Abstract

In this paper, we discuss the reconstruction and the recognition of partially occluded objects using photon counting integral imaging (II). Irradiance scenes are numerically reconstructed for the reference target in three-dimensional (3D) space. Photon counting scenes are estimated for unknown input objects using maximum likelihood estimation (MLE) of Poisson parameter. We propose nonlinear matched filtering in 3D space to recognize partially occluded targets. The recognition performance is substantially improved from the nonlinear matched filtering of elemental images without 3D reconstruction. The discrimination capability is analyzed in terms of Fisher ratio (FR) and receiver operating characteristic (ROC) curves.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. W. Goodman, Statistical Optics, (Jonh wiley & Sons, inc., 1985), Chap 9.
  2. G. M. Morris, “Scene matching using photon-limited images,” J. Opt. Soc. Am. A. 1, 482–488 (1984).
    [CrossRef]
  3. E. A. Watson and G. M. Morris, “Comparison of infrared upconversion methods for photon-limited imaging,” J. Appl. Phys. 67, 6075–6084 (1990).
    [CrossRef]
  4. D. Stucki, G. Ribordy, A. Stefanov, H. Zbinden, J. G. Rarity, and T. Wall, “Photon counting for quantum key distribution with Peltier cooled InGaAs/InP APDs,” J. Mod. Opt. 48, 1967–1981 (2001).
    [CrossRef]
  5. P. A. Hiskett, G. S. Buller, A. Y. Loudon, J. M. Smith, I Gontijo, A. C. Walker, P. D. Townsend, and M. J. Robertson, “Performance and design of InGaAs/InP photodiodes for single-photon counting at 1.55 um,” Appl. Opt. 39, 6818–6829 (2000).
    [CrossRef]
  6. L. Duraffourg, J.-M. Merolla, J.-P. Goedgebuer, N. Butterlin, and W. Rhods, “Photon counting in the 1540-nm wavelength region with a Germanium avalanche photodiode,” IEEE J. Quantum Electron. 37, 75–79 (2001).
    [CrossRef]
  7. J. G. Rarity, T. E. Wall, K. D. Ridley, P. C. M. Owens, and P. R. Tapster, “Single-photon counting for the 1300–1600-nm range by use of Peltier-cooled and passively quenched InGaAs avalanche photodiodes,” Appl. Opt. 39, 6746–6753 (2000).
    [CrossRef]
  8. P. Refregier, F. Goudail, and G. Delyon, “Photon noise effect on detection in coherent active images,” Opt. Lett. 29, 162–164 (2004).
    [CrossRef] [PubMed]
  9. S. Yeom, B. Javidi, and E. Watson, “Photon counting passive 3D image sensing for automatic target recognition,” Opt. Express13, 9310–9330 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-23-9310.
    [CrossRef] [PubMed]
  10. S. Yeom, B. Javidi, and E. Watson, “Three-dimensional distortion-tolerant object recognition using photon-counting integral imaging,” Opt. Express15, 1513–1533 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-4-1513.
    [CrossRef] [PubMed]
  11. F. Sadjadi, ed., Selected Papers on Automatic Target Recognition, (SPIE-CDROM, 1999).
  12. A. Mahalanobis, R. R. Muise, S. R. Stanfill, and A. V. Nevel, “Design and application of quadratic correlation filters for target detection,” IEEE Trans. on Aerosp. Electron. Syst. 40, 837–850 (2004).
    [CrossRef]
  13. H. Kwon and N. M. Nasrabadi, “Kernel RX-algorithm: a nonlinear anomaly detector for hyperspectral imagery,” IEEE Trans. on Geosci. Remote Sens. 43, 388–397 (2005).
    [CrossRef]
  14. J.-S. Jang and B. Javidi, “Time-multiplexed integral imaging for 3D sensing and display,” Optics and Photonics News 15, 36–43 (2004).
  15. J. Y. Son, V. V. Saveljev, J. S. Kim, S. S. Kim, and B. Javidi, “Viewing zones in three-dimensional imaging systems based on lenticular, parallax-barrier, and microlens-array plates,” Appl. Opt. 43, 4985–4992 (2004).
    [CrossRef] [PubMed]
  16. A. Stern and B. Javidi, “Three-dimensional image sensing, visualization, and processing using integral imaging,” Proceedings of the IEEE 94, 591–607 (2006).
    [CrossRef]
  17. Y. Frauel, E. Tajahuerce, O. Matoba, M.A. Castro, and B. Javidi, “Comparison of passive ranging integral imaging and active imaging digital holography for 3D object recognition,” Appl. Opt. 43, 452–462 (2004).
    [CrossRef] [PubMed]
  18. Raul Martinez-Cuenca, Amparo Pons, Genaro Saavedra, Manuel Martinez-Corral, and Bahram Javidi, “Optically-corrected elemental images for undistorted Integral image display,” Opt. Express14, 9657–9663 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-21-9657.
    [CrossRef] [PubMed]
  19. S. H. Hong, J. S. Jang, and B. Javidi, “Three-dimensional volumetric object reconstruction using computational integral imaging,” Opt. Express12, 483–491 (2004), http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-3-483.
    [CrossRef] [PubMed]
  20. J.-H. Park, J. Kim, and B. Lee, “Three-dimensional optical correlator using a sub-image array,” Opt. Express13, 5116–5126 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-13-5116.
    [CrossRef] [PubMed]
  21. B. Javidi, R. Ponce-Diaz, and S-. H. Hong, “Three-dimensional recognition of occluded objects by using computational integral imaging,” Opt. Lett. 31, 1106–1108 (2006).
    [CrossRef] [PubMed]
  22. S. H. Hong and B. Javidi, “Distortion-tolerant 3D recognition of occluded objects using computational integral imaging,” Opt. Express14, 12085–12095 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-25-12085.
    [CrossRef] [PubMed]
  23. V. Vaish, R. Szeliski, C. L. Zitnick, S. B. Kang, and M. Levoy, “Reconstructing occluded surfaces using synthetic: stereo, focus and robust measures,” Proceedings of the IEEE CVPR’06 (2006).
  24. S. M. Kay, Fundamentals of Statistical Signal Processing (Prentice Hall, New Jersey, 1993).

