Abstract

We describe a coaxial holographic recording system for achieving high recording density. We implement several techniques, such as an objective lens with high numerical aperture (NA), high capacity page data format, a random binary phase mask, and an optical noise reduction element. Our system successfully realizes a hologram recording/retrieving at a low diffraction efficiency less than 2.0×10-3 and achieves a raw data density of 180 Gbit/in.2, thus demonstrating the potential of a coaxial holographic system for high-density optical storage systems.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. H. J. Coufal, D. Psaltis, and G. T. Sincerbox, eds., Holographic Data Storage, Springer Series in Optical Sciences (Springer-Verlag, 2000)
  2. S. S. Orlov, W. Phillips, E. Bjornson, Y. Takashima, P. Sundaram, L. Hesselink, R. Okas, D. Kwan, and R. Snyder, "High-transfer-rate high-capacity holographic disk data-storage system," Appl. Opt. 43, 4902-4914 (2004).
    [CrossRef] [PubMed]
  3. H. Horimai, X. Tan, and J. Li, "Collinear holography," Appl. Opt. 44, 2575-2579 (2005).
    [CrossRef] [PubMed]
  4. T. Tanaka, K. Takahashi, K. Sako, R. Kasegawa, M. Toishi, K. Watanabe, D. Samuels, and M. Takeya, "Littrow-type external-cavity blue laser for holographic data storage," Appl. Opt. 46, 3583-3592 (2007).
    [CrossRef] [PubMed]
  5. F. H. Mok, G. W. Burr, and D. Psaltis, "System metric for holographic memory systems," Opt. Lett. 21, 896-898 (1996).
    [CrossRef] [PubMed]
  6. C. B. Burckhardt, "Use of a random phase mask for the recording Fourier transform holograms of data masks," Appl. Opt. 9, 695-700 (1970).
    [CrossRef] [PubMed]
  7. J. Hong, I. McMichael, and J. Ma, "Influence of phase masks on cross talk in holographic memory," Opt. Lett. 21, 1694-1696 (1996).
    [CrossRef] [PubMed]
  8. K. Kimura, "Improvement of the optical signal-to-noise ratio in common-path holographic storage by use of a polarization-controlling media structure," Opt. Lett. 30, 878-880 (2005).
    [CrossRef] [PubMed]
  9. S. Yasuda, Y. Ogasawara, J. Minabe, K. Kawano, M. Furuki, K. Hayashi, K. Haga, and H. Yoshizawa, "Optical noise reduction by reconstructing positive and negative images from Fourier holograms in coaxial holographic storage systems," Opt. Lett. 31, 1639-1641 (2006).
    [CrossRef] [PubMed]
  10. B. M. King and M. A. Neifeld, "Sparse modulation coding for increased capacity in volume holographic storage," Appl. Opt. 39, 6681-6688 (2000).
    [CrossRef]
  11. K. Hirooka, M. Hara, K. Tanaka, S. Seko, A. Fukumoto, and K. Watanabe, "Two-dimensional clock extraction method for data pixel synchronization in holographic data storage," in Technical Digest of International Symposium on Optical Memory 2007, pp. 40-41.
  12. M. Toishi, T. Tanaka, K. Watanabe, and K. Betsuyaku, "Analysis of photopolymer media of holographic data storage using non-local polymerization driven diffusion model," Jpn. J. App. Phys. 46, 3438-3447 (2007).
    [CrossRef]
  13. V. B. Markov, Y. N. Denisyuk, and R. Amezquita, "3-D speckle-shift hologram and its storage capacity," Opt. Mem. Neural Networks 6, 91-98 (1997).
  14. N. Tanabe, H. Yamatsu, and N. Kihara, "Experimental research on hologram number criterion for evaluating bit error rates of shift multiplexed holograms," in Technical Digest of International Symposium on Optical Memory 2004, pp. 216-217.
  15. K. Anderson and K. Curtis, "Polytopic multiplexing," Opt. Lett. 29, 1402-1404 (2004).
    [CrossRef] [PubMed]

2007 (2)

M. Toishi, T. Tanaka, K. Watanabe, and K. Betsuyaku, "Analysis of photopolymer media of holographic data storage using non-local polymerization driven diffusion model," Jpn. J. App. Phys. 46, 3438-3447 (2007).
[CrossRef]

T. Tanaka, K. Takahashi, K. Sako, R. Kasegawa, M. Toishi, K. Watanabe, D. Samuels, and M. Takeya, "Littrow-type external-cavity blue laser for holographic data storage," Appl. Opt. 46, 3583-3592 (2007).
[CrossRef] [PubMed]

2006 (1)

2005 (2)

2004 (2)

2000 (1)

1997 (1)

V. B. Markov, Y. N. Denisyuk, and R. Amezquita, "3-D speckle-shift hologram and its storage capacity," Opt. Mem. Neural Networks 6, 91-98 (1997).

