Abstract

Segmented growth of monoclinic Yb:KY(WO4)2 on KY(WO4)2 substrates was successfully implemented and its excellent laser performance demonstrated. High slope efficiencies up to 80% and an output power of 375 mW were achieved under Ti:sapphire laser pumping in the continuous-wave regime. In the passively mode-locked regime, pulses as short as 99 fs with an average output power of 69 mW were obtained.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. A. A. Kaminskii, "Laser crystals and ceramics: recent advances," Laser & Photon. Rev. 1, 93-177 (2007).
    [CrossRef]
  2. V. Petrov, M. C. Pujol, X. Mateos, O. Silvestre, S. Rivier, M. Aguiló, R. M. Solé, J. Liu, U. Griebner, and F. Díaz, "Growth and properties of KLu(WO4)2, and novel ytterbium and thulium lasers based on this monoclinic crystalline host," Laser & Photon. Rev. 1, 179-212 (2007).
    [CrossRef]
  3. M. Pollnau, Y. E. Romanyuk, F. Gardillou, C. N. Borca, U. Griebner, S. Rivier, and V. Petrov, "Double tungstate lasers: from bulk toward on-chip integrated waveguide devices," IEEE J. Sel. Top. Quantum Electron. 13, 661-671 (2007).
    [CrossRef]
  4. S.  Erhard, J.  Gao, A.  Giesen, K.  Contag, A. A.  Lagatsky, A.  Abdolvand, N. V.  Kuleshov, J. Aus der Au, G. J. Spühler, F. Brunner, R. Paschotta, and U. Keller, "High power Yb:KGW and Yb:KYW thin disk laser operation," in OSA Trends in Optics and Photonics (TOPS) Vol. 56, Conference on Lasers and Electro-Optics, Technical Digest, (Optical Society of America, Washington, D.C., 2001), pp. 333-334.
  5. F. Brunner, T. Südmeyer, E. Innerhofer, F. Mourier-Genoud, R. Paschotta, V. E. Kisel, V. G. Shcherbitsky, N. V. Kuleshov, J. Gao, K. Contag, A. Giesen, and U. Keller, "240-fs pulses with 22-W average power from a mode-locked thin-disk Yb:KY(WO4)2 laser," Opt. Lett. 27, 1162-1164 (2002).
    [CrossRef]
  6. M. Tsunekane, N. Taguchi, T. Kasamatsu, and H. Inaba, "Analytical and experimental studies on the characteristics of composite solid-state laser rods in diode-end-pumped geometry," IEEE J. Sel. Top. Quantum. Electron. 3, 9-18 (1997).
    [CrossRef]
  7. C. T. A. Brown, C. L. Bonner, T. J. Warburton, D. P. Shepherd, A. C. Tropper, D. C. Hanna, and H. E. Meissner, "Thermally bonded planar waveguide lasers," Appl. Phys. Lett. 71, 1139-1141 (1997).
    [CrossRef]
  8. B. Ferrand, B. Chambaz, and M. Couchaud, "Liquid phase epitaxy: a versatile technique for the development of miniature optical components in single crystal dielectric media," Opt. Mater. 11, 101-114 (1999).
    [CrossRef]
  9. A. Aznar, R. Solé, M. Aguiló, F. Díaz, U. Griebner, R. Grunwald, and V. Petrov, "Growth, optical characterization, and laser operation of epitaxial Yb:KY(WO4)2/KY(WO4)2 composites with monoclinic structure," Appl. Phys. Lett. 85, 4313-4315 (2004).
    [CrossRef]
  10. L. Ackermann, "Method for producing segmented crystals," Patents US 6387177, DE 19936651 (2002).
  11. F. Krausz, M. E. Fermann, T. Brabec, P. F. Curley, M. Hofer, M. H. Ober, C. Spielmann, E. Wintner, and A. J. Schmidt, "Femtosecond solid-state lasers," IEEE J. Quantum Electron. 28, 2097-2122 (1992).
    [CrossRef]
  12. H. Liu, J. Nees, and G. Mourou, "Diode-pumped Kerr-lens mode-locked Yb:KY(WO4)2 laser," Opt. Lett. 26, 1723-1725 (2001).
    [CrossRef]
  13. P. Klopp, V. Petrov, U. Griebner, and G. Erbert, "Passively mode-locked Yb:KYW laser pumped by a tapered diode laser," Opt. Express 10, 108-113 (2002).
    [PubMed]
  14. F. Druon, S. Chénais, F. Balembois, P. Georges, R. Gaumé, and B. Viana, "Diode-pumped continuous-wave and femtosecond laser operations of a heterocomposite crystal Yb3+:SrY4(SiO4)3O/Y2Al5O12," Opt. Lett. 30, 857-859 (2005).
    [CrossRef] [PubMed]

2007

A. A. Kaminskii, "Laser crystals and ceramics: recent advances," Laser & Photon. Rev. 1, 93-177 (2007).
[CrossRef]

V. Petrov, M. C. Pujol, X. Mateos, O. Silvestre, S. Rivier, M. Aguiló, R. M. Solé, J. Liu, U. Griebner, and F. Díaz, "Growth and properties of KLu(WO4)2, and novel ytterbium and thulium lasers based on this monoclinic crystalline host," Laser & Photon. Rev. 1, 179-212 (2007).
[CrossRef]

M. Pollnau, Y. E. Romanyuk, F. Gardillou, C. N. Borca, U. Griebner, S. Rivier, and V. Petrov, "Double tungstate lasers: from bulk toward on-chip integrated waveguide devices," IEEE J. Sel. Top. Quantum Electron. 13, 661-671 (2007).
[CrossRef]

2005

2004

A. Aznar, R. Solé, M. Aguiló, F. Díaz, U. Griebner, R. Grunwald, and V. Petrov, "Growth, optical characterization, and laser operation of epitaxial Yb:KY(WO4)2/KY(WO4)2 composites with monoclinic structure," Appl. Phys. Lett. 85, 4313-4315 (2004).
[CrossRef]

2002

2001

1999

B. Ferrand, B. Chambaz, and M. Couchaud, "Liquid phase epitaxy: a versatile technique for the development of miniature optical components in single crystal dielectric media," Opt. Mater. 11, 101-114 (1999).
[CrossRef]

1997

M. Tsunekane, N. Taguchi, T. Kasamatsu, and H. Inaba, "Analytical and experimental studies on the characteristics of composite solid-state laser rods in diode-end-pumped geometry," IEEE J. Sel. Top. Quantum. Electron. 3, 9-18 (1997).
[CrossRef]

C. T. A. Brown, C. L. Bonner, T. J. Warburton, D. P. Shepherd, A. C. Tropper, D. C. Hanna, and H. E. Meissner, "Thermally bonded planar waveguide lasers," Appl. Phys. Lett. 71, 1139-1141 (1997).
[CrossRef]

1992

F. Krausz, M. E. Fermann, T. Brabec, P. F. Curley, M. Hofer, M. H. Ober, C. Spielmann, E. Wintner, and A. J. Schmidt, "Femtosecond solid-state lasers," IEEE J. Quantum Electron. 28, 2097-2122 (1992).
[CrossRef]

Appl. Phys. Lett.

C. T. A. Brown, C. L. Bonner, T. J. Warburton, D. P. Shepherd, A. C. Tropper, D. C. Hanna, and H. E. Meissner, "Thermally bonded planar waveguide lasers," Appl. Phys. Lett. 71, 1139-1141 (1997).
[CrossRef]

A. Aznar, R. Solé, M. Aguiló, F. Díaz, U. Griebner, R. Grunwald, and V. Petrov, "Growth, optical characterization, and laser operation of epitaxial Yb:KY(WO4)2/KY(WO4)2 composites with monoclinic structure," Appl. Phys. Lett. 85, 4313-4315 (2004).
[CrossRef]

IEEE J. Quantum Electron.