2006 (2)

A. Stern and B. Javidi, “Three-dimensional image sensing, visualization, and processing using integral imaging,” Proceedings of the IEEE 94, 591–607 (2006).
[CrossRef]

B. Javidi, R. Ponce-Diaz, and S-. H. Hong, “Three-dimensional recognition of occluded objects by using computational integral imaging,” Opt. Lett. 31, 1106–1108 (2006).
[CrossRef] [PubMed]

2005 (1)

H. Kwon and N. M. Nasrabadi, “Kernel RX-algorithm: a nonlinear anomaly detector for hyperspectral imagery,” IEEE Trans. on Geosci. Remote Sens. 43, 388–397 (2005).
[CrossRef]

2004 (5)

2001 (2)

L. Duraffourg, J.-M. Merolla, J.-P. Goedgebuer, N. Butterlin, and W. Rhods, “Photon counting in the 1540-nm wavelength region with a Germanium avalanche photodiode,” IEEE J. Quantum Electron. 37, 75–79 (2001).
[CrossRef]

D. Stucki, G. Ribordy, A. Stefanov, H. Zbinden, J. G. Rarity, and T. Wall, “Photon counting for quantum key distribution with Peltier cooled InGaAs/InP APDs,” J. Mod. Opt. 48, 1967–1981 (2001).
[CrossRef]

2000 (2)

1990 (1)

E. A. Watson and G. M. Morris, “Comparison of infrared upconversion methods for photon-limited imaging,” J. Appl. Phys. 67, 6075–6084 (1990).
[CrossRef]

1984 (1)

G. M. Morris, “Scene matching using photon-limited images,” J. Opt. Soc. Am. A. 1, 482–488 (1984).
[CrossRef]

Buller, G. S.

Butterlin, N.

L. Duraffourg, J.-M. Merolla, J.-P. Goedgebuer, N. Butterlin, and W. Rhods, “Photon counting in the 1540-nm wavelength region with a Germanium avalanche photodiode,” IEEE J. Quantum Electron. 37, 75–79 (2001).
[CrossRef]

Castro, M.A.

Delyon, G.

Duraffourg, L.

L. Duraffourg, J.-M. Merolla, J.-P. Goedgebuer, N. Butterlin, and W. Rhods, “Photon counting in the 1540-nm wavelength region with a Germanium avalanche photodiode,” IEEE J. Quantum Electron. 37, 75–79 (2001).
[CrossRef]

Frauel, Y.

Goedgebuer, J.-P.

L. Duraffourg, J.-M. Merolla, J.-P. Goedgebuer, N. Butterlin, and W. Rhods, “Photon counting in the 1540-nm wavelength region with a Germanium avalanche photodiode,” IEEE J. Quantum Electron. 37, 75–79 (2001).
[CrossRef]

Gontijo, I

Goodman, J. W.

J. W. Goodman, Statistical Optics, (Jonh wiley & Sons, inc., 1985), Chap 9.

Goudail, F.

Hiskett, P. A.

Hong, S. H.

