J.H. den Besten, P.J. van Veldhoven, M.J.H. Sander-Jochem, E. Smalbrugge, F.W.M. van Otten, E.J. Geluk, M.J.R. Heck, X.J.M. Leijtens, J.G.M. van der Tol, F. Karouta, Y.S. Oei, R. Nötzel, and M.K. Smit, “Butt-joint interfaces in InP/InGaASP waveguides with very low reflectivity and low loss,” in Proc. Symp. IEEE/LEOS Benelux Chapter (2005), pp. 89–92.

den Besten, J.H.

Y. Barbarin, E.A.J.M. Bente, T. de Vries, J.H. den Besten, P.J. van Veldhoven, M.J.H. Sander-Jochem, E. Smalbrugge, F.W.M. van Otten, E.J. Geluk, M.J.R. Heck, X.J.M. Leijtens, J.G.M. van der Tol, F. Karouta, Y.S. Oei, R. Nötzel, and M.K. Smit, “Butt-joint interfaces in InP/InGaASP waveguides with very low reflectivity and low loss,” in Proc. Symp. IEEE/LEOS Benelux Chapter (2005), pp. 89–92.

Ebert, W.

R. Kaiser, B. Hüttl, H. Heidrich, S. Fidorra, W. Rehbein, H. Stolpe, R. Stenzel, W. Ebert, and G. Sahin, “Tunable monolithic mode-locked lasers on InP with low timing jitter,” IEEE Photon. Technol. Lett. 15, 634–636 (2003).
[CrossRef]

Eijkemans, T.J.

S. Anantathanasarn, R. Nötzel, P.J. van Veldhoven, F.W.M. van Otten, Y. Barbarin, G. Servanton, T. de Vries, E. Smalbrugge, E.J. Geluk, T.J. Eijkemans, E.A.J.M. Bente, Y.S. Oei, M.K. Smit, and J.H. Wolter, “Lasing of wavelength-tunable (1.55 µm region) InAs/InGaAsP/InP (100) quantum dots grown by metal organic vapor-phase epitaxy,” Appl. Phys. Lett. 89, 073115 (2006).
[CrossRef]

Fidorra, S.

R. Kaiser, B. Hüttl, H. Heidrich, S. Fidorra, W. Rehbein, H. Stolpe, R. Stenzel, W. Ebert, and G. Sahin, “Tunable monolithic mode-locked lasers on InP with low timing jitter,” IEEE Photon. Technol. Lett. 15, 634–636 (2003).
[CrossRef]

Fiol, G.

E.A. Viktorov, P. Mandel, M. Kuntz, G. Fiol, D. Bimberg, A.G. Vladimirov, and M. Wolfram, “Stability of the modelocking regime in quantum dot laser,” in Conference on Lasers and Electro-Optics Europe, CLEO (2007), paper IG6.

Geluk, E.J.

S. Anantathanasarn, R. Nötzel, P.J. van Veldhoven, F.W.M. van Otten, Y. Barbarin, G. Servanton, T. de Vries, E. Smalbrugge, E.J. Geluk, T.J. Eijkemans, E.A.J.M. Bente, Y.S. Oei, M.K. Smit, and J.H. Wolter, “Lasing of wavelength-tunable (1.55 µm region) InAs/InGaAsP/InP (100) quantum dots grown by metal organic vapor-phase epitaxy,” Appl. Phys. Lett. 89, 073115 (2006).
[CrossRef]

Y. Barbarin, E.A.J.M. Bente, T. de Vries, J.H. den Besten, P.J. van Veldhoven, M.J.H. Sander-Jochem, E. Smalbrugge, F.W.M. van Otten, E.J. Geluk, M.J.R. Heck, X.J.M. Leijtens, J.G.M. van der Tol, F. Karouta, Y.S. Oei, R. Nötzel, and M.K. Smit, “Butt-joint interfaces in InP/InGaASP waveguides with very low reflectivity and low loss,” in Proc. Symp. IEEE/LEOS Benelux Chapter (2005), pp. 89–92.

Gosset, C.

C. Gosset, K. Merghem, A. Martinez, G. Moreau, G. Patriarche, G. Aubin, A. Ramdane, J. Landreau, and F. Lelarge, “Subpicosecond pulse generation at 134 GHz using a quantum-dash-based Fabry-Perot laser emitting at 1.56 µm,” Appl. Phys. Lett. 88, 241105 (2006).
[CrossRef]

Heck, M.J.R.

Y. Barbarin, E.A.J.M. Bente, M.J.R. Heck, Y.S. Oei, R. Nötzel, and M.K. Smit, “Characterization of a 15 GHz integrated bulk InGaAsP passively mode-locked ring laser at 1.53µm,” Opt. Express 14, 9716–9727 (2006).
[CrossRef] [PubMed]

Y. Barbarin, E.A.J.M. Bente, T. de Vries, J.H. den Besten, P.J. van Veldhoven, M.J.H. Sander-Jochem, E. Smalbrugge, F.W.M. van Otten, E.J. Geluk, M.J.R. Heck, X.J.M. Leijtens, J.G.M. van der Tol, F. Karouta, Y.S. Oei, R. Nötzel, and M.K. Smit, “Butt-joint interfaces in InP/InGaASP waveguides with very low reflectivity and low loss,” in Proc. Symp. IEEE/LEOS Benelux Chapter (2005), pp. 89–92.

Heidrich, H.

R. Kaiser, B. Hüttl, H. Heidrich, S. Fidorra, W. Rehbein, H. Stolpe, R. Stenzel, W. Ebert, and G. Sahin, “Tunable monolithic mode-locked lasers on InP with low timing jitter,” IEEE Photon. Technol. Lett. 15, 634–636 (2003).
[CrossRef]

Heinrichsdorff, F.

J.J.M. Binsma, M. van Geemert, F. Heinrichsdorff, T. van Dongen, R.G. Broeke, and M.K. Smit, “MOVPE waveguide regrowth in InGaAsP/InP with extremely low butt joint loss,” in Proc. Symp. IEEE/LEOS Benelux Chapter (2001), pp. 245–248.

Hüttl, B.