F. Krausz, M. E. Fermann, T. Brabec, P. F. Curley, M. Hofer, M. H. Ober, C. Spielmann, E. Wintner, and A. J. Schmidt, "Femtosecond solid-state lasers," IEEE J. Quantum Electron. 28, 2097-2122 (1992).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

M. Pollnau, Y. E. Romanyuk, F. Gardillou, C. N. Borca, U. Griebner, S. Rivier, and V. Petrov, "Double tungstate lasers: from bulk toward on-chip integrated waveguide devices," IEEE J. Sel. Top. Quantum Electron. 13, 661-671 (2007).
[CrossRef]

IEEE J. Sel. Top. Quantum. Electron.

M. Tsunekane, N. Taguchi, T. Kasamatsu, and H. Inaba, "Analytical and experimental studies on the characteristics of composite solid-state laser rods in diode-end-pumped geometry," IEEE J. Sel. Top. Quantum. Electron. 3, 9-18 (1997).
[CrossRef]

Laser & Photon. Rev.

A. A. Kaminskii, "Laser crystals and ceramics: recent advances," Laser & Photon. Rev. 1, 93-177 (2007).
[CrossRef]

V. Petrov, M. C. Pujol, X. Mateos, O. Silvestre, S. Rivier, M. Aguiló, R. M. Solé, J. Liu, U. Griebner, and F. Díaz, "Growth and properties of KLu(WO4)2, and novel ytterbium and thulium lasers based on this monoclinic crystalline host," Laser & Photon. Rev. 1, 179-212 (2007).
[CrossRef]

Opt. Express

Opt. Lett.

Opt. Mater.

B. Ferrand, B. Chambaz, and M. Couchaud, "Liquid phase epitaxy: a versatile technique for the development of miniature optical components in single crystal dielectric media," Opt. Mater. 11, 101-114 (1999).
[CrossRef]

Other

L. Ackermann, "Method for producing segmented crystals," Patents US 6387177, DE 19936651 (2002).

S.  Erhard, J.  Gao, A.  Giesen, K.  Contag, A. A.  Lagatsky, A.  Abdolvand, N. V.  Kuleshov, J. Aus der Au, G. J. Spühler, F. Brunner, R. Paschotta, and U. Keller, "High power Yb:KGW and Yb:KYW thin disk laser operation," in OSA Trends in Optics and Photonics (TOPS) Vol. 56, Conference on Lasers and Electro-Optics, Technical Digest, (Optical Society of America, Washington, D.C., 2001), pp. 333-334.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Segmented grown Yb:KYW/KYW crystal. The top, undoped KYW segment is grown first. The second KYW segment is 13 at. % Yb-doped. Scale grid: 10 mm.

Fig. 2.
Fig. 2.

CW output power versus absorbed pump power of the segmented grown Yb:KYW/KYW laser for different output coupler transmission TOC (a), and single pass absorption versus incident pump power (b).

Fig. 3.
Fig. 3.

Tuning of the Yb:KYW/KYW laser for TOC =1% using an intracavity Lyot filter.

Fig. 4.
Fig. 4.

Autocorrelation trace and spectrum (inset) of the shortest pulses obtained with the Yb:KYW/KYW laser (a), and output power of the laser below and above the mode-locking threshold versus incident pump power (b).

Fig. 5.
Fig. 5.

Tunability of the mode-locked Yb:KYW/KYW laser with TOC =1% (a), and the corresponding pulse durations and average output powers for different central wavelengths (b).

Tables (1)

Tables Icon

Table 1. Threshold (Pth ) and slope efficiency (η) with respect to the absorbed power, optical-tooptical efficiency (ηopt ), maximum output power (Pout ), and laser wavelength (λL ) for different output coupler transmissions (TOC ) of the Yb:KYW/KYW laser.

Metrics