Abstract

An interesting feature of microstructured optical fibers (MOFs) is that their properties can be adjusted by filling or coating of the holes. Some applications require selective filling or coating, which has proved experimentally demanding. We demonstrate selective coating of MOFs with metal and use it to fabricate an in-fiber absorptive polarizer.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. R. T. Bise, R. S. Windeler, K. S. Kranz, C. Kerbage, B. J. Eggleton, and D. J. Trevor, "Tunable photonic band gap fiber," in OSA Trends in Optics and Photonics (TOPS) 70, Optical Fiber Communication Conference Technical Digest, Postconference Edition (Optical Society of America, Washington, DC, 2002), 466-468 (2002).
  2. C. Kerbage, P. Steinvurzel, P. Reyes, P. S. Westbrook, R. S. Windeler, A. Hale, and B. J. Eggleton, "Highly tunable birefringent microstructured optical fiber," Opt. Lett. 27, 842-844 (2002).
    [CrossRef]
  3. N. Litchinitser, S. Dunn, P. Steinvurzel, B. Eggleton, T. White, R. McPhedran, and C. M. de Sterke, "Application of an ARROW model for designing tunable photonic devices," Opt. Express 12, 1540-1550 (2004).
    [CrossRef] [PubMed]
  4. B. J. Eggleton, C. Kerbage, P. S. Westbrook, R. S. Windeler, and A. Hale, "Microstructured optical fiber devices," Opt. Express 9, 698-713 (2001).
    [CrossRef] [PubMed]
  5. K. M. Gundu, M. Kolesik, J. V. Moloney and K. S. Lee, "Ultra-flattened-dispersion selectively liquid-filled photonic crystal fibers", Opt. Express 14, 6871-6878 (2006).
    [CrossRef]
  6. B. T. Kuhlmey,K. Pathmanandavel, and R. C. McPhedran, "Multipole analysis of photonic crystal fibers with coated inclusions," Opt. Express 14, 10851-10864 (2006).
    [CrossRef] [PubMed]
  7. A. Hassani and M. Skorobogatiy, "Design of microstructured optical fiber-based surface plasmon resonance sensors with enhanced microfuidics", Opt. Express 14, 11616-1162 (2006).
    [CrossRef] [PubMed]
  8. A. Hassani and M. Skorobogatiy, "Design criteria for microstructured-optical-fiber-based surface-plasmon-resonance sensors," J. Opt. Soc. Am. B 24, 1423-1429 (2007).
    [CrossRef]
  9. Y. Huang, Y. Xu and A. Yariv, "Fabrication of functional microstructured optical fibers through a selective-filling technique," Appl. Phys. Lett. 85, 5182-5184 (2004).
    [CrossRef]
  10. K. Nielsen, D. Noordegraaf, T. Sørensen, A. Bjarklev and T. P Hansen, "Selective filling of photonic crystal fibres", J. Opt. A: Pure Appl. Opt. 7, L13-L20 (2005).
    [CrossRef]
  11. L. Xiao, W. Jin, M. S. Demokan, H. L. Ho, Y. L. Hoo, and C. Zhao, "Fabrication of selective injection microstructured optical fibers with a conventional fusion splicer", Opt. Express 13, 9014-9022 (2005).
    [CrossRef] [PubMed]
  12. C. M. B. Cordeiro, E. M. dos Santos, and C. H. Brito Cruz, C. J. S. de Matos and D. S. Ferreira, "Lateral access to the holes of photonic crystal fibers - selective filling and sensing applications", Opt. Express 14, 8403-8412 (2006).
    [CrossRef] [PubMed]
  13. S. Yiou, P. Delaye, A. Rouvie, J. Chinaud, R. Frey, G. Roosen, P. Viale, S. Février, P. Roy, J.-L Auguste, and J-M. Blondy, "Stimulated Raman scattering in an ethanol core microstructured optical fiber," Opt. Express 13, 4786-4791 (2005).
    [CrossRef] [PubMed]
  14. F. Intonti,_ S. Vignolini, V. Türck, and M. Colocci, P. Bettotti and L. Pavesi, S. L. Schweizer and R. Wehrspohn and D. Wiersma, "Rewritable photonic circuits", Appl. Phys. Lett. 89, 211117 (2006).
    [CrossRef]
  15. M. Sasaki, T. Ando, S. Nogawa and K. Hane, "Direct photolithogprahy on optical fiber end," Jpn. J. Appl. Phys. 41, 4350-4355 (2002).
    [CrossRef]
  16. W. J. Wadsworth, J. C. Knight, W. H. Reeves, and P. St. J. Russell, "Yb3+-doped photonic crystal fiber laser," Electron. Lett. 36, 1452-1453 (2000).
    [CrossRef]
  17. A. Argyros, T. Birks, S. Leon-Saval, C. M. Cordeiro, F. Luan, and P. S. J. Russell, "Photonic bandgap with an index step of one percent," Opt. Express 13, 309-314 (2005).
    [CrossRef] [PubMed]
  18. A. Cerqueira S. Jr., F. Luan, C. M. B. Cordeiro, A. K. George, and J. C. Knight, "Hybrid photonic crystal fiber," Opt. Express 14, 926-931 (2006).
    [CrossRef] [PubMed]
  19. T. Larsen, A. Bjarklev, D. Hermann, and J. Broeng, "Optical devices based on liquid crystal photonic bandgap fibres," Opt. Express 11, 2589-2596 (2003).
    [CrossRef] [PubMed]
  20. P. J. A. Sazio, A Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D-J Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi and J. V. Badding, "Microstructured Optical Fibers as High-Pressure Microfluidic Reactors," Science,  311, 1583-1586 (2006).
    [CrossRef] [PubMed]
  21. E. T. Eisenbraun, A. Klaver, Z. Patel, G. Nuesca,and Al. E.  Kaloyeros, "Low temperature metalorganic chemical vapor deposition of conformal silver coatings for applications in high aspect ratio structures", J. Vac. Sci. Technol. B 19, 585-588 (2001).
    [CrossRef]
  22. R. L. Puurunen, Surface chemistry of atomic layer deposition: A case study for the trimethylaluminum/water process, J. App. Phys. 97, 121301-121352 (2005).
    [CrossRef]
  23. G.  Vienne, M.  Yan, T.  Luo, T. K.  Liang, P.  Ho, and C.  Lin, "Liquid core fibers based on hollow core microstructured fibers," in Proceedings of IEE conference on lasers and electrooptics/Pacific Rim (Institute of Electrical and Electronics Engineers, Tokyo, 2005), 551-552 (2005).
    [CrossRef]
  24. F. M. Cox, A. Argyros, and M. C. J. Large, "Liquid-filled hollow core microstructured polymer optical fiber," Opt. Express 14, 4135-4140 (2006).
    [CrossRef] [PubMed]
  25. A. Witkowska, K. Lai, S. G. Leon-Saval, W. J. Wadsworth, and T. A. Birks, "All-fiber anamorphic core-shape transitions," Opt. Lett. 31, 2672-2674 (2006).
    [CrossRef] [PubMed]
  26. C. D. Rabii,.  et al, "Processing and characterization of silver films used to fabricate hollow glass waveguides" Appl. Opt. 38, 4486-4493 (1999).
    [CrossRef]
  27. T. P. White,, "Multipole method for microstructured optical fibers I : formulation" J. Opt. Soc. Am. B 19, 2322-2330 (2002).
    [CrossRef]
  28. B. T. Kuhlmey,  et al, "Multipole method for microstructured optical fibers II : implementation and results" J. Opt. Soc. B. 19, 2331-2340 (2002).
    [CrossRef]

2007 (1)

2006 (9)

K. M. Gundu, M. Kolesik, J. V. Moloney and K. S. Lee, "Ultra-flattened-dispersion selectively liquid-filled photonic crystal fibers", Opt. Express 14, 6871-6878 (2006).
[CrossRef]

B. T. Kuhlmey,K. Pathmanandavel, and R. C. McPhedran, "Multipole analysis of photonic crystal fibers with coated inclusions," Opt. Express 14, 10851-10864 (2006).
[CrossRef] [PubMed]

A. Hassani and M. Skorobogatiy, "Design of microstructured optical fiber-based surface plasmon resonance sensors with enhanced microfuidics", Opt. Express 14, 11616-1162 (2006).
[CrossRef] [PubMed]

C. M. B. Cordeiro, E. M. dos Santos, and C. H. Brito Cruz, C. J. S. de Matos and D. S. Ferreira, "Lateral access to the holes of photonic crystal fibers - selective filling and sensing applications", Opt. Express 14, 8403-8412 (2006).
[CrossRef] [PubMed]

F. Intonti,_ S. Vignolini, V. Türck, and M. Colocci, P. Bettotti and L. Pavesi, S. L. Schweizer and R. Wehrspohn and D. Wiersma, "Rewritable photonic circuits", Appl. Phys. Lett. 89, 211117 (2006).
[CrossRef]

A. Cerqueira S. Jr., F. Luan, C. M. B. Cordeiro, A. K. George, and J. C. Knight, "Hybrid photonic crystal fiber," Opt. Express 14, 926-931 (2006).
[CrossRef] [PubMed]

P. J. A. Sazio, A Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D-J Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi and J. V. Badding, "Microstructured Optical Fibers as High-Pressure Microfluidic Reactors," Science,  311, 1583-1586 (2006).
[CrossRef] [PubMed]

F. M. Cox, A. Argyros, and M. C. J. Large, "Liquid-filled hollow core microstructured polymer optical fiber," Opt. Express 14, 4135-4140 (2006).
[CrossRef] [PubMed]

A. Witkowska, K. Lai, S. G. Leon-Saval, W. J. Wadsworth, and T. A. Birks, "All-fiber anamorphic core-shape transitions," Opt. Lett. 31, 2672-2674 (2006).
[CrossRef] [PubMed]

2005 (5)

2004 (2)

Y. Huang, Y. Xu and A. Yariv, "Fabrication of functional microstructured optical fibers through a selective-filling technique," Appl. Phys. Lett. 85, 5182-5184 (2004).
[CrossRef]

N. Litchinitser, S. Dunn, P. Steinvurzel, B. Eggleton, T. White, R. McPhedran, and C. M. de Sterke, "Application of an ARROW model for designing tunable photonic devices," Opt. Express 12, 1540-1550 (2004).
[CrossRef] [PubMed]

2003 (1)

2002 (4)

C. Kerbage, P. Steinvurzel, P. Reyes, P. S. Westbrook, R. S. Windeler, A. Hale, and B. J. Eggleton, "Highly tunable birefringent microstructured optical fiber," Opt. Lett. 27, 842-844 (2002).
[CrossRef]

M. Sasaki, T. Ando, S. Nogawa and K. Hane, "Direct photolithogprahy on optical fiber end," Jpn. J. Appl. Phys. 41, 4350-4355 (2002).
[CrossRef]

T. P. White,, "Multipole method for microstructured optical fibers I : formulation" J. Opt. Soc. Am. B 19, 2322-2330 (2002).
[CrossRef]

B. T. Kuhlmey,  et al, "Multipole method for microstructured optical fibers II : implementation and results" J. Opt. Soc. B. 19, 2331-2340 (2002).
[CrossRef]

2001 (2)

E. T. Eisenbraun, A. Klaver, Z. Patel, G. Nuesca,and Al. E.  Kaloyeros, "Low temperature metalorganic chemical vapor deposition of conformal silver coatings for applications in high aspect ratio structures", J. Vac. Sci. Technol. B 19, 585-588 (2001).
[CrossRef]