R. Kaiser and B. Hüttl, “Monolithic 40-GHz mode-locked MQW DBR lasers for high-speed optical communication systems,” IEEE J. Sel. Top. Quantum Electron. 13, 125–135 (2007).
[CrossRef]

U. Bandelow, M. Radziunas, A. Vladimirov, B. Hüttl, and R. Kaiser, “40 GHz mode-locked semiconductor lasers: theory, simulations and experiment,” Opt. Quantum Electron. 38, 495–512 (2006).
[CrossRef]

R. Kaiser, B. Hüttl, H. Heidrich, S. Fidorra, W. Rehbein, H. Stolpe, R. Stenzel, W. Ebert, and G. Sahin, “Tunable monolithic mode-locked lasers on InP with low timing jitter,” IEEE Photon. Technol. Lett. 15, 634–636 (2003).
[CrossRef]

Il’inskaya, N.D.

E.U. Rafailov, M.A. Cataluna, W. Sibbett, N.D. Il’inskaya, Y.M. Zadiranov, A.E. Zhukov, V.M. Ustinov, D.A. Livshits, A.R. Kovsh, and N.N. Ledentsov, “High-power picosecond and femtosecond pulse generation from a two-section mode-locked quantum-dot laser,” Appl. Phys. Lett. 87, 081107 (2005).
[CrossRef]

Kaiser, R.

R. Kaiser and B. Hüttl, “Monolithic 40-GHz mode-locked MQW DBR lasers for high-speed optical communication systems,” IEEE J. Sel. Top. Quantum Electron. 13, 125–135 (2007).
[CrossRef]

U. Bandelow, M. Radziunas, A. Vladimirov, B. Hüttl, and R. Kaiser, “40 GHz mode-locked semiconductor lasers: theory, simulations and experiment,” Opt. Quantum Electron. 38, 495–512 (2006).
[CrossRef]

R. Kaiser, B. Hüttl, H. Heidrich, S. Fidorra, W. Rehbein, H. Stolpe, R. Stenzel, W. Ebert, and G. Sahin, “Tunable monolithic mode-locked lasers on InP with low timing jitter,” IEEE Photon. Technol. Lett. 15, 634–636 (2003).
[CrossRef]

Karouta, F.

Y. Barbarin, E.A.J.M. Bente, T. de Vries, J.H. den Besten, P.J. van Veldhoven, M.J.H. Sander-Jochem, E. Smalbrugge, F.W.M. van Otten, E.J. Geluk, M.J.R. Heck, X.J.M. Leijtens, J.G.M. van der Tol, F. Karouta, Y.S. Oei, R. Nötzel, and M.K. Smit, “Butt-joint interfaces in InP/InGaASP waveguides with very low reflectivity and low loss,” in Proc. Symp. IEEE/LEOS Benelux Chapter (2005), pp. 89–92.

Kovsh, A.R.

M.G. Thompson, A. Rae, R.L. Sellin, C. Marinelli, R.V. Penty, I.H. White, A.R. Kovsh, S.S. Mikhrin, D.A. Livshits, and I.L. Krestnikov, “Subpicosecond high-power mode locking using flared waveguide monolithic quantum-dot lasers,” Appl. Phys. Lett. 88, 133119 (2006).
[CrossRef]

E.U. Rafailov, M.A. Cataluna, W. Sibbett, N.D. Il’inskaya, Y.M. Zadiranov, A.E. Zhukov, V.M. Ustinov, D.A. Livshits, A.R. Kovsh, and N.N. Ledentsov, “High-power picosecond and femtosecond pulse generation from a two-section mode-locked quantum-dot laser,” Appl. Phys. Lett. 87, 081107 (2005).
[CrossRef]

Krestnikov, I.L.

M.G. Thompson, A. Rae, R.L. Sellin, C. Marinelli, R.V. Penty, I.H. White, A.R. Kovsh, S.S. Mikhrin, D.A. Livshits, and I.L. Krestnikov, “Subpicosecond high-power mode locking using flared waveguide monolithic quantum-dot lasers,” Appl. Phys. Lett. 88, 133119 (2006).
[CrossRef]

Kuntz, M.

E.A. Viktorov, P. Mandel, M. Kuntz, G. Fiol, D. Bimberg, A.G. Vladimirov, and M. Wolfram, “Stability of the modelocking regime in quantum dot laser,” in Conference on Lasers and Electro-Optics Europe, CLEO (2007), paper IG6.

Landreau, J.

C. Gosset, K. Merghem, A. Martinez, G. Moreau, G. Patriarche, G. Aubin, A. Ramdane, J. Landreau, and F. Lelarge, “Subpicosecond pulse generation at 134 GHz using a quantum-dash-based Fabry-Perot laser emitting at 1.56 µm,” Appl. Phys. Lett. 88, 241105 (2006).
[CrossRef]

Ledentsov, N.N.

E.U. Rafailov, M.A. Cataluna, W. Sibbett, N.D. Il’inskaya, Y.M. Zadiranov, A.E. Zhukov, V.M. Ustinov, D.A. Livshits, A.R. Kovsh, and N.N. Ledentsov, “High-power picosecond and femtosecond pulse generation from a two-section mode-locked quantum-dot laser,” Appl. Phys. Lett. 87, 081107 (2005).
[CrossRef]

Leijtens, X.J.M.

Y. Barbarin, E.A.J.M. Bente, T. de Vries, J.H. den Besten, P.J. van Veldhoven, M.J.H. Sander-Jochem, E. Smalbrugge, F.W.M. van Otten, E.J. Geluk, M.J.R. Heck, X.J.M. Leijtens, J.G.M. van der Tol, F. Karouta, Y.S. Oei, R. Nötzel, and M.K. Smit, “Butt-joint interfaces in InP/InGaASP waveguides with very low reflectivity and low loss,” in Proc. Symp. IEEE/LEOS Benelux Chapter (2005), pp. 89–92.

Lelarge, F.

C. Gosset, K. Merghem, A. Martinez, G. Moreau, G. Patriarche, G. Aubin, A. Ramdane, J. Landreau, and F. Lelarge, “Subpicosecond pulse generation at 134 GHz using a quantum-dash-based Fabry-Perot laser emitting at 1.56 µm,” Appl. Phys. Lett. 88, 241105 (2006).
[CrossRef]

Livshits, D.A.

