Abstract

A flexible optical probe that accomplishes wafer-level directional coupling of light into optical waveguides is investigated theoretically and experimentally. Simulated results indicate high coupling efficiencies in excess of 80% for a range of parameters. Probe fabrication was implemented using SU8 as flexible waveguide material. Coupling of light from flexible probe to an S-shaped test waveguide demonstrated 11% efficiency compared to direct butt coupling. These results may lead to increased yield, shorter development cycles and overall savings in PLC packaging costs.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. S.-H. Huang and F.-G. Tseng, "Development of a monolithic total internal reflection-based biochip utilizing a microprism array for fluorescence sensing," J. Micromech. Microeng. 15, 1302-1304 (2005).
    [CrossRef]
  2. K. Johannessen, "Optical Probe for Wafer Testing," USA: Intel Corporation, 2006.
  3. K. Srinivasan, P. E. Barclay, M. Borselli, and O. Painter, "Optical-fiberbased measurement of an ultrasmall volume, high-Q photonic crystal microcavity," Phys. Rev. B,  70, 081306-1-4 (2004).
    [CrossRef]
  4. R. Panepucci, A. Zakariya, T. Liu, "Flexible optical wire-bonding for planar lightwave circuits packaging" Proc. SPIE 6645, (2007)
  5. C. Pollock and M. Lipson, Integrated Photonics. Massachusetts: Kluwar Academic Publishers, 2003.
  6. M. Young, Optics and Lasers: Including Fibers and Optical Waveguide, 4 ed. Berlin; New York: Springer-Verlag, 1993.
  7. Rsoft Design Group, "Rsoft Component Design Products-BeamPROP ", 2006.
  8. R. Panepucci, V.R. Almeida, M. Jones, B.H. Kim Photonic Crystals in Polymers by Direct Electron-Beam Lithography Presenting a Photonic Bandgap," J.Vac. Sci. Technol. B, 22, 3348-335, (2004).
    [CrossRef]
  9. T. Liu, M. S. Nawrocka, R. R. Panepucci," Polymer waveguide resonator with distributed Bragg reflectors," Proc. SPIE 6645, (2007).
  10. J. Martinez and R. Panepucci,"Design, Fabrication, and Characterization of a Microgripper Device," in Proceedings of the Florida Conference on Recent Advances in Robotics, (2007).
  11. N. Chronis and L.P. Lee, "Electrothermally activated SU-8 microgripper for single cell manipulation in solution," J. Microelectromech. Syst. 14, 857-63 (2005).
    [CrossRef]
  12. T. C. Sum, A. A. Bettiol, J. A. van Kan and F. Watt," Proton beam writing of low-loss polymer optical waveguides," Appl. Phys. Lett. 83, 1707-1709 (2003).
    [CrossRef]
  13. S. Chang, J. Warren, and F. Chiang,"Mechanical Testing of Epon SU8 SIEM," in Proceedings of Microscale Systems: Mechanics & Measurement Symposium, (2000), pp. 46-49.
  14. C. Choi, L. Lin, Y. Liu, J. Choi, L. Wang, D. Haas, J. Magera, and R. Chen, "Flexible Optical Waveguide Film Fabrications and Optoelectronic Devices Integration for Full Embedded Board-Level Optical Interconnects," IEEE trans.J. Lightwave Technol. 22, 2168-2177 (2004).
    [CrossRef]
  15. K. Kim, J. Yi, and M. Oh, "Flexible Bragg reflection waveguide devices fabricated on a plastic substrate" Proc. SPIE 6645, (2007).

2005 (2)

S.-H. Huang and F.-G. Tseng, "Development of a monolithic total internal reflection-based biochip utilizing a microprism array for fluorescence sensing," J. Micromech. Microeng. 15, 1302-1304 (2005).
[CrossRef]

N. Chronis and L.P. Lee, "Electrothermally activated SU-8 microgripper for single cell manipulation in solution," J. Microelectromech. Syst. 14, 857-63 (2005).
[CrossRef]

2004 (1)

2003 (1)

T. C. Sum, A. A. Bettiol, J. A. van Kan and F. Watt," Proton beam writing of low-loss polymer optical waveguides," Appl. Phys. Lett. 83, 1707-1709 (2003).
[CrossRef]

Appl. Phys. Lett. (1)

T. C. Sum, A. A. Bettiol, J. A. van Kan and F. Watt," Proton beam writing of low-loss polymer optical waveguides," Appl. Phys. Lett. 83, 1707-1709 (2003).
[CrossRef]

J. Lightwave Technol. (1)

J. Microelectromech. Syst. (1)

N. Chronis and L.P. Lee, "Electrothermally activated SU-8 microgripper for single cell manipulation in solution," J. Microelectromech. Syst. 14, 857-63 (2005).
[CrossRef]

J. Micromech. Microeng. (1)

S.-H. Huang and F.-G. Tseng, "Development of a monolithic total internal reflection-based biochip utilizing a microprism array for fluorescence sensing," J. Micromech. Microeng. 15, 1302-1304 (2005).
[CrossRef]

Other (11)

K. Johannessen, "Optical Probe for Wafer Testing," USA: Intel Corporation, 2006.

K. Srinivasan, P. E. Barclay, M. Borselli, and O. Painter, "Optical-fiberbased measurement of an ultrasmall volume, high-Q photonic crystal microcavity," Phys. Rev. B,  70, 081306-1-4 (2004).
[CrossRef]

R. Panepucci, A. Zakariya, T. Liu, "Flexible optical wire-bonding for planar lightwave circuits packaging" Proc. SPIE 6645, (2007)

C. Pollock and M. Lipson, Integrated Photonics. Massachusetts: Kluwar Academic Publishers, 2003.

M. Young, Optics and Lasers: Including Fibers and Optical Waveguide, 4 ed. Berlin; New York: Springer-Verlag, 1993.

Rsoft Design Group, "Rsoft Component Design Products-BeamPROP ", 2006.

R. Panepucci, V.R. Almeida, M. Jones, B.H. Kim Photonic Crystals in Polymers by Direct Electron-Beam Lithography Presenting a Photonic Bandgap," J.Vac. Sci. Technol. B, 22, 3348-335, (2004).
[CrossRef]

T. Liu, M. S. Nawrocka, R. R. Panepucci," Polymer waveguide resonator with distributed Bragg reflectors," Proc. SPIE 6645, (2007).

J. Martinez and R. Panepucci,"Design, Fabrication, and Characterization of a Microgripper Device," in Proceedings of the Florida Conference on Recent Advances in Robotics, (2007).

S. Chang, J. Warren, and F. Chiang,"Mechanical Testing of Epon SU8 SIEM," in Proceedings of Microscale Systems: Mechanics & Measurement Symposium, (2000), pp. 46-49.

K. Kim, J. Yi, and M. Oh, "Flexible Bragg reflection waveguide devices fabricated on a plastic substrate" Proc. SPIE 6645, (2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Schematic of device in operation: A single-mode flexible optical waveguide probe on a support layer coupling light directionally into a wafer-level optical waveguide on-chip. Inset shows the simulation geometry considered in this work.

Fig. 2.
Fig. 2.

Graph showing the simulation of coupling power versus length of probe contact for SU8 probe into an identical core waveguide. (a) single mode; and (b) multimode probes. Different gaps between probe and waveguide in the range 0–400 nm are shown. Note the longer length scales in the multimode case (b) when compared with single mode case (a).

Fig. 3.
Fig. 3.

(a) Cracked single-mode SU8 Probe with 1.2 um thickness over PDMS flexible substrate; (b) multimode self-supported SU8 probe prior to release; (c) released SU8 probe bent over a 2 mm capillary; (d) Flexible probe sidewall roughness estimate of 200nm.

Fig. 4.
Fig. 4.

(a) Optical micrograph showing the SU8 flexible probe in contact with waveguide on the surface of the chip. (b) 532 nm laser light (Green) coupling from flexible waveguide probe to S-shaped waveguide of identical cross section. (c) Broad area view of setup. Note reflection of capillary guide tube and probe off of the chip surface.

Fig. 5.
Fig. 5.

Infrared pictures of the output facet of S-shaped waveguide chips for 50 µm waveguides (a) Direct fiber optic to waveguide coupling; (b) Direct flexible probe-to-waveguide butt coupling; (c) Flexible probe directional coupling into waveguide.

Metrics