B. J. Eggleton, C. Kerbage, P. S. Westbrook, R. S. Windeler, and A. Hale, "Microstructured optical fiber devices," Opt. Express 9, 698-713 (2001).
[CrossRef] [PubMed]

2000 (1)

W. J. Wadsworth, J. C. Knight, W. H. Reeves, and P. St. J. Russell, "Yb3+-doped photonic crystal fiber laser," Electron. Lett. 36, 1452-1453 (2000).
[CrossRef]

1999 (1)

Appl. Opt. (1)

Appl. Phys. Lett. (2)

Y. Huang, Y. Xu and A. Yariv, "Fabrication of functional microstructured optical fibers through a selective-filling technique," Appl. Phys. Lett. 85, 5182-5184 (2004).
[CrossRef]

F. Intonti,_ S. Vignolini, V. Türck, and M. Colocci, P. Bettotti and L. Pavesi, S. L. Schweizer and R. Wehrspohn and D. Wiersma, "Rewritable photonic circuits", Appl. Phys. Lett. 89, 211117 (2006).
[CrossRef]

Electron. Lett. (1)

W. J. Wadsworth, J. C. Knight, W. H. Reeves, and P. St. J. Russell, "Yb3+-doped photonic crystal fiber laser," Electron. Lett. 36, 1452-1453 (2000).
[CrossRef]

J. App. Phys. (1)

R. L. Puurunen, Surface chemistry of atomic layer deposition: A case study for the trimethylaluminum/water process, J. App. Phys. 97, 121301-121352 (2005).
[CrossRef]

J. Opt. A: Pure Appl. Opt. (1)

K. Nielsen, D. Noordegraaf, T. Sørensen, A. Bjarklev and T. P Hansen, "Selective filling of photonic crystal fibres", J. Opt. A: Pure Appl. Opt. 7, L13-L20 (2005).
[CrossRef]

J. Opt. Soc. Am. B (2)

J. Opt. Soc. B. (1)

B. T. Kuhlmey,  et al, "Multipole method for microstructured optical fibers II : implementation and results" J. Opt. Soc. B. 19, 2331-2340 (2002).
[CrossRef]

J. Vac. Sci. Technol. B (1)

E. T. Eisenbraun, A. Klaver, Z. Patel, G. Nuesca,and Al. E.  Kaloyeros, "Low temperature metalorganic chemical vapor deposition of conformal silver coatings for applications in high aspect ratio structures", J. Vac. Sci. Technol. B 19, 585-588 (2001).
[CrossRef]

Jpn. J. Appl. Phys. (1)

M. Sasaki, T. Ando, S. Nogawa and K. Hane, "Direct photolithogprahy on optical fiber end," Jpn. J. Appl. Phys. 41, 4350-4355 (2002).
[CrossRef]

Opt. Express (12)

A. Argyros, T. Birks, S. Leon-Saval, C. M. Cordeiro, F. Luan, and P. S. J. Russell, "Photonic bandgap with an index step of one percent," Opt. Express 13, 309-314 (2005).
[CrossRef] [PubMed]

A. Cerqueira S. Jr., F. Luan, C. M. B. Cordeiro, A. K. George, and J. C. Knight, "Hybrid photonic crystal fiber," Opt. Express 14, 926-931 (2006).
[CrossRef] [PubMed]

T. Larsen, A. Bjarklev, D. Hermann, and J. Broeng, "Optical devices based on liquid crystal photonic bandgap fibres," Opt. Express 11, 2589-2596 (2003).
[CrossRef] [PubMed]

L. Xiao, W. Jin, M. S. Demokan, H. L. Ho, Y. L. Hoo, and C. Zhao, "Fabrication of selective injection microstructured optical fibers with a conventional fusion splicer", Opt. Express 13, 9014-9022 (2005).
[CrossRef] [PubMed]

C. M. B. Cordeiro, E. M. dos Santos, and C. H. Brito Cruz, C. J. S. de Matos and D. S. Ferreira, "Lateral access to the holes of photonic crystal fibers - selective filling and sensing applications", Opt. Express 14, 8403-8412 (2006).
[CrossRef] [PubMed]

