Abstract

Smith-Purcell radiation (SPR), emitted when an electron beam is traveling above a metallic grating, has attracted a lot of attention as a source of electromagnetic (EM) radiation in the millimeter to visible spectrum. We conducted a theoretical investigation of SPR in the optical region using a two-dimensional finite-difference time-domain (FDTD) method. The permittivity of metal was represented using the Drude model. During the simulation, we observed three types of EM radiations when an electron bunch passes above a metal grating. We think these three types of EM radiation were basic SPR, original surface plasmon polariton (SPP), and mimic-SPP, caused by the periodic grating structure. Our observations were in accordance with analytical models of original SPP and mimic-SPP EM radiation.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. J. Smith and E. M. Purcell, “Visible light from localized surface charges moving across a grating,” Phys Rev. 92, 1069 (1953).
    [Crossref]
  2. P. M. van den Berg, “Smith-Purcell radiation from a line charge moving parallel to a reflection grating,” J. Opt. Soc. Am. 63, 689–698 (1973).
    [Crossref]
  3. P. M. van den Berg, “Smith-Purcell radiation from a point charge moving to a parallel reflection grating,” J. Opt. Soc. Am. 63, 1589–1597 (1973).
  4. A. S. Kesar, M. Hess, S. E. Korbly, and R. J. Temkin, “Time-and frequency-domain models for Smith-Purcell radiation from a two-dimensional charge moving above a finite length grating,” Phys. Rev. E 71, 016501 (2005).
    [Crossref]
  5. J. Urata, M. Goldstein, M. F. Kimmitt, A. Naumov, C. Platt, and J. E. Walsh, “Superradiant Smith-Purcell emission,” Phys. Rev. Lett. 80, 516–519 (1998).
    [Crossref]
  6. L. Schachter and A. Ron, “Smith-Purcell free-electron laser,” Phys Rev. A 40, 876–896 (1989).
    [Crossref] [PubMed]
  7. H. L. Andrews and C. A. Brau, “Gain of a Smith-Purcell free-electron laser,” Phys. Rev. Special Topics 7, 070701 (2004).
  8. H. L. Andrews, C. A. Brau, and J. D. Jarvis, “Superradiant emission of Smith-Purcell radiation,” Phys. Rev. Special Topics 8, 110702 (2005).
  9. Y. Shibata, S. Hasebe, K. Ishi, S. Ono, M. Ikezawa, T. Nakazato, M. Oyamada, S. Urasawa, T. Takahashi, T. Matsuyama, K. Kobayashi, and Y. Fujita, “Coherent Smith-Purcell radiation in the millimeter-wave region from a short-bunch beam of relativistic electrons,” Phy. Rev. E 57, 1061–1074 (1998).
    [Crossref]
  10. I. Shih, W. W. Salisbury, D. L. Masters, and D. B. Chang, “Measurement of Smith-Purcell radiation,” J. Opt. Soc. Am. B 7, 345–350 (1990).
    [Crossref]
  11. J. B. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305, 847–848 (2004).
    [Crossref] [PubMed]
  12. D. Li, Z. Yang, K. Imasaki, and G.-S. Park, “Particle-in-cell simulation of coherent and superradiant Smith-Purcell radiation,” Phys. Rev. Special Topics 9, 040701 (2006).
  13. J. T. Donohue, “Simulation of Smith-Purcell radiation using a particle-in-cell code,” Phys Pev. Special Topics 8, 060702 (2005).
  14. S. E. Korbly, A. S. Kesar, J. R. Sirigiri, and R. J. Temkin, “Observation of frequency-locked coherent terahertz Smith-Purcell radiation,” Phys. Rev. Lett. 94, 054803 (2005).
    [Crossref] [PubMed]
  15. T. Ochiai and K. Ohtaka, “Electron energy loss and Smith-Purcell radiation in two- and three-dimentional photonic crystals,” Opt. Express 13, 7683–7697 (2005).
    [Crossref] [PubMed]
  16. T. Ochiai and K. Ohtaka, “Relativistic electron energy loss and induced radiation emission in twodimensional metallic photonic crystals. II. photonic band effects,” Phys. Rev. B 69, 125107 (2004).
    [Crossref]
  17. M. Moskovits, I. Srnova-Sloufova, and B. Vlckova, “Bimetallic Ag-Au nanoparticles: Extracting meaningful optical constants from the surface-plasmon extinction spectrum,” J. Chem. Phys. 116, 10435–10446 (2002).
    [Crossref]
  18. L. Cao, N. C. Panoiu, and R. M. Osgood, “Surface second-harmonic generation from surface plasmon waves scattered by metallic nanostructures,” Phys. Rev. B 75, 205401 (2007).
    [Crossref]
  19. J. Cesario, M. U. Gonzalez, S. Cheylan, W. L. Barnes, S. Enoch, and R. Quidant, “Coupling localized and extended plasmons to improve the light extraction through metal films,” Opt. Express 15, 10533–10539 (2007).
    [Crossref] [PubMed]

2007 (2)

L. Cao, N. C. Panoiu, and R. M. Osgood, “Surface second-harmonic generation from surface plasmon waves scattered by metallic nanostructures,” Phys. Rev. B 75, 205401 (2007).
[Crossref]

J. Cesario, M. U. Gonzalez, S. Cheylan, W. L. Barnes, S. Enoch, and R. Quidant, “Coupling localized and extended plasmons to improve the light extraction through metal films,” Opt. Express 15, 10533–10539 (2007).
[Crossref] [PubMed]

2006 (1)

D. Li, Z. Yang, K. Imasaki, and G.-S. Park, “Particle-in-cell simulation of coherent and superradiant Smith-Purcell radiation,” Phys. Rev. Special Topics 9, 040701 (2006).

2005 (5)

J. T. Donohue, “Simulation of Smith-Purcell radiation using a particle-in-cell code,” Phys Pev. Special Topics 8, 060702 (2005).

S. E. Korbly, A. S. Kesar, J. R. Sirigiri, and R. J. Temkin, “Observation of frequency-locked coherent terahertz Smith-Purcell radiation,” Phys. Rev. Lett. 94, 054803 (2005).
[Crossref] [PubMed]

A. S. Kesar, M. Hess, S. E. Korbly, and R. J. Temkin, “Time-and frequency-domain models for Smith-Purcell radiation from a two-dimensional charge moving above a finite length grating,” Phys. Rev. E 71, 016501 (2005).
[Crossref]

H. L. Andrews, C. A. Brau, and J. D. Jarvis, “Superradiant emission of Smith-Purcell radiation,” Phys. Rev. Special Topics 8, 110702 (2005).

T. Ochiai and K. Ohtaka, “Electron energy loss and Smith-Purcell radiation in two- and three-dimentional photonic crystals,” Opt. Express 13, 7683–7697 (2005).
[Crossref] [PubMed]

2004 (3)

J. B. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305, 847–848 (2004).
[Crossref] [PubMed]

H. L. Andrews and C. A. Brau, “Gain of a Smith-Purcell free-electron laser,” Phys. Rev. Special Topics 7, 070701 (2004).

T. Ochiai and K. Ohtaka, “Relativistic electron energy loss and induced radiation emission in twodimensional metallic photonic crystals. II. photonic band effects,” Phys. Rev. B 69, 125107 (2004).
[Crossref]

2002 (1)

M. Moskovits, I. Srnova-Sloufova, and B. Vlckova, “Bimetallic Ag-Au nanoparticles: Extracting meaningful optical constants from the surface-plasmon extinction spectrum,” J. Chem. Phys. 116, 10435–10446 (2002).
[Crossref]

1998 (2)

J. Urata, M. Goldstein, M. F. Kimmitt, A. Naumov, C. Platt, and J. E. Walsh, “Superradiant Smith-Purcell emission,” Phys. Rev. Lett. 80, 516–519 (1998).
[Crossref]

Y. Shibata, S. Hasebe, K. Ishi, S. Ono, M. Ikezawa, T. Nakazato, M. Oyamada, S. Urasawa, T. Takahashi, T. Matsuyama, K. Kobayashi, and Y. Fujita, “Coherent Smith-Purcell radiation in the millimeter-wave region from a short-bunch beam of relativistic electrons,” Phy. Rev. E 57, 1061–1074 (1998).
[Crossref]

1990 (1)

1989 (1)

L. Schachter and A. Ron, “Smith-Purcell free-electron laser,” Phys Rev. A 40, 876–896 (1989).
[Crossref] [PubMed]

1973 (2)

P. M. van den Berg, “Smith-Purcell radiation from a point charge moving to a parallel reflection grating,” J. Opt. Soc. Am. 63, 1589–1597 (1973).

P. M. van den Berg, “Smith-Purcell radiation from a line charge moving parallel to a reflection grating,” J. Opt. Soc. Am. 63, 689–698 (1973).
[Crossref]

1953 (1)

S. J. Smith and E. M. Purcell, “Visible light from localized surface charges moving across a grating,” Phys Rev. 92, 1069 (1953).
[Crossref]

Andrews, H. L.

H. L. Andrews, C. A. Brau, and J. D. Jarvis, “Superradiant emission of Smith-Purcell radiation,” Phys. Rev. Special Topics 8, 110702 (2005).

H. L. Andrews and C. A. Brau, “Gain of a Smith-Purcell free-electron laser,” Phys. Rev. Special Topics 7, 070701 (2004).

Barnes, W. L.

Brau, C. A.

H. L. Andrews, C. A. Brau, and J. D. Jarvis, “Superradiant emission of Smith-Purcell radiation,” Phys. Rev. Special Topics 8, 110702 (2005).

H. L. Andrews and C. A. Brau, “Gain of a Smith-Purcell free-electron laser,” Phys. Rev. Special Topics 7, 070701 (2004).

Cao, L.

L. Cao, N. C. Panoiu, and R. M. Osgood, “Surface second-harmonic generation from surface plasmon waves scattered by metallic nanostructures,” Phys. Rev. B 75, 205401 (2007).
[Crossref]

Cesario, J.

Chang, D. B.

Cheylan, S.

Donohue, J. T.

J. T. Donohue, “Simulation of Smith-Purcell radiation using a particle-in-cell code,” Phys Pev. Special Topics 8, 060702 (2005).

Enoch, S.

Fujita, Y.

Y. Shibata, S. Hasebe, K. Ishi, S. Ono, M. Ikezawa, T. Nakazato, M. Oyamada, S. Urasawa, T. Takahashi, T. Matsuyama, K. Kobayashi, and Y. Fujita, “Coherent Smith-Purcell radiation in the millimeter-wave region from a short-bunch beam of relativistic electrons,” Phy. Rev. E 57, 1061–1074 (1998).
[Crossref]

Garcia-Vidal, F. J.

J. B. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305, 847–848 (2004).
[Crossref] [PubMed]

Goldstein, M.

J. Urata, M. Goldstein, M. F. Kimmitt, A. Naumov, C. Platt, and J. E. Walsh, “Superradiant Smith-Purcell emission,” Phys. Rev. Lett. 80, 516–519 (1998).
[Crossref]

Gonzalez, M. U.

Hasebe, S.

Y. Shibata, S. Hasebe, K. Ishi, S. Ono, M. Ikezawa, T. Nakazato, M. Oyamada, S. Urasawa, T. Takahashi, T. Matsuyama, K. Kobayashi, and Y. Fujita, “Coherent Smith-Purcell radiation in the millimeter-wave region from a short-bunch beam of relativistic electrons,” Phy. Rev. E 57, 1061–1074 (1998).
[Crossref]

Hess, M.

A. S. Kesar, M. Hess, S. E. Korbly, and R. J. Temkin, “Time-and frequency-domain models for Smith-Purcell radiation from a two-dimensional charge moving above a finite length grating,” Phys. Rev. E 71, 016501 (2005).
[Crossref]

Ikezawa, M.

Y. Shibata, S. Hasebe, K. Ishi, S. Ono, M. Ikezawa, T. Nakazato, M. Oyamada, S. Urasawa, T. Takahashi, T. Matsuyama, K. Kobayashi, and Y. Fujita, “Coherent Smith-Purcell radiation in the millimeter-wave region from a short-bunch beam of relativistic electrons,” Phy. Rev. E 57, 1061–1074 (1998).
[Crossref]

Imasaki, K.

D. Li, Z. Yang, K. Imasaki, and G.-S. Park, “Particle-in-cell simulation of coherent and superradiant Smith-Purcell radiation,” Phys. Rev. Special Topics 9, 040701 (2006).

Ishi, K.

Y. Shibata, S. Hasebe, K. Ishi, S. Ono, M. Ikezawa, T. Nakazato, M. Oyamada, S. Urasawa, T. Takahashi, T. Matsuyama, K. Kobayashi, and Y. Fujita, “Coherent Smith-Purcell radiation in the millimeter-wave region from a short-bunch beam of relativistic electrons,” Phy. Rev. E 57, 1061–1074 (1998).
[Crossref]

Jarvis, J. D.

H. L. Andrews, C. A. Brau, and J. D. Jarvis, “Superradiant emission of Smith-Purcell radiation,” Phys. Rev. Special Topics 8, 110702 (2005).

Kesar, A. S.

A. S. Kesar, M. Hess, S. E. Korbly, and R. J. Temkin, “Time-and frequency-domain models for Smith-Purcell radiation from a two-dimensional charge moving above a finite length grating,” Phys. Rev. E 71, 016501 (2005).
[Crossref]

S. E. Korbly, A. S. Kesar, J. R. Sirigiri, and R. J. Temkin, “Observation of frequency-locked coherent terahertz Smith-Purcell radiation,” Phys. Rev. Lett. 94, 054803 (2005).
[Crossref] [PubMed]

Kimmitt, M. F.

J. Urata, M. Goldstein, M. F. Kimmitt, A. Naumov, C. Platt, and J. E. Walsh, “Superradiant Smith-Purcell emission,” Phys. Rev. Lett. 80, 516–519 (1998).
[Crossref]

Kobayashi, K.

Y. Shibata, S. Hasebe, K. Ishi, S. Ono, M. Ikezawa, T. Nakazato, M. Oyamada, S. Urasawa, T. Takahashi, T. Matsuyama, K. Kobayashi, and Y. Fujita, “Coherent Smith-Purcell radiation in the millimeter-wave region from a short-bunch beam of relativistic electrons,” Phy. Rev. E 57, 1061–1074 (1998).
[Crossref]

Korbly, S. E.

A. S. Kesar, M. Hess, S. E. Korbly, and R. J. Temkin, “Time-and frequency-domain models for Smith-Purcell radiation from a two-dimensional charge moving above a finite length grating,” Phys. Rev. E 71, 016501 (2005).
[Crossref]

S. E. Korbly, A. S. Kesar, J. R. Sirigiri, and R. J. Temkin, “Observation of frequency-locked coherent terahertz Smith-Purcell radiation,” Phys. Rev. Lett. 94, 054803 (2005).
[Crossref] [PubMed]

Li, D.

D. Li, Z. Yang, K. Imasaki, and G.-S. Park, “Particle-in-cell simulation of coherent and superradiant Smith-Purcell radiation,” Phys. Rev. Special Topics 9, 040701 (2006).

Martin-Moreno, L.

J. B. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305, 847–848 (2004).
[Crossref] [PubMed]

Masters, D. L.

Matsuyama, T.

Y. Shibata, S. Hasebe, K. Ishi, S. Ono, M. Ikezawa, T. Nakazato, M. Oyamada, S. Urasawa, T. Takahashi, T. Matsuyama, K. Kobayashi, and Y. Fujita, “Coherent Smith-Purcell radiation in the millimeter-wave region from a short-bunch beam of relativistic electrons,” Phy. Rev. E 57, 1061–1074 (1998).
[Crossref]

Moskovits, M.

M. Moskovits, I. Srnova-Sloufova, and B. Vlckova, “Bimetallic Ag-Au nanoparticles: Extracting meaningful optical constants from the surface-plasmon extinction spectrum,” J. Chem. Phys. 116, 10435–10446 (2002).
[Crossref]

Nakazato, T.

Y. Shibata, S. Hasebe, K. Ishi, S. Ono, M. Ikezawa, T. Nakazato, M. Oyamada, S. Urasawa, T. Takahashi, T. Matsuyama, K. Kobayashi, and Y. Fujita, “Coherent Smith-Purcell radiation in the millimeter-wave region from a short-bunch beam of relativistic electrons,” Phy. Rev. E 57, 1061–1074 (1998).
[Crossref]

Naumov, A.

J. Urata, M. Goldstein, M. F. Kimmitt, A. Naumov, C. Platt, and J. E. Walsh, “Superradiant Smith-Purcell emission,” Phys. Rev. Lett. 80, 516–519 (1998).
[Crossref]

Ochiai, T.

T. Ochiai and K. Ohtaka, “Electron energy loss and Smith-Purcell radiation in two- and three-dimentional photonic crystals,” Opt. Express 13, 7683–7697 (2005).
[Crossref] [PubMed]

T. Ochiai and K. Ohtaka, “Relativistic electron energy loss and induced radiation emission in twodimensional metallic photonic crystals. II. photonic band effects,” Phys. Rev. B 69, 125107 (2004).
[Crossref]

Ohtaka, K.

T. Ochiai and K. Ohtaka, “Electron energy loss and Smith-Purcell radiation in two- and three-dimentional photonic crystals,” Opt. Express 13, 7683–7697 (2005).
[Crossref] [PubMed]

T. Ochiai and K. Ohtaka, “Relativistic electron energy loss and induced radiation emission in twodimensional metallic photonic crystals. II. photonic band effects,” Phys. Rev. B 69, 125107 (2004).
[Crossref]

Ono, S.

Y. Shibata, S. Hasebe, K. Ishi, S. Ono, M. Ikezawa, T. Nakazato, M. Oyamada, S. Urasawa, T. Takahashi, T. Matsuyama, K. Kobayashi, and Y. Fujita, “Coherent Smith-Purcell radiation in the millimeter-wave region from a short-bunch beam of relativistic electrons,” Phy. Rev. E 57, 1061–1074 (1998).
[Crossref]

Osgood, R. M.

L. Cao, N. C. Panoiu, and R. M. Osgood, “Surface second-harmonic generation from surface plasmon waves scattered by metallic nanostructures,” Phys. Rev. B 75, 205401 (2007).
[Crossref]

Oyamada, M.

Y. Shibata, S. Hasebe, K. Ishi, S. Ono, M. Ikezawa, T. Nakazato, M. Oyamada, S. Urasawa, T. Takahashi, T. Matsuyama, K. Kobayashi, and Y. Fujita, “Coherent Smith-Purcell radiation in the millimeter-wave region from a short-bunch beam of relativistic electrons,” Phy. Rev. E 57, 1061–1074 (1998).
[Crossref]

Panoiu, N. C.

L. Cao, N. C. Panoiu, and R. M. Osgood, “Surface second-harmonic generation from surface plasmon waves scattered by metallic nanostructures,” Phys. Rev. B 75, 205401 (2007).
[Crossref]

Park, G.-S.

D. Li, Z. Yang, K. Imasaki, and G.-S. Park, “Particle-in-cell simulation of coherent and superradiant Smith-Purcell radiation,” Phys. Rev. Special Topics 9, 040701 (2006).

Pendry, J. B.

J. B. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305, 847–848 (2004).
[Crossref] [PubMed]

Platt, C.

J. Urata, M. Goldstein, M. F. Kimmitt, A. Naumov, C. Platt, and J. E. Walsh, “Superradiant Smith-Purcell emission,” Phys. Rev. Lett. 80, 516–519 (1998).
[Crossref]

Purcell, E. M.

S. J. Smith and E. M. Purcell, “Visible light from localized surface charges moving across a grating,” Phys Rev. 92, 1069 (1953).
[Crossref]

Quidant, R.

Ron, A.

L. Schachter and A. Ron, “Smith-Purcell free-electron laser,” Phys Rev. A 40, 876–896 (1989).
[Crossref] [PubMed]

Salisbury, W. W.

Schachter, L.

L. Schachter and A. Ron, “Smith-Purcell free-electron laser,” Phys Rev. A 40, 876–896 (1989).
[Crossref] [PubMed]

Shibata, Y.

Y. Shibata, S. Hasebe, K. Ishi, S. Ono, M. Ikezawa, T. Nakazato, M. Oyamada, S. Urasawa, T. Takahashi, T. Matsuyama, K. Kobayashi, and Y. Fujita, “Coherent Smith-Purcell radiation in the millimeter-wave region from a short-bunch beam of relativistic electrons,” Phy. Rev. E 57, 1061–1074 (1998).
[Crossref]

Shih, I.

Sirigiri, J. R.

S. E. Korbly, A. S. Kesar, J. R. Sirigiri, and R. J. Temkin, “Observation of frequency-locked coherent terahertz Smith-Purcell radiation,” Phys. Rev. Lett. 94, 054803 (2005).
[Crossref] [PubMed]

Smith, S. J.

S. J. Smith and E. M. Purcell, “Visible light from localized surface charges moving across a grating,” Phys Rev. 92, 1069 (1953).
[Crossref]

Srnova-Sloufova, I.

M. Moskovits, I. Srnova-Sloufova, and B. Vlckova, “Bimetallic Ag-Au nanoparticles: Extracting meaningful optical constants from the surface-plasmon extinction spectrum,” J. Chem. Phys. 116, 10435–10446 (2002).
[Crossref]

Takahashi, T.

Y. Shibata, S. Hasebe, K. Ishi, S. Ono, M. Ikezawa, T. Nakazato, M. Oyamada, S. Urasawa, T. Takahashi, T. Matsuyama, K. Kobayashi, and Y. Fujita, “Coherent Smith-Purcell radiation in the millimeter-wave region from a short-bunch beam of relativistic electrons,” Phy. Rev. E 57, 1061–1074 (1998).
[Crossref]

Temkin, R. J.

A. S. Kesar, M. Hess, S. E. Korbly, and R. J. Temkin, “Time-and frequency-domain models for Smith-Purcell radiation from a two-dimensional charge moving above a finite length grating,” Phys. Rev. E 71, 016501 (2005).
[Crossref]

S. E. Korbly, A. S. Kesar, J. R. Sirigiri, and R. J. Temkin, “Observation of frequency-locked coherent terahertz Smith-Purcell radiation,” Phys. Rev. Lett. 94, 054803 (2005).
[Crossref] [PubMed]

Urasawa, S.

Y. Shibata, S. Hasebe, K. Ishi, S. Ono, M. Ikezawa, T. Nakazato, M. Oyamada, S. Urasawa, T. Takahashi, T. Matsuyama, K. Kobayashi, and Y. Fujita, “Coherent Smith-Purcell radiation in the millimeter-wave region from a short-bunch beam of relativistic electrons,” Phy. Rev. E 57, 1061–1074 (1998).
[Crossref]

Urata, J.

J. Urata, M. Goldstein, M. F. Kimmitt, A. Naumov, C. Platt, and J. E. Walsh, “Superradiant Smith-Purcell emission,” Phys. Rev. Lett. 80, 516–519 (1998).
[Crossref]

van den Berg, P. M.

P. M. van den Berg, “Smith-Purcell radiation from a point charge moving to a parallel reflection grating,” J. Opt. Soc. Am. 63, 1589–1597 (1973).

P. M. van den Berg, “Smith-Purcell radiation from a line charge moving parallel to a reflection grating,” J. Opt. Soc. Am. 63, 689–698 (1973).
[Crossref]

Vlckova, B.

M. Moskovits, I. Srnova-Sloufova, and B. Vlckova, “Bimetallic Ag-Au nanoparticles: Extracting meaningful optical constants from the surface-plasmon extinction spectrum,” J. Chem. Phys. 116, 10435–10446 (2002).
[Crossref]

Walsh, J. E.

J. Urata, M. Goldstein, M. F. Kimmitt, A. Naumov, C. Platt, and J. E. Walsh, “Superradiant Smith-Purcell emission,” Phys. Rev. Lett. 80, 516–519 (1998).
[Crossref]

Yang, Z.

D. Li, Z. Yang, K. Imasaki, and G.-S. Park, “Particle-in-cell simulation of coherent and superradiant Smith-Purcell radiation,” Phys. Rev. Special Topics 9, 040701 (2006).

J. Chem. Phys. (1)

M. Moskovits, I. Srnova-Sloufova, and B. Vlckova, “Bimetallic Ag-Au nanoparticles: Extracting meaningful optical constants from the surface-plasmon extinction spectrum,” J. Chem. Phys. 116, 10435–10446 (2002).
[Crossref]

J. Opt. Soc. Am. (2)

P. M. van den Berg, “Smith-Purcell radiation from a line charge moving parallel to a reflection grating,” J. Opt. Soc. Am. 63, 689–698 (1973).
[Crossref]

P. M. van den Berg, “Smith-Purcell radiation from a point charge moving to a parallel reflection grating,” J. Opt. Soc. Am. 63, 1589–1597 (1973).

J. Opt. Soc. Am. B (1)

Opt. Express (2)

Phy. Rev. E (1)

Y. Shibata, S. Hasebe, K. Ishi, S. Ono, M. Ikezawa, T. Nakazato, M. Oyamada, S. Urasawa, T. Takahashi, T. Matsuyama, K. Kobayashi, and Y. Fujita, “Coherent Smith-Purcell radiation in the millimeter-wave region from a short-bunch beam of relativistic electrons,” Phy. Rev. E 57, 1061–1074 (1998).
[Crossref]

Phys Pev. Special Topics (1)

J. T. Donohue, “Simulation of Smith-Purcell radiation using a particle-in-cell code,” Phys Pev. Special Topics 8, 060702 (2005).

Phys Rev. (1)

S. J. Smith and E. M. Purcell, “Visible light from localized surface charges moving across a grating,” Phys Rev. 92, 1069 (1953).
[Crossref]

Phys Rev. A (1)

L. Schachter and A. Ron, “Smith-Purcell free-electron laser,” Phys Rev. A 40, 876–896 (1989).
[Crossref] [PubMed]

Phys. Rev. B (2)

T. Ochiai and K. Ohtaka, “Relativistic electron energy loss and induced radiation emission in twodimensional metallic photonic crystals. II. photonic band effects,” Phys. Rev. B 69, 125107 (2004).
[Crossref]

L. Cao, N. C. Panoiu, and R. M. Osgood, “Surface second-harmonic generation from surface plasmon waves scattered by metallic nanostructures,” Phys. Rev. B 75, 205401 (2007).
[Crossref]

Phys. Rev. E (1)

A. S. Kesar, M. Hess, S. E. Korbly, and R. J. Temkin, “Time-and frequency-domain models for Smith-Purcell radiation from a two-dimensional charge moving above a finite length grating,” Phys. Rev. E 71, 016501 (2005).
[Crossref]

Phys. Rev. Lett. (2)

J. Urata, M. Goldstein, M. F. Kimmitt, A. Naumov, C. Platt, and J. E. Walsh, “Superradiant Smith-Purcell emission,” Phys. Rev. Lett. 80, 516–519 (1998).
[Crossref]

S. E. Korbly, A. S. Kesar, J. R. Sirigiri, and R. J. Temkin, “Observation of frequency-locked coherent terahertz Smith-Purcell radiation,” Phys. Rev. Lett. 94, 054803 (2005).
[Crossref] [PubMed]

Phys. Rev. Special Topics (3)

H. L. Andrews and C. A. Brau, “Gain of a Smith-Purcell free-electron laser,” Phys. Rev. Special Topics 7, 070701 (2004).

H. L. Andrews, C. A. Brau, and J. D. Jarvis, “Superradiant emission of Smith-Purcell radiation,” Phys. Rev. Special Topics 8, 110702 (2005).

D. Li, Z. Yang, K. Imasaki, and G.-S. Park, “Particle-in-cell simulation of coherent and superradiant Smith-Purcell radiation,” Phys. Rev. Special Topics 9, 040701 (2006).

Science (1)

J. B. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305, 847–848 (2004).
[Crossref] [PubMed]

Supplementary Material (2)

» Media 1: GIF (2372 KB)     
» Media 2: GIF (2480 KB)     

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig.1.
Fig.1.

Geometry used for simulations.

Fig. 2.
Fig. 2.

(a) Transient waveform of Hz observed at observation point with θ=-10°. (b) FFT spectrum.

Fig. 3.
Fig. 3.

FFT spectrum for Hz (a) before and (b) after 86 fs.

Fig. 4.
Fig. 4.

(a) (2.31MB) Film of the magnetic field behavior from 40 to 49 fs [Media 1]. (b) (2.42MB) Film of the magnetic field behavior from 71 to 80 fs [Media 2].

Fig. 5.
Fig. 5.

FFT spectrum for Hz as function of observation angle θ.

Fig. 6.
Fig. 6.

Relationship between SPP wavelength and velocity of electron bunch.

Fig. 7.
Fig. 7.

(a) D ispersion relation between M-SPP and electron bunch (l=200 nm, a=100n, h=200nm). (b) Groove depth dependence of mimic-SPP.

Tables (1)

Tables Icon

Table 1. Main parameters for the simulation.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

λ = l n ( β 1 sin θ )
ε r ( ω ) = 1 + ω p 2 ω ( j Γ ω ) = 1 + χ ( ω )
χ ( ω ) = ω p 2 ω ( j Γ ω )
n e = N 0 exp { ( x x 0 ) 2 + ( y y 0 ) 2 2 σ 2 }
d p dt = q ( E + ν × B )
p = m e ν 1 ν 2 c 2
j = n e q ν
k sp = ω c ( ε r ε d ε r + ε d ) 1 2
R 00 1 + χ 0 S 00 = 0
R 00 = tanh ( κ 0 h ) 1 + δ 00 p = 1 1 κ 0 a α p l 4 ( k + pK ) 2 a 2 × cos [ ( k + pK ) a ] 1
S 00 = tanh ( κ 0 h ) 1 + δ 00 κ 0 a α 0 l 4 k 2 a 2 × cos [ ka ] 1

Metrics