1996 (2)

1970 (1)

Appl. Opt. (5)

Jpn. J. App. Phys. (1)

M. Toishi, T. Tanaka, K. Watanabe, and K. Betsuyaku, "Analysis of photopolymer media of holographic data storage using non-local polymerization driven diffusion model," Jpn. J. App. Phys. 46, 3438-3447 (2007).
[CrossRef]

Opt. Lett. (5)

Opt. Mem. Neural Networks (1)

V. B. Markov, Y. N. Denisyuk, and R. Amezquita, "3-D speckle-shift hologram and its storage capacity," Opt. Mem. Neural Networks 6, 91-98 (1997).

Other (3)

N. Tanabe, H. Yamatsu, and N. Kihara, "Experimental research on hologram number criterion for evaluating bit error rates of shift multiplexed holograms," in Technical Digest of International Symposium on Optical Memory 2004, pp. 216-217.

H. J. Coufal, D. Psaltis, and G. T. Sincerbox, eds., Holographic Data Storage, Springer Series in Optical Sciences (Springer-Verlag, 2000)

K. Hirooka, M. Hara, K. Tanaka, S. Seko, A. Fukumoto, and K. Watanabe, "Two-dimensional clock extraction method for data pixel synchronization in holographic data storage," in Technical Digest of International Symposium on Optical Memory 2007, pp. 40-41.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (16)

Fig. 1.
Fig. 1.

Schematic diagram of coaxial holographic recording system. ECLD denotes the external cavity laser diode; HWP, half-wave plate; DMD, digital micromirror device; PM, phase mask; PBD, polarizing beam diffractor; and L1–L4, lenses. Focal lengths of L1–L4 and objective lens are 50 and 5 mm, respectively. Irises are square and twice the Nyquist size. Retrieved data is detected with an over-sampling ratio of 2.0 using zoomed optics placed in front of the CMOS image sensor.

Fig. 2.
Fig. 2.

Objective lens.

Fig. 3.
Fig. 3.

Calculated profiles (a) without and (b) with a random binary phase mask.

Fig. 4.
Fig. 4.

Image of fabricated random binary phase mask captured using optical microscope.

Fig. 5.
Fig. 5.

(a) Principle of working of PBD. PBD has a polarization-selective feature, and can only diffract S-polarized light. (b) Structure of PBD. (c) Photograph of PBD. Grating area is patterned according to reference beam area.

Fig. 6.
Fig. 6.

CMOS sensor images (a) without and (b) with PBD. (c) Dependence of error rate on diffraction efficiency.

Fig. 7.
Fig. 7.

(a) Page format used in experiment. Signal and reference patterns are placed in central area and outer areas, respectively. (b) Magnified signal pattern with four subpages. One subpage consists of 24×24 pixels. Gray line is drawn for help in visualization. Patterns of (c) symbol data and (d) sync mark. Each pattern is 4×4 pixels.

Fig. 8.
Fig. 8.

Structure of recording medium.

Fig. 9.
Fig. 9.

Recording characteristics of single hologram. Dependence of (a) symbol error rate and (b) diffraction efficiency on write energy. (c) Retrieved hologram data and (d) its histogram at a write energy of 1.4 mJ/cm2; “1” and “0” correspond to bright and dark pixels, respectively.

Fig. 10.
Fig. 10.

(a) Calculated intensity distribution of reference pattern on Fourier plane. Area size: 600×600 µm. Gray scale is 1/100 of maximum intensity for better visualization. (b) Magnified intensity distribution of central area of (a). Area size: 20×20 µm. (c) Profile of calculated auto-correlation intensity. (d) Evaluated shift selectivity in experiment.

Fig. 11.
Fig. 11.

Multiplexed condition in one-dimensional recording. Black marks indicate retrieved holograms for evaluation.

Fig. 12.
Fig. 12.

Multiplexed characteristics in one-dimensional recording. Change of (a) diffraction efficiency and (b) symbol error rate for each shift pitch condition. Retrieved hologram number corresponds to the number shown in Fig. 11. Note that symbol error rates for p=8 µm and p=16 µm are almost zero. Dependence of (c) diffraction efficiency and (d) symbol error rate on multiplexing degree. Multiplexing degree is inversely proportional to shift pitch and is normalized to that of p=16 µm.

Fig. 13.
Fig. 13.

Raster scan method in two-dimensional multiplexed recording. Black marks indicate retrieved holograms for evaluation.

Fig. 14.
Fig. 14.

Multiplexed characteristics in two-dimensional recording at a raw data density of 180 Gbit/in.2. Retrieved hologram data and histograms for the first hologram ((a) and (b)), the center hologram ((c) and (d)), and the last hologram ((e) and (f)); “1” and “0” correspond to bright and dark pixels, respectively. (g) Diffraction efficiencies and (h) symbol error rates of retrieved holograms.

Fig. 15.
Fig. 15.

Dependence of (a) diffraction efficiency and (b) symbol error rate on raw data density.

Fig. 16.
Fig. 16.

Dependence of signal and noise intensities on raw data density.

Tables (1)

Tables Icon

Table 1. Experimental conditions for each data density.

Metrics