S. Yiou, P. Delaye, A. Rouvie, J. Chinaud, R. Frey, G. Roosen, P. Viale, S. Février, P. Roy, J.-L Auguste, and J-M. Blondy, "Stimulated Raman scattering in an ethanol core microstructured optical fiber," Opt. Express 13, 4786-4791 (2005).
[CrossRef] [PubMed]

N. Litchinitser, S. Dunn, P. Steinvurzel, B. Eggleton, T. White, R. McPhedran, and C. M. de Sterke, "Application of an ARROW model for designing tunable photonic devices," Opt. Express 12, 1540-1550 (2004).
[CrossRef] [PubMed]

B. J. Eggleton, C. Kerbage, P. S. Westbrook, R. S. Windeler, and A. Hale, "Microstructured optical fiber devices," Opt. Express 9, 698-713 (2001).
[CrossRef] [PubMed]

K. M. Gundu, M. Kolesik, J. V. Moloney and K. S. Lee, "Ultra-flattened-dispersion selectively liquid-filled photonic crystal fibers", Opt. Express 14, 6871-6878 (2006).
[CrossRef]

B. T. Kuhlmey,K. Pathmanandavel, and R. C. McPhedran, "Multipole analysis of photonic crystal fibers with coated inclusions," Opt. Express 14, 10851-10864 (2006).
[CrossRef] [PubMed]

A. Hassani and M. Skorobogatiy, "Design of microstructured optical fiber-based surface plasmon resonance sensors with enhanced microfuidics", Opt. Express 14, 11616-1162 (2006).
[CrossRef] [PubMed]

F. M. Cox, A. Argyros, and M. C. J. Large, "Liquid-filled hollow core microstructured polymer optical fiber," Opt. Express 14, 4135-4140 (2006).
[CrossRef] [PubMed]

Opt. Lett. (2)

Science (1)

P. J. A. Sazio, A Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D-J Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi and J. V. Badding, "Microstructured Optical Fibers as High-Pressure Microfluidic Reactors," Science,  311, 1583-1586 (2006).
[CrossRef] [PubMed]

Other (2)

R. T. Bise, R. S. Windeler, K. S. Kranz, C. Kerbage, B. J. Eggleton, and D. J. Trevor, "Tunable photonic band gap fiber," in OSA Trends in Optics and Photonics (TOPS) 70, Optical Fiber Communication Conference Technical Digest, Postconference Edition (Optical Society of America, Washington, DC, 2002), 466-468 (2002).

G.  Vienne, M.  Yan, T.  Luo, T. K.  Liang, P.  Ho, and C.  Lin, "Liquid core fibers based on hollow core microstructured fibers," in Proceedings of IEE conference on lasers and electrooptics/Pacific Rim (Institute of Electrical and Electronics Engineers, Tokyo, 2005), 551-552 (2005).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

The fiber neck-down region

Fig. 2.
Fig. 2.

Set-up used for silver deposition.

Fig. 3.
Fig. 3.

A micrograph of the structure, indicating the two coated holes (top). Elemental analysis shows the presence of silver (dots in the image). An SEM of the silver surface of a coated hole is shown on the bottom.

Fig. 4.
Fig. 4.

x-polarized fundamental mode, with 7.24dB/m losses (left) and y-polarised fundamental mode, with 1.26dB/m losses (right). The arrow’s colour, length and direction reflect the value and direction of the transverse electric field. Red – highest value, blue – lowest value. Holes in red are those coated with silver.

Fig. 5.
Fig. 5.

Polarizer measurement setup.

Fig. 6.
Fig. 6.

Transmission intensity through the coated fiber, as a function of the rotation of the polarizer P2 (see Fig. 5).

Fig. 7.
Fig. 7.

End-face of a polymer MOF expanded using heat treatment. Photograph courtesy Thomas Plochberger, OFTC.

Metrics