S. H. Hong, J. S. Jang, and B. Javidi, “Three-dimensional volumetric object reconstruction using computational integral imaging,” Opt. Express12, 483–491 (2004), http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-3-483.
[CrossRef] [PubMed]

S. H. Hong and B. Javidi, “Distortion-tolerant 3D recognition of occluded objects using computational integral imaging,” Opt. Express14, 12085–12095 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-25-12085.
[CrossRef] [PubMed]

Hong, S-. H.

Jang, J. S.

S. H. Hong, J. S. Jang, and B. Javidi, “Three-dimensional volumetric object reconstruction using computational integral imaging,” Opt. Express12, 483–491 (2004), http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-3-483.
[CrossRef] [PubMed]

Jang, J.-S.

J.-S. Jang and B. Javidi, “Time-multiplexed integral imaging for 3D sensing and display,” Optics and Photonics News 15, 36–43 (2004).

Javidi, B.

A. Stern and B. Javidi, “Three-dimensional image sensing, visualization, and processing using integral imaging,” Proceedings of the IEEE 94, 591–607 (2006).
[CrossRef]

B. Javidi, R. Ponce-Diaz, and S-. H. Hong, “Three-dimensional recognition of occluded objects by using computational integral imaging,” Opt. Lett. 31, 1106–1108 (2006).
[CrossRef] [PubMed]

Y. Frauel, E. Tajahuerce, O. Matoba, M.A. Castro, and B. Javidi, “Comparison of passive ranging integral imaging and active imaging digital holography for 3D object recognition,” Appl. Opt. 43, 452–462 (2004).
[CrossRef] [PubMed]

J. Y. Son, V. V. Saveljev, J. S. Kim, S. S. Kim, and B. Javidi, “Viewing zones in three-dimensional imaging systems based on lenticular, parallax-barrier, and microlens-array plates,” Appl. Opt. 43, 4985–4992 (2004).
[CrossRef] [PubMed]

J.-S. Jang and B. Javidi, “Time-multiplexed integral imaging for 3D sensing and display,” Optics and Photonics News 15, 36–43 (2004).

S. H. Hong, J. S. Jang, and B. Javidi, “Three-dimensional volumetric object reconstruction using computational integral imaging,” Opt. Express12, 483–491 (2004), http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-3-483.
[CrossRef] [PubMed]

S. Yeom, B. Javidi, and E. Watson, “Photon counting passive 3D image sensing for automatic target recognition,” Opt. Express13, 9310–9330 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-23-9310.
[CrossRef] [PubMed]

S. Yeom, B. Javidi, and E. Watson, “Three-dimensional distortion-tolerant object recognition using photon-counting integral imaging,” Opt. Express15, 1513–1533 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-4-1513.
[CrossRef] [PubMed]

S. H. Hong and B. Javidi, “Distortion-tolerant 3D recognition of occluded objects using computational integral imaging,” Opt. Express14, 12085–12095 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-25-12085.
[CrossRef] [PubMed]

Javidi, Bahram

Raul Martinez-Cuenca, Amparo Pons, Genaro Saavedra, Manuel Martinez-Corral, and Bahram Javidi, “Optically-corrected elemental images for undistorted Integral image display,” Opt. Express14, 9657–9663 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-21-9657.
[CrossRef] [PubMed]

Kang, S. B.

V. Vaish, R. Szeliski, C. L. Zitnick, S. B. Kang, and M. Levoy, “Reconstructing occluded surfaces using synthetic: stereo, focus and robust measures,” Proceedings of the IEEE CVPR’06 (2006).

Kay, S. M.

S. M. Kay, Fundamentals of Statistical Signal Processing (Prentice Hall, New Jersey, 1993).

Kim, J.

J.-H. Park, J. Kim, and B. Lee, “Three-dimensional optical correlator using a sub-image array,” Opt. Express13, 5116–5126 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-13-5116.
[CrossRef] [PubMed]

Kim, J. S.

Kim, S. S.

Kwon, H.

H. Kwon and N. M. Nasrabadi, “Kernel RX-algorithm: a nonlinear anomaly detector for hyperspectral imagery,” IEEE Trans. on Geosci. Remote Sens. 43, 388–397 (2005).
[CrossRef]

Lee, B.

J.-H. Park, J. Kim, and B. Lee, “Three-dimensional optical correlator using a sub-image array,” Opt. Express13, 5116–5126 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-13-5116.
[CrossRef] [PubMed]

Levoy, M.

V. Vaish, R. Szeliski, C. L. Zitnick, S. B. Kang, and M. Levoy, “Reconstructing occluded surfaces using synthetic: stereo, focus and robust measures,” Proceedings of the IEEE CVPR’06 (2006).

Loudon, A. Y.

Mahalanobis, A.

A. Mahalanobis, R. R. Muise, S. R. Stanfill, and A. V. Nevel, “Design and application of quadratic correlation filters for target detection,” IEEE Trans. on Aