Abstract

A noninvasive optoacoustic technique could be a clinically useful alternative to existing, invasive methods for cerebral oxygenation monitoring. Recently we proposed to use an optoacoustic technique for monitoring cerebral blood oxygenation by probing large cerebral and neck veins including the superior sagittal sinus and the internal jugular vein. In these studies we used a multi-wavelength optoacoustic system with a nanosecond optical parametric oscillator as a light source and a custom-made optoacoustic probe for the measurement of the optoacoustic signals in vivo from the area of the sheep neck overlying the external jugular vein, which is similar in diameter and depth to the human internal jugular vein. Optoacoustic signals induced in venous blood were measured with high resolution despite the presence of a thick layer of tissues (up to 10 mm) between the external jugular vein and the optoacoustic probe. Three wavelengths were chosen to provide accurate and stable measurements of blood oxygenation: signals at 700 nm and 1064 nm demonstrated high correlation with actual oxygenation measured invasively with CO-Oximeter (“gold standard”), while the signal at 800 nm (isosbestic point) was independent of blood oxygenation and was used for calibration.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. J. A. Langlois and R. W. Sattin, "Traumatic brain injury in the United States: Research and programs of the Centers for Disease Control and Prevention (CDC) - Preface," J. Head Trauma Rehab. 20,187-188 (2005).
    [CrossRef]
  2. W. Stevens, "Multimodal monitoring: head injury management using SjvO2 and LICOX," J. Neurosci Nurs. 36,332-339 (2004).
    [CrossRef]
  3. P. R. Smythe and S. K. Samra, "Monitors of cerebral oxygenation," Anes. Clin. N. Am. 20,293-313 (2002).
    [CrossRef]
  4. A. K. Gupta, "Monitoring the injured brain in the intensive care unit," J. Postgrad. Med. 48,218-225 (2002).
    [PubMed]
  5. S. Wray, M. Cope, D.T. Deply, J.S. Wyatt, and E.O.R. Reynolds. "Characterization of the near infrared absorption spectra of cytochrome aa3 and hemoglobin for the non-invasive monitoring of cerebral oxygenation," Biochem. et Biophys. Acta 933, 184-192 (1988).
    [CrossRef]
  6. A. Roggan, M. Friebel, K. Dorschel, A. Hahn, and G. Muller, "Optical properties of circulating human blood in the wavelength range 400-2500 nm," J. Biomed. Opt. 4,36-46 (1999).
    [CrossRef]
  7. A. G. Bell, "On the Production and Reproduction of Sound by Light: the Photophone," Am. J. Sci. 3,305-324 (1880).
  8. R. O. Esenaliev, I. V. Larina, K. V. Larin, D. J. Deyo, M. Motamedi, and D. S. Prough, "Optoacoustic technique for noninvasive monitoring of blood oxygenation: a feasibility study," Appl. Opt. 41,4722-4731 (2002).
    [CrossRef] [PubMed]
  9. J. A. Copland, M. Eghtedari, V. L. Popov, N. Kotov, N. Mamedova, M. Motamedi, and A. A. Oraevsky, "Bioconjugated gold nanoparticles as a molecular based contrast agent: Implications for imaging of deep tumors using optoacoustic tomography," Mol. Imaging Biol. 6,341-349 (2004).
    [CrossRef] [PubMed]
  10. M. Eghtedari, M. Motamedi, V. L. Popov, N. A. Kotov, and A. A. Oraevsky, "Optoacoustic imaging of gold nanoparticles targeted to breast cancer cells," Proc. SPIE 5320,21-28 (2004).
    [CrossRef]
  11. J. J. Niederhauser, M. Jaeger, R. Lemor, P. Weber, and M. Frenz, "Combined ultrasound and optoacoustic system for real-time high-contrast vascular imaging in vivo," IEEE Trans. Med. Imaging 24,436-440 (2005).