M.G. Thompson, A. Rae, R.L. Sellin, C. Marinelli, R.V. Penty, I.H. White, A.R. Kovsh, S.S. Mikhrin, D.A. Livshits, and I.L. Krestnikov, “Subpicosecond high-power mode locking using flared waveguide monolithic quantum-dot lasers,” Appl. Phys. Lett. 88, 133119 (2006).
[CrossRef]

E.U. Rafailov, M.A. Cataluna, W. Sibbett, N.D. Il’inskaya, Y.M. Zadiranov, A.E. Zhukov, V.M. Ustinov, D.A. Livshits, A.R. Kovsh, and N.N. Ledentsov, “High-power picosecond and femtosecond pulse generation from a two-section mode-locked quantum-dot laser,” Appl. Phys. Lett. 87, 081107 (2005).
[CrossRef]

E.U. Rafailov, P. Loza-Alvarez, W. Sibbett, G.S. Sokolovskii, D.A. Livshits, A.E. Zhukov, and V.M. Ustinov, “Amplification of femtosecond pulses by over 18 dB in a quantum-dot semiconductor optical amplifier,” IEEE Photon. Technol. Lett. 15, 1023–1025 (2003).
[CrossRef]

Loza-Alvarez, P.

E.U. Rafailov, P. Loza-Alvarez, W. Sibbett, G.S. Sokolovskii, D.A. Livshits, A.E. Zhukov, and V.M. Ustinov, “Amplification of femtosecond pulses by over 18 dB in a quantum-dot semiconductor optical amplifier,” IEEE Photon. Technol. Lett. 15, 1023–1025 (2003).
[CrossRef]

Mandel, P.

E.A. Viktorov, P. Mandel, A.G. Vladimirov, and U. Bandelow, “Model for mode locking in quantum dot lasers,” Appl. Phys. Lett. 88, 201102 (2006).
[CrossRef]

E.A. Viktorov, P. Mandel, M. Kuntz, G. Fiol, D. Bimberg, A.G. Vladimirov, and M. Wolfram, “Stability of the modelocking regime in quantum dot laser,” in Conference on Lasers and Electro-Optics Europe, CLEO (2007), paper IG6.

Marinelli, C.

M.G. Thompson, A. Rae, R.L. Sellin, C. Marinelli, R.V. Penty, I.H. White, A.R. Kovsh, S.S. Mikhrin, D.A. Livshits, and I.L. Krestnikov, “Subpicosecond high-power mode locking using flared waveguide monolithic quantum-dot lasers,” Appl. Phys. Lett. 88, 133119 (2006).
[CrossRef]

Martinez, A.

C. Gosset, K. Merghem, A. Martinez, G. Moreau, G. Patriarche, G. Aubin, A. Ramdane, J. Landreau, and F. Lelarge, “Subpicosecond pulse generation at 134 GHz using a quantum-dash-based Fabry-Perot laser emitting at 1.56 µm,” Appl. Phys. Lett. 88, 241105 (2006).
[CrossRef]

Merghem, K.

C. Gosset, K. Merghem, A. Martinez, G. Moreau, G. Patriarche, G. Aubin, A. Ramdane, J. Landreau, and F. Lelarge, “Subpicosecond pulse generation at 134 GHz using a quantum-dash-based Fabry-Perot laser emitting at 1.56 µm,” Appl. Phys. Lett. 88, 241105 (2006).
[CrossRef]

Mikhrin, S.S.

M.G. Thompson, A. Rae, R.L. Sellin, C. Marinelli, R.V. Penty, I.H. White, A.R. Kovsh, S.S. Mikhrin, D.A. Livshits, and I.L. Krestnikov, “Subpicosecond high-power mode locking using flared waveguide monolithic quantum-dot lasers,” Appl. Phys. Lett. 88, 133119 (2006).
[CrossRef]

Moreau, G.

C. Gosset, K. Merghem, A. Martinez, G. Moreau, G. Patriarche, G. Aubin, A. Ramdane, J. Landreau, and F. Lelarge, “Subpicosecond pulse generation at 134 GHz using a quantum-dash-based Fabry-Perot laser emitting at 1.56 µm,” Appl. Phys. Lett. 88, 241105 (2006).
[CrossRef]

Nötzel, R.

Y. Barbarin, S. Anantathanasarn, E.A.J.M. Bente, Y.S. Oei, M.K. Smit, and R. Nötzel, “1.55-µm range InAs-InP (100) quantum-dot Fabry-Pérot and ring lasers using narrow deeply etched ridge waveguides,” IEEE Photon. Technol. Lett. 18, 2644–2646 (2006).
[CrossRef]

S. Anantathanasarn, R. Nötzel, P.J. van Veldhoven, F.W.M. van Otten, Y. Barbarin, G. Servanton, T. de Vries, E. Smalbrugge, E.J. Geluk, T.J. Eijkemans, E.A.J.M. Bente, Y.S. Oei, M.K. Smit, and J.H. Wolter, “Lasing of wavelength-tunable (1.55 µm region) InAs/InGaAsP/InP (100) quantum dots grown by metal organic vapor-phase epitaxy,” Appl. Phys. Lett. 89, 073115 (2006).
[CrossRef]

Y. Barbarin, E.A.J.M. Bente, M.J.R. Heck, Y.S. Oei, R. Nötzel, and M.K. Smit, “Characterization of a 15 GHz integrated bulk InGaAsP passively mode-locked ring laser at 1.53µm,” Opt. Express 14, 9716–9727 (2006).
[CrossRef] [PubMed]

Y. Barbarin, E.A.J.M. Bente, T. de Vries, J.H. den Besten, P.J. van Veldhoven, M.J.H. Sander-Jochem, E. Smalbrugge, F.W.M. van Otten, E.J. Geluk, M.J.R. Heck, X.J.M. Leijtens, J.G.M. van der Tol, F. Karouta, Y.S. Oei, R. Nötzel, and M.K. Smit, “Butt-joint interfaces in InP/InGaASP waveguides with very low reflectivity and low loss,” in Proc. Symp. IEEE/LEOS Benelux Chapter (2005), pp. 89–92.

Oei, Y.S.

Y. Barbarin, E.A.J.M. Bente, M.J.R. Heck, Y.S. Oei, R. Nötzel, and M.K. Smit, “Characterization of a 15 GHz integrated bulk InGaAsP passively mode-locked ring laser at 1.53µm,” Opt. Express 14, 9716–9727 (2006).
[CrossRef] [PubMed]

S. Anantathanasarn, R. Nötzel, P.J. van Veldhoven, F.W.M. van Otten, Y. Barbarin, G. Servanton, T. de Vries, E. Smalbrugge, E.J. Geluk, T.J. Eijkemans, E.A.J.M. Bente, Y.S. Oei, M.K. Smit, and J.H. Wolter, “Lasing of wavelength-tunable (1.55 µm region) InAs/InGaAsP/InP (100) quantum dots grown by metal organic vapor-phase epitaxy,” Appl. Phys. Lett. 89, 073115 (2006).
[CrossRef]

Y. Barbarin, S. Anantathanasarn, E.A.J.M. Bente, Y.S. Oei, M.K. Smit, and R. Nötzel, “1.55-µm range InAs-InP (100) quantum-dot Fabry-Pérot and ring lasers using narrow deeply etched ridge waveguides,” IEEE Photon. Technol. Lett. 18, 2644–2646 (2006).
[CrossRef]

Y. Barbarin, E.A.J.M. Bente, T. de Vries, J.H. den Besten, P.J. van Veldhoven, M.J.H. Sander-Jochem, E. Smalbrugge, F.W.M. van Otten, E.J. Geluk, M.J.R. Heck, X.J.M. Leijtens, J.G.M. van der Tol, F. Karouta, Y.S. Oei, R. Nötzel, and M.K. Smit, “Butt-joint interfaces in InP/InGaASP waveguides with very low reflectivity and low loss,” in Proc. Symp. IEEE/LEOS Benelux Chapter (2005), pp. 89–92.

Patriarche, G.

C. Gosset, K. Merghem, A. Martinez, G. Moreau, G. Patriarche, G. Aubin, A. Ramdane, J. Landreau, and F. Lelarge, “Subpicosecond pulse generation at 134 GHz using a quantum-dash-based Fabry-Perot laser emitting at 1.56 µm,” Appl. Phys. Lett. 88, 241105 (2006).
[CrossRef]

Penty, R.V.

M.G. Thompson, A. Rae, R.L. Sellin, C. Marinelli, R.V. Penty, I.H. White, A.R. Kovsh, S.S. Mikhrin, D.A. Livshits, and I.L. Krestnikov, “Subpicosecond high-power mode locking using flared waveguide monolithic quantum-dot lasers,” Appl. Phys. Lett. 88, 133119 (2006).
[CrossRef]

Radziunas, M.

U. Bandelow, M. Radziunas, A. Vladimirov, B. Hüttl, and R. Kaiser, “40 GHz mode-locked semiconductor lasers: theory, simulations and experiment,” Opt. Quantum Electron. 38, 495–512 (2006).
[CrossRef]

Rae, A.

M.G. Thompson, A. Rae, R.L. Sellin, C. Marinelli, R.V. Penty, I.H. White, A.R. Kovsh, S.S. Mikhrin, D.A. Livshits, and I.L. Krestnikov, “Subpicosecond high-power mode locking using flared waveguide monolithic quantum-dot lasers,” Appl. Phys. Lett. 88, 133119 (2006).
[CrossRef]

Rafailov, E.U.

E.U. Rafailov, M.A. Cataluna, W. Sibbett, N.D. Il’inskaya, Y.M. Zadiranov, A.E. Zhukov, V.M. Ustinov, D.A. Livshits, A.R. Kovsh, and N.N. Ledentsov, “High-power picosecond and femtosecond pulse generation from a two-section mode-locked quantum-dot laser,” Appl. Phys. Lett. 87, 081107 (2005).
[CrossRef]

E.U. Rafailov, P. Loza-Alvarez, W. Sibbett, G.S. Sokolovskii, D.A. Livshits, A.E. Zhukov, and V.M. Ustinov, “Amplification of femtosecond pulses by over 18 dB in a quantum-dot semiconductor optical amplifier,” IEEE Photon. Technol. Lett. 15, 1023–1025 (2003).
[CrossRef]

Ramdane, A.

C. Gosset, K. Merghem, A. Martinez, G. Moreau, G. Patriarche, G. Aubin, A. Ramdane, J. Landreau, and F. Lelarge, “Subpicosecond pulse generation at 134 GHz using a quantum-dash-based Fabry-Perot laser emitting at 1.56 µm,” Appl. Phys. Lett. 88, 241105 (2006).
[CrossRef]

Rehbein, W.

R. Kaiser, B. Hüttl, H. Heidrich, S. Fidorra, W. Rehbein, H. Stolpe, R. Stenzel, W. Ebert, and G. Sahin, “Tunable monolithic mode-locked lasers on InP with low timing jitter,” IEEE Photon. Technol. Lett. 15, 634–636 (2003).
[CrossRef]

Sahin, G.

R. Kaiser, B. Hüttl, H. Heidrich, S. Fidorra, W. Rehbein, H. Stolpe, R. Stenzel, W. Ebert, and G. Sahin, “Tunable monolithic mode-locked lasers on InP with low timing jitter,” IEEE Photon. Technol. Lett. 15, 634–636 (2003).
[CrossRef]

Sander-Jochem, M.J.H.

Y. Barbarin, E.A.J.M. Bente, T. de Vries, J.H. den Besten, P.J. van Veldhoven, M.J.H. Sander-Jochem, E. Smalbrugge, F.W.M. van Otten, E.J. Geluk, M.J.R. Heck, X.J.M. Leijtens, J.G.M. van der Tol, F. Karouta, Y.S. Oei, R. Nötzel, and M.K. Smit, “Butt-joint interfaces in InP/InGaASP waveguides with very low reflectivity and low loss,” in Proc. Symp. IEEE/LEOS Benelux Chapter (2005), pp. 89–92.

Sellin, R.L.

M.G. Thompson, A. Rae, R.L. Sellin, C. Marinelli, R.V. Penty, I.H. White, A.R. Kovsh, S.S. Mikhrin, D.A. Livshits, and I.L. Krestnikov, “Subpicosecond high-power mode locking using flared waveguide monolithic quantum-dot lasers,” Appl. Phys. Lett. 88, 133119 (2006).
[CrossRef]

Servanton, G.

S. Anantathanasarn, R. Nötzel, P.J. van Veldhoven, F.W.M. van Otten, Y. Barbarin, G. Servanton, T. de Vries, E. Smalbrugge, E.J. Geluk, T.J. Eijkemans, E.A.J.M. Bente, Y.S. Oei, M.K. Smit, and J.H. Wolter, “Lasing of wavelength-tunable (1.55 µm region) InAs/InGaAsP/InP (100) quantum dots grown by metal organic vapor-phase epitaxy,” Appl. Phys. Lett. 89, 073115 (2006).
[CrossRef]

Sibbett, W.

E.U. Rafailov, M.A. Cataluna, W. Sibbett, N.D. Il’inskaya, Y.M. Zadiranov, A.E. Zhukov, V.M. Ustinov, D.A. Livshits, A.R. Kovsh, and N.N. Ledentsov, “High-power picosecond and femtosecond pulse generation from a two-section mode-locked quantum-dot laser,” Appl. Phys. Lett. 87, 081107 (2005).
[CrossRef]

E.U. Rafailov, P. Loza-Alvarez, W. Sibbett, G.S. Sokolovskii, D.A. Livshits, A.E. Zhukov, and V.M. Ustinov, “Amplification of femtosecond pulses by over 18 dB in a quantum-dot semiconductor optical amplifier,” IEEE Photon. Technol. Lett. 15, 1023–1025 (2003).
[CrossRef]

Smalbrugge, E.

S. Anantathanasarn, R. Nötzel, P.J. van Veldhoven, F.W.M. van Otten, Y. Barbarin, G. Servanton, T. de Vries, E. Smalbrugge, E.J. Geluk, T.J. Eijkemans, E.A.J.M. Bente, Y.S. Oei, M.K. Smit, and J.H. Wolter, “Lasing of wavelength-tunable (1.55 µm region) InAs/InGaAsP/InP (100) quantum dots grown by metal organic vapor-phase epitaxy,” Appl. Phys. Lett. 89, 073115 (2006).
[CrossRef]

Y. Barbarin, E.A.J.M. Bente, T. de Vries, J.H. den Besten, P.J. van Veldhoven, M.J.H. Sander-Jochem, E. Smalbrugge, F.W.M. van Otten, E.J. Geluk, M.J.R. Heck, X.J.M. Leijtens, J.G.M. van der Tol, F. Karouta, Y.S. Oei, R. Nötzel, and M.K. Smit, “Butt-joint interfaces in InP/InGaASP waveguides with very low reflectivity and low loss,” in Proc. Symp. IEEE/LEOS Benelux Chapter (2005), pp. 89–92.

Smit, M.K.

Y. Barbarin, E.A.J.M. Bente, M.J.R. Heck, Y.S. Oei, R. Nötzel, and M.K. Smit, “Characterization of a 15 GHz integrated bulk InGaAsP passively mode-locked ring laser at 1.53µm,” Opt. Express 14, 9716–9727 (2006).
[CrossRef] [PubMed]

S. Anantathanasarn, R. Nötzel, P.J. van Veldhoven, F.W.M. van Otten, Y. Barbarin, G. Servanton, T. de Vries, E. Smalbrugge, E.J. Geluk, T.J. Eijkemans, E.A.J.M. Bente, Y.S. Oei, M.K. Smit, and J.H. Wolter, “Lasing of wavelength-tunable (1.55 µm region) InAs/InGaAsP/InP (100) quantum dots grown by metal organic vapor-phase epitaxy,” Appl. Phys. Lett. 89, 073115 (2006).
[CrossRef]

Y. Barbarin, S. Anantathanasarn, E.A.J.M. Bente, Y.S. Oei, M.K. Smit, and R. Nötzel, “1.55-µm range InAs-InP (100) quantum-dot Fabry-Pérot and ring lasers using narrow deeply etched ridge waveguides,” IEEE Photon. Technol. Lett. 18, 2644–2646 (2006).
[CrossRef]

J.J.M. Binsma, M. van Geemert, F. Heinrichsdorff, T. van Dongen, R.G. Broeke, and M.K. Smit, “MOVPE waveguide regrowth in InGaAsP/InP with extremely low butt joint loss,” in Proc. Symp. IEEE/LEOS Benelux Chapter (2001), pp. 245–248.

Y. Barbarin, E.A.J.M. Bente, T. de Vries, J.H. den Besten, P.J. van Veldhoven, M.J.H. Sander-Jochem, E. Smalbrugge, F.W.M. van Otten, E.J. Geluk, M.J.R. Heck, X.J.M. Leijtens, J.G.M. van der Tol, F. Karouta, Y.S. Oei, R. Nötzel, and M.K. Smit, “Butt-joint interfaces in InP/InGaASP waveguides with very low reflectivity and low loss,” in Proc. Symp. IEEE/LEOS Benelux Chapter (2005), pp. 89–92.

Sokolovskii, G.S.

E.U. Rafailov, P. Loza-Alvarez, W. Sibbett, G.S. Sokolovskii, D.A. Livshits, A.E. Zhukov, and V.M. Ustinov, “Amplification of femtosecond pulses by over 18 dB in a quantum-dot semiconductor optical amplifier,” IEEE Photon. Technol. Lett. 15, 1023–1025 (2003).
[CrossRef]

Stenzel, R.

R. Kaiser, B. Hüttl, H. Heidrich, S. Fidorra, W. Rehbein, H. Stolpe, R. Stenzel, W. Ebert, and G. Sahin, “Tunable monolithic mode-locked lasers on InP with low timing jitter,” IEEE Photon. Technol. Lett. 15, 634–636 (2003).
[CrossRef]

Stolpe, H.

R. Kaiser, B. Hüttl, H. Heidrich, S. Fidorra, W. Rehbein, H. Stolpe, R. Stenzel, W. Ebert, and G. Sahin, “Tunable monolithic mode-locked lasers on InP with low timing jitter,” IEEE Photon. Technol. Lett. 15, 634–636 (2003).
[CrossRef]

Thompson, M.G.

M.G. Thompson, A. Rae, R.L. Sellin, C. Marinelli, R.V. Penty, I.H. White, A.R. Kovsh, S.S. Mikhrin, D.A. Livshits, and I.L. Krestnikov, “Subpicosecond high-power mode locking using flared waveguide monolithic quantum-dot lasers,” Appl. Phys. Lett. 88, 133119 (2006).
[CrossRef]

K.A. Williams, M.G. Thompson, and I.H. White, “Long-wavelength monolithic mode-locked diode lasers,” New J. Phys. 6, 179 (2004).
[CrossRef]

Ustinov, V.M.

E.U. Rafailov, M.A. Cataluna, W. Sibbett, N.D. Il’inskaya, Y.M. Zadiranov, A.E. Zhukov, V.M. Ustinov, D.A. Livshits, A.R. Kovsh, and N.N. Ledentsov, “High-power picosecond and femtosecond pulse generation from a two-section mode-locked quantum-dot laser,” Appl. Phys. Lett. 87, 081107 (2005).
[CrossRef]

E.U. Rafailov, P. Loza-Alvarez, W. Sibbett, G.S. Sokolovskii, D.A. Livshits, A.E. Zhukov, and V.M. Ustinov, “Amplification of femtosecond pulses by over 18 dB in a quantum-dot semiconductor optical amplifier,” IEEE Photon. Technol. Lett. 15, 1023–1025 (2003).
[CrossRef]

van der Tol, J.G.M.

Y. Barbarin, E.A.J.M. Bente, T. de Vries, J.H. den Besten, P.J. van Veldhoven, M.J.H. Sander-Jochem, E. Smalbrugge, F.W.M. van Otten, E.J. Geluk, M.J.R. Heck, X.J.M. Leijtens, J.G.M. van der Tol, F. Karouta, Y.S. Oei, R. Nötzel, and M.K. Smit, “Butt-joint interfaces in InP/InGaASP waveguides with very low reflectivity and low loss,” in Proc. Symp. IEEE/LEOS Benelux Chapter (2005), pp. 89–92.

van Dongen, T.

J.J.M. Binsma, M. van Geemert, F. Heinrichsdorff, T. van Dongen, R.G. Broeke, and M.K. Smit, “MOVPE waveguide regrowth in InGaAsP/InP with extremely low butt joint loss,” in Proc. Symp. IEEE/LEOS Benelux Chapter (2001), pp. 245–248.

van Geemert, M.

J.J.M. Binsma, M. van Geemert, F. Heinrichsdorff, T. van Dongen, R.G. Broeke, and M.K. Smit, “MOVPE waveguide regrowth in InGaAsP/InP with extremely low butt joint loss,” in Proc. Symp. IEEE/LEOS Benelux Chapter (2001), pp. 245–248.

van Otten, F.W.M.

S. Anantathanasarn, R. Nötzel, P.J. van Veldhoven, F.W.M. van Otten, Y. Barbarin, G. Servanton, T. de Vries, E. Smalbrugge, E.J. Geluk, T.J. Eijkemans, E.A.J.M. Bente, Y.S. Oei, M.K. Smit, and J.H. Wolter, “Lasing of wavelength-tunable (1.55 µm region) InAs/InGaAsP/InP (100) quantum dots grown by metal organic vapor-phase epitaxy,” Appl. Phys. Lett. 89, 073115 (2006).
[CrossRef]

Y. Barbarin, E.A.J.M. Bente, T. de Vries, J.H. den Besten, P.J. van Veldhoven, M.J.H. Sander-Jochem, E. Smalbrugge, F.W.M. van Otten, E.J. Geluk, M.J.R. Heck, X.J.M. Leijtens, J.G.M. van der Tol, F. Karouta, Y.S. Oei, R. Nötzel, and M.K. Smit, “Butt-joint interfaces in InP/InGaASP waveguides with very low reflectivity and low loss,” in Proc. Symp. IEEE/LEOS Benelux Chapter (2005), pp. 89–92.

van Veldhoven, P.J.

S. Anantathanasarn, R. Nötzel, P.J. van Veldhoven, F.W.M. van Otten, Y. Barbarin, G. Servanton, T. de Vries, E. Smalbrugge, E.J. Geluk, T.J. Eijkemans, E.A.J.M. Bente, Y.S. Oei, M.K. Smit, and J.H. Wolter, “Lasing of wavelength-tunable (1.55 µm region) InAs/InGaAsP/InP (100) quantum dots grown by metal organic vapor-phase epitaxy,” Appl. Phys. Lett. 89, 073115 (2006).
[CrossRef]

Y. Barbarin, E.A.J.M. Bente, T. de Vries, J.H. den Besten, P.J. van Veldhoven, M.J.H. Sander-Jochem, E. Smalbrugge, F.W.M. van Otten, E.J. Geluk, M.J.R. Heck, X.J.M. Leijtens, J.G.M. van der Tol, F. Karouta, Y.S. Oei, R. Nötzel, and M.K. Smit, “Butt-joint interfaces in InP/InGaASP waveguides with very low reflectivity and low loss,” in Proc. Symp. IEEE/LEOS Benelux Chapter (2005), pp. 89–92.

Viktorov, E.A.

E.A. Viktorov, P. Mandel, A.G. Vladimirov, and U. Bandelow, “Model for mode locking in quantum dot lasers,” Appl. Phys. Lett. 88, 201102 (2006).
[CrossRef]

E.A. Viktorov, P. Mandel, M. Kuntz, G. Fiol, D. Bimberg, A.G. Vladimirov, and M. Wolfram, “Stability of the modelocking regime in quantum dot laser,” in Conference on Lasers and Electro-Optics Europe, CLEO (2007), paper IG6.

Vladimirov, A.

U. Bandelow, M. Radziunas, A. Vladimirov, B. Hüttl, and R. Kaiser, “40 GHz mode-locked semiconductor lasers: theory, simulations and experiment,” Opt. Quantum Electron. 38, 495–512 (2006).
[CrossRef]

Vladimirov, A.G.

E.A. Viktorov, P. Mandel, A.G. Vladimirov, and U. Bandelow, “Model for mode locking in quantum dot lasers,” Appl. Phys. Lett. 88, 201102 (2006).
[CrossRef]

E.A. Viktorov, P. Mandel, M. Kuntz, G. Fiol, D. Bimberg, A.G. Vladimirov, and M. Wolfram, “Stability of the modelocking regime in quantum dot laser,” in Conference on Lasers and Electro-Optics Europe, CLEO (2007), paper IG6.

White, I.H.

M.G. Thompson, A. Rae, R.L. Sellin, C. Marinelli, R.V. Penty, I.H. White, A.R. Kovsh, S.S. Mikhrin, D.A. Livshits, and I.L. Krestnikov, “Subpicosecond high-power mode locking using flared waveguide monolithic quantum-dot lasers,” Appl. Phys. Lett. 88, 133119 (2006).
[CrossRef]

K.A. Williams, M.G. Thompson, and I.H. White, “Long-wavelength monolithic mode-locked diode lasers,” New J. Phys. 6, 179 (2004).
[CrossRef]

Williams, K.A.

K.A. Williams, M.G. Thompson, and I.H. White, “Long-wavelength monolithic mode-locked diode lasers,” New J. Phys. 6, 179 (2004).
[CrossRef]

Wolfram, M.

E.A. Viktorov, P. Mandel, M. Kuntz, G. Fiol, D. Bimberg, A.G. Vladimirov, and M. Wolfram, “Stability of the modelocking regime in quantum dot laser,” in Conference on Lasers and Electro-Optics Europe, CLEO (2007), paper IG6.

Wolter, J.H.

S. Anantathanasarn, R. Nötzel, P.J. van Veldhoven, F.W.M. van Otten, Y. Barbarin, G. Servanton, T. de Vries, E. Smalbrugge, E.J. Geluk, T.J. Eijkemans, E.A.J.M. Bente, Y.S. Oei, M.K. Smit, and J.H. Wolter, “Lasing of wavelength-tunable (1.55 µm region) InAs/InGaAsP/InP (100) quantum dots grown by metal organic vapor-phase epitaxy,” Appl. Phys. Lett. 89, 073115 (2006).
[CrossRef]

Zadiranov, Y.M.

E.U. Rafailov, M.A. Cataluna, W. Sibbett, N.D. Il’inskaya, Y.M. Zadiranov, A.E. Zhukov, V.M. Ustinov, D.A. Livshits, A.R. Kovsh, and N.N. Ledentsov, “High-power picosecond and femtosecond pulse generation from a two-section mode-locked quantum-dot laser,” Appl. Phys. Lett. 87, 081107 (2005).
[CrossRef]

Zhukov, A.E.

E.U. Rafailov, M.A. Cataluna, W. Sibbett, N.D. Il’inskaya, Y.M. Zadiranov, A.E. Zhukov, V.M. Ustinov, D.A. Livshits, A.R. Kovsh, and N.N. Ledentsov, “High-power picosecond and femtosecond pulse generation from a two-section mode-locked quantum-dot laser,” Appl. Phys. Lett. 87, 081107 (2005).
[CrossRef]

E.U. Rafailov, P. Loza-Alvarez, W. Sibbett, G.S. Sokolovskii, D.A. Livshits, A.E. Zhukov, and V.M. Ustinov, “Amplification of femtosecond pulses by over 18 dB in a quantum-dot semiconductor optical amplifier,” IEEE Photon. Technol. Lett. 15, 1023–1025 (2003).
[CrossRef]

Appl. Phys. Lett. (5)

C. Gosset, K. Merghem, A. Martinez, G. Moreau, G. Patriarche, G. Aubin, A. Ramdane, J. Landreau, and F. Lelarge, “Subpicosecond pulse generation at 134 GHz using a quantum-dash-based Fabry-Perot laser emitting at 1.56 µm,” Appl. Phys. Lett. 88, 241105 (2006).
[CrossRef]

M.G. Thompson, A. Rae, R.L. Sellin, C. Marinelli, R.V. Penty, I.H. White, A.R. Kovsh, S.S. Mikhrin, D.A. Livshits, and I.L. Krestnikov, “Subpicosecond high-power mode locking using flared waveguide monolithic quantum-dot lasers,” Appl. Phys. Lett. 88, 133119 (2006).
[CrossRef]

E.U. Rafailov, M.A. Cataluna, W. Sibbett, N.D. Il’inskaya, Y.M. Zadiranov, A.E. Zhukov, V.M. Ustinov, D.A. Livshits, A.R. Kovsh, and N.N. Ledentsov, “High-power picosecond and femtosecond pulse generation from a two-section mode-locked quantum-dot laser,” Appl. Phys. Lett. 87, 081107 (2005).
[CrossRef]

S. Anantathanasarn, R. Nötzel, P.J. van Veldhoven, F.W.M. van Otten, Y. Barbarin, G. Servanton, T. de Vries, E. Smalbrugge, E.J. Geluk, T.J. Eijkemans, E.A.J.M. Bente, Y.S. Oei, M.K. Smit, and J.H. Wolter, “Lasing of wavelength-tunable (1.55 µm region) InAs/InGaAsP/InP (100) quantum dots grown by metal organic vapor-phase epitaxy,” Appl. Phys. Lett. 89, 073115 (2006).
[CrossRef]

E.A. Viktorov, P. Mandel, A.G. Vladimirov, and U. Bandelow, “Model for mode locking in quantum dot lasers,” Appl. Phys. Lett. 88, 201102 (2006).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

R. Kaiser and B. Hüttl, “Monolithic 40-GHz mode-locked MQW DBR lasers for high-speed optical communication systems,” IEEE J. Sel. Top. Quantum Electron. 13, 125–135 (2007).
[CrossRef]

IEEE Photon. Technol. Lett. (3)

Y. Barbarin, S. Anantathanasarn, E.A.J.M. Bente, Y.S. Oei, M.K. Smit, and R. Nötzel, “1.55-µm range InAs-InP (100) quantum-dot Fabry-Pérot and ring lasers using narrow deeply etched ridge waveguides,” IEEE Photon. Technol. Lett. 18, 2644–2646 (2006).
[CrossRef]

E.U. Rafailov, P. Loza-Alvarez, W. Sibbett, G.S. Sokolovskii, D.A. Livshits, A.E. Zhukov, and V.M. Ustinov, “Amplification of femtosecond pulses by over 18 dB in a quantum-dot semiconductor optical amplifier,” IEEE Photon. Technol. Lett. 15, 1023–1025 (2003).
[CrossRef]

R. Kaiser, B. Hüttl, H. Heidrich, S. Fidorra, W. Rehbein, H. Stolpe, R. Stenzel, W. Ebert, and G. Sahin, “Tunable monolithic mode-locked lasers on InP with low timing jitter,” IEEE Photon. Technol. Lett. 15, 634–636 (2003).
[CrossRef]

New J. Phys. (1)

K.A. Williams, M.G. Thompson, and I.H. White, “Long-wavelength monolithic mode-locked diode lasers,” New J. Phys. 6, 179 (2004).
[CrossRef]

Opt. Express (1)

Opt. Quantum Electron. (1)

U. Bandelow, M. Radziunas, A. Vladimirov, B. Hüttl, and R. Kaiser, “40 GHz mode-locked semiconductor lasers: theory, simulations and experiment,” Opt. Quantum Electron. 38, 495–512 (2006).
[CrossRef]

Other (3)

E.A. Viktorov, P. Mandel, M. Kuntz, G. Fiol, D. Bimberg, A.G. Vladimirov, and M. Wolfram, “Stability of the modelocking regime in quantum dot laser,” in Conference on Lasers and Electro-Optics Europe, CLEO (2007), paper IG6.

J.J.M. Binsma, M. van Geemert, F. Heinrichsdorff, T. van Dongen, R.G. Broeke, and M.K. Smit, “MOVPE waveguide regrowth in InGaAsP/InP with extremely low butt joint loss,” in Proc. Symp. IEEE/LEOS Benelux Chapter (2001), pp. 245–248.

Y. Barbarin, E.A.J.M. Bente, T. de Vries, J.H. den Besten, P.J. van Veldhoven, M.J.H. Sander-Jochem, E. Smalbrugge, F.W.M. van Otten, E.J. Geluk, M.J.R. Heck, X.J.M. Leijtens, J.G.M. van der Tol, F. Karouta, Y.S. Oei, R. Nötzel, and M.K. Smit, “Butt-joint interfaces in InP/InGaASP waveguides with very low reflectivity and low loss,” in Proc. Symp. IEEE/LEOS Benelux Chapter (2005), pp. 89–92.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

Photograph of the realized devices, showing different configurations. The SOA (gain) and SA (saturable absorption) sections are indicated.

Fig. 2.
Fig. 2.

Schematic overview of the setup used to characterize the QD lasers. PM: power meter, Iso: optical isolator, TE cooler: thermo-electric cooler, SOA: optional booster amplifier, ESA: electrical spectrum analyzer including a 50-GHz photodiode, OSA: optical spectrum analyzer, Osc: 6-GHz real time oscilloscope including 45-GHz photodiode, PC: polarization controller, AC: autocorrelator. All equipment is fiber pigtailed or has fiber input or output connectors. A current source (I) and voltage source (-V) are used to bias the SOA and SA respectively.

Fig. 3.
Fig. 3.

LI-curves for different SA bias voltages (solid). The fiber coupled optical power is plotted. The SA bias current is also shown (dotted). The total device length is 7 mm and the SA length is 5%.

Fig. 4.
Fig. 4.

(a) RF-spectra (3-MHz bandwidth resolution), color coded from low intensity (blue) to high intensity (red) obtained with a 7 mm device with 5% SA length and an SA bias voltage of -3 V. (b) Oscilloscope traces obtained for different injection currents corresponding to the three different regimes of Q-switching shown in (a) as indicated by the arrows. Traces have been offset for clarity, i.e. the dotted lines represent the respective 0-levels.

Fig. 5.
Fig. 5.

LI-curves for different SA bias voltages. The fiber coupled optical power is plotted. The total device length is 9 mm and SA length is 3%.

Fig. 6.
Fig. 6.

(a) RF-spectrum obtained for a 9 mm device with 3% SA length. Injection current is 900 mA and SA bias voltage is -1 V. (b) Detailed view of the spectrum around the first RF-peak in (a). The electrical bandwidths used to obtain the spectra are 3 MHz and 50 kHz for (a) and (b) respectively.

Fig. 7.
Fig. 7.

(a) Optical spectrum obtained for a 9 mm device with 3% SA length. Injection current is 900 mA and SA bias voltage is -1 V. (b) Detailed view of the spectrum in (a). The optical bandwidth used to obtain the spectra is 0.16 pm.

Fig. 8.
Fig. 8.

Autocorrelator traces (second harmonic power given) obtained with a 9 mm device with 3% SA length and with a 1.2 nm optical bandpass filter. Injection current is varied from 750 mA up to 1.0 A and SA bias voltage is -1 V. A booster SOA is used for amplification.

Fig. 9.
Fig. 9.

(a) Schematic of the setup used to investigate the timing of the spectral components of the pulse. The two photodiodes (PDs) are connected to two channels of the oscilloscope (Osc). (b) A typical example of the oscilloscope traces. The “signal” is obtained with the 1.2 nm filter and the ‘ref.’ with the 2.0 nm filter. The ‘ref.’ has a vertical offset for easy comparison.

Fig. 10.
Fig. 10.

(a) Resulting optical spectra by tuning the 1.2 nm optical bandpass filter. (b) Relative delay of the different pulse trains corresponding to the spectra in (a). (c) RF-spectra obtained after filtering the laser output with a 0.3-nm optical bandpass filter. Injection current is 1.0 A and SA bias voltage is -1 V. The spectra are color-coded in dB scale from low intensity (blue) to high intensity (red). The electrical bandwidth used to obtain the spectra is 50 kHz.

Metrics