    [CrossRef] [PubMed]
  12. X. D. Wang, Y. J. Pang, G. Ku, G. Stoica, and L. H. V. Wang, "Three-dimensional laser-induced photoacoustic tomography of mouse brain with the skin and skull intact," Opt. Lett. 28,1739-1741 (2003).
    [CrossRef] [PubMed]
  13. J. A. Viator, G. Au, G. Paltauf, S. L. Jacques, S. A. Prahl, H. W. Ren, Z. P. Chen, and J. S. Nelson, "Clinical testing of a photoacoustic probe for port wine stain depth determination," Laser Surg. Med. 30,141-148 (2002).
    [CrossRef]
  14. R. O. Esenaliev, Y. Y. Petrov, O. Hartrumpf, D. J. Deyo, and D. S. Prough, "Continuous, noninvasive monitoring of total hemoglobin concentration by an optoacoustic technique," Appl. Opt. 43,3401-3407 (2004).
    [CrossRef] [PubMed]
  15. I. Patrikeev, Y.Y. Petrov, I.Y. Petrova, D.S. Prough, and R.O. Esenaliev, "Monte Carlo modeling of optoacoustic signals from large veins: implication for noninvasive monitoring of cerebral blood oxygenation," in Biomedical Digest (Optical Society of America, 2006), paper SH64.
  16. Y. Y. Petrov, D. S. Prough, D. J. Deyo, I. Y. Petrova, M. Motamedi, R. O. Esenaliev, "In vivo noninvasive monitoring of cerebral blood oxygenation with optoacoustic technique," in Proceedings of the 26th Intern. Conf. of IEEE EMBS, San Francisco, CA, Sept. 1-5, 2004, 2052-2054.
  17. Y. Y. Petrov, D. S. Prough, D. J. Deyo, M. Klasing, M. Motamedi, and R. O. Esenaliev, "Optoacoustic, noninvasive, real-time, continuous monitoring of cerebral blood oxygenation: An in vivo study in sheep," Anesthesiology 102,69-75 (2005).
    [CrossRef]
  18. I. Y. Petrova, R. O. Esenaliev, Y. Y. Petrov, H. P. Brecht, C. H. Svensen, J. Olsson, D. J. Deyo, and D. S. Prough, "Optoacoustic monitoring of blood hemoglobin concentration: a pilot clinical study," Opt. Lett. 30,1677-1679 (2005).
    [CrossRef] [PubMed]
  19. J. Laufer, D. Delpy, C. Elwell, and P. Beard, "Quantitative spatially resolved measurement of tissue chromophore concentrations using photoacoustic spectroscopy: application to the measurement of blood oxygenation and haemoglobin concentration," Phys. Med. Biol. 52, 141-168, (2007).
    [CrossRef]
  20. "ANSI Z136.1 - 2000" in American national standard for safe use of lasers, (The Laser Institute of America, Orlando, FL 2000).
  21. Y. Y. Petrov, I. Y. Petrova, I. A. Patrikeev, R. O. Esenaliev, and D. S. Prough, "Multiwavelength optoacoustic system for noninvasive monitoring of cerebral venous oxygenation: a pilot clinical test in the internal jugular vein," Opt. Lett. 31,1827-1829 (2006).
    [CrossRef] [PubMed]
  22. A. A. Karabutov, E. V. Savateeva, N. B. Podymova, and A. A. Oraevsky, "Backward mode detection of laser-induced wide- band ultrasonic transients with optoacoustic transducer," J. Appl. Phys. 87,2003-2014 (2000).
    [CrossRef]
  23. I. Patrikeev, Y. Y. Petrov, I. Y. Petrova, D. S. Prough, and R. O. Esenaliev, "Monte Carlo modeling of optoacoustic signals from human internal jugular veins," Appl. Opt. 46, 4820-4827 (2007).
    [CrossRef] [PubMed]
  24. S. Prahl, "Optical Absorption of Hemoglobin," http://omlc.ogi.edu/spectra/hemoglobin/index.html.
  25. W. F. Cheong, S. A. Prahl, and A. J Welch, "A review of the optical properties of biological tissues" IEEE Trans. Med. Imaging 26,2166-2185 (1990).
  26. A. N. Yaroslavsky, I. V. Yarovslavsky, T Goldbach, and G. H. Sembrosk, "The Optical Properties of blood in the near infrared spectral range," Proc. SPIE 2678, 314-324 (1996).
    [CrossRef]

2007

J. Laufer, D. Delpy, C. Elwell, and P. Beard, "Quantitative spatially resolved measurement of tissue chromophore concentrations using photoacoustic spectroscopy: application to the measurement of blood oxygenation and haemoglobin concentration," Phys. Med. Biol. 52, 141-168, (2007).
[CrossRef]

I. Patrikeev, Y. Y. Petrov, I. Y. Petrova, D. S. Prough, and R. O. Esenaliev, "Monte Carlo modeling of optoacoustic signals from human internal jugular veins," Appl. Opt. 46, 4820-4827 (2007).
[CrossRef] [PubMed]

2006

2005

Y. Y. Petrov, D. S. Prough, D. J. Deyo, M. Klasing, M. Motamedi, and R. O. Esenaliev, "Optoacoustic, noninvasive, real-time, continuous monitoring of cerebral blood oxygenation: An in vivo study in sheep," Anesthesiology 102,69-75 (2005).
[CrossRef]

I. Y. Petrova, R. O. Esenaliev, Y. Y. Petrov, H. P. Brecht, C. H. Svensen, J. Olsson, D. J. Deyo, and D. S. Prough, "Optoacoustic monitoring of blood hemoglobin concentration: a pilot clinical study," Opt. Lett. 30,1677-1679 (2005).
[CrossRef] [PubMed]

J. J. Niederhauser, M. Jaeger, R. Lemor, P. Weber, and M. Frenz, "Combined ultrasound and optoacoustic system for real-time high-contrast vascular imaging in vivo," IEEE Trans. Med. Imaging 24,436-440 (2005).
[CrossRef] [PubMed]

J. A. Langlois and R. W. Sattin, "Traumatic brain injury in the United States: Research and programs of the Centers for Disease Control and Prevention (CDC) - Preface," J. Head Trauma Rehab. 20,187-188 (2005).
[CrossRef]

2004

W. Stevens, "Multimodal monitoring: head injury management using SjvO2 and LICOX," J. Neurosci Nurs. 36,332-339 (2004).
[CrossRef]

J. A. Copland, M. Eghtedari, V. L. Popov, N. Kotov, N. Mamedova, M. Motamedi, and A. A. Oraevsky, "Bioconjugated gold nanoparticles as a molecular based contrast agent: Implications for imaging of deep tumors using optoacoustic tomography," Mol. Imaging Biol. 6,341-349 (2004).
[CrossRef] [PubMed]

M. Eghtedari, M. Motamedi, V. L. Popov, N. A. Kotov, and A. A. Oraevsky, "Optoacoustic imaging of gold nanoparticles targeted to breast cancer cells," Proc. SPIE 5320,21-28 (2004).
[CrossRef]

R. O. Esenaliev, Y. Y. Petrov, O. Hartrumpf, D. J. Deyo, and D. S. Prough, "Continuous, noninvasive monitoring of total hemoglobin concentration by an optoacoustic technique," Appl. Opt. 43,3401-3407 (2004).
[CrossRef] [PubMed]

2003

2002

J. A. Viator, G. Au, G. Paltauf, S. L. Jacques, S. A. Prahl, H. W. Ren, Z. P. Chen, and J. S. Nelson, "Clinical testing of a photoacoustic probe for port wine stain depth determination," Laser Surg. Med. 30,141-148 (2002).
[CrossRef]

R. O. Esenaliev, I. V. Larina, K. V. Larin, D. J. Deyo, M. Motamedi, and D. S. Prough, "Optoacoustic technique for noninvasive monitoring of blood oxygenation: a feasibility study," Appl. Opt. 41,4722-4731 (2002).
[CrossRef] [PubMed]

P. R. Smythe and S. K. Samra, "Monitors of cerebral oxygenation," Anes. Clin. N. Am. 20,293-313 (2002).
[CrossRef]

A. K. Gupta, "Monitoring the injured brain in the intensive care unit," J. Postgrad. Med. 48,218-225 (2002).
[PubMed]

2000

A. A. Karabutov, E. V. Savateeva, N. B. Podymova, and A. A. Oraevsky, "Backward mode detection of laser-induced wide- band ultrasonic transients with optoacoustic transducer," J. Appl. Phys. 87,2003-2014 (2000).
[CrossRef]

1999

A. Roggan, M. Friebel, K. Dorschel, A. Hahn, and G. Muller, "Optical properties of circulating human blood in the wavelength range 400-2500 nm," J. Biomed. Opt. 4,36-46 (1999).
[CrossRef]

1996

A. N. Yaroslavsky, I. V. Yarovslavsky, T Goldbach, and G. H. Sembrosk, "The Optical Properties of blood in the near infrared spectral range," Proc. SPIE 2678, 314-324 (1996).
[CrossRef]

1990

W. F. Cheong, S. A. Prahl, and A. J Welch, "A review of the optical properties of biological tissues" IEEE Trans. Med. Imaging 26,2166-2185 (1990).

1988

S. Wray, M. Cope, D.T. Deply, J.S. Wyatt, and E.O.R. Reynolds. "Characterization of the near infrared absorption spectra of cytochrome aa3 and hemoglobin for the non-invasive monitoring of cerebral oxygenation," Biochem. et Biophys. Acta 933, 184-192 (1988).
[CrossRef]

1880

A. G. Bell, "On the Production and Reproduction of Sound by Light: the Photophone," Am. J. Sci. 3,305-324 (1880).

Am. J. Sci.

A. G. Bell, "On the Production and Reproduction of Sound by Light: the Photophone," Am. J. Sci. 3,305-324 (1880).

Anes. Clin. N. Am.

P. R. Smythe and S. K. Samra, "Monitors of cerebral oxygenation," Anes. Clin. N. Am. 20,293-313 (2002).
[CrossRef]

Anesthesiology

Y. Y. Petrov, D. S. Prough, D. J. Deyo, M. Klasing, M. Motamedi, and R. O. Esenaliev, "Optoacoustic, noninvasive, real-time, continuous monitoring of cerebral blood oxygenation: An in vivo study in sheep," Anesthesiology 102,69-75 (2005).
[CrossRef]

Appl. Opt.

Biochem. et Biophys. Acta

S. Wray, M. Cope, D.T. Deply, J.S. Wyatt, and E.O.R. Reynolds. "Characterization of the near infrared absorption spectra of cytochrome aa3 and hemoglobin for the non-invasive monitoring of cerebral oxygenation," Biochem. et Biophys. Acta 933, 184-192 (1988).
[CrossRef]

IEEE Trans. Med. Imaging

J. J. Niederhauser, M. Jaeger, R. Lemor, P. Weber, and M. Frenz, "Combined ultrasound and optoacoustic system for real-time high-contrast vascular imaging in vivo," IEEE Trans. Med. Imaging 24,436-440 (2005).
[CrossRef] [PubMed]

W. F. Cheong, S. A. Prahl, and A. J Welch, "A review of the optical properties of biological tissues" IEEE Trans. Med. Imaging 26,2166-2185 (1990).

J. Appl. Phys.

A. A. Karabutov, E. V. Savateeva, N. B. Podymova, and A. A. Oraevsky, "Backward mode detection of laser-induced wide- band ultrasonic transients with optoacoustic transducer," J. Appl. Phys. 87,2003-2014 (2000).
[CrossRef]

J. Biomed. Opt.

A. Roggan, M. Friebel, K. Dorschel, A. Hahn, and G. Muller, "Optical properties of circulating human blood in the wavelength range 400-2500 nm," J. Biomed. Opt. 4,36-46 (1999).
[CrossRef]

J. Head Trauma Rehab.

J. A. Langlois and R. W. Sattin, "Traumatic brain injury in the United States: Research and programs of the Centers for Disease Control and Prevention (CDC) - Preface," J. Head Trauma Rehab. 20,187-188 (2005).
[CrossRef]

J. Neurosci Nurs.

W. Stevens, "Multimodal monitoring: head injury management using SjvO2 and LICOX," J. Neurosci Nurs. 36,332-339 (2004).
[CrossRef]

J. Postgrad. Med.

A. K. Gupta, "Monitoring the injured brain in the intensive care unit," J. Postgrad. Med. 48,218-225 (2002).
[PubMed]

Laser Surg. Med.

J. A. Viator, G. Au, G. Paltauf, S. L. Jacques, S. A. Prahl, H. W. Ren, Z. P. Chen, and J. S. Nelson, "Clinical testing of a photoacoustic probe for port wine stain depth determination," Laser Surg. Med. 30,141-148 (2002).
[CrossRef]

Mol. Imaging Biol.

J. A. Copland, M. Eghtedari, V. L. Popov, N. Kotov, N. Mamedova, M. Motamedi, and A. A. Oraevsky, "Bioconjugated gold nanoparticles as a molecular based contrast agent: Implications for imaging of deep tumors using optoacoustic tomography," Mol. Imaging Biol. 6,341-349 (2004).
[CrossRef] [PubMed]

Opt. Lett.

Phys. Med. Biol.

J. Laufer, D. Delpy, C. Elwell, and P. Beard, "Quantitative spatially resolved measurement of tissue chromophore concentrations using photoacoustic spectroscopy: application to the measurement of blood oxygenation and haemoglobin concentration," Phys. Med. Biol. 52, 141-168, (2007).
[CrossRef]

Proc. SPIE

M. Eghtedari, M. Motamedi, V. L. Popov, N. A. Kotov, and A. A. Oraevsky, "Optoacoustic imaging of gold nanoparticles targeted to breast cancer cells," Proc. SPIE 5320,21-28 (2004).
[CrossRef]

A. N. Yaroslavsky, I. V. Yarovslavsky, T Goldbach, and G. H. Sembrosk, "The Optical Properties of blood in the near infrared spectral range," Proc. SPIE 2678, 314-324 (1996).
[CrossRef]

Other

S. Prahl, "Optical Absorption of Hemoglobin," http://omlc.ogi.edu/spectra/hemoglobin/index.html.

I. Patrikeev, Y.Y. Petrov, I.Y. Petrova, D.S. Prough, and R.O. Esenaliev, "Monte Carlo modeling of optoacoustic signals from large veins: implication for noninvasive monitoring of cerebral blood oxygenation," in Biomedical Digest (Optical Society of America, 2006), paper SH64.

Y. Y. Petrov, D. S. Prough, D. J. Deyo, I. Y. Petrova, M. Motamedi, R. O. Esenaliev, "In vivo noninvasive monitoring of cerebral blood oxygenation with optoacoustic technique," in Proceedings of the 26th Intern. Conf. of IEEE EMBS, San Francisco, CA, Sept. 1-5, 2004, 2052-2054.

"ANSI Z136.1 - 2000" in American national standard for safe use of lasers, (The Laser Institute of America, Orlando, FL 2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Optoacoustic signals measured at 700, 800, and 1064 nm and blood oxygenations of 91.9%, 54.6%, and 19.0%.

Fig. 2.
Fig. 2.

Time course of blood oxygenation (squares) and optoacoustic signal amplitudes at 700 nm (filled circles) and 1064 nm (triangles).

Fig. 3.
Fig. 3.

Optoacoustic signal amplitudes at 700 nm (filled circles) and 1064 nm (empty squares) normalized to signal amplitude at 800 nm for two cycles (a - first cycle, b - second cycle).

Fig. 4.
Fig. 4.

Time course of blood oxygenation (open squares) and inverse integral of optoacoustic signals for 700 nm (solid circles) and 1064 nm (open triangles).

Fig. 5.
Fig. 5.

Correlation of the inverse integrals with blood oxygenation at 700 nm (solid circles) and 1064 nm (open squares) for two cycles (a - first cycle, b - second cycle).

Fig. 6.
Fig. 6.

Ratio of optoacoustic signal integrals obtained at 1064 and 700 nm from experimental data (solid circles) and from computer modeling using Monte Carlo simulation and optoacoustic theory (open squares). The lines represent second order polynomial fits.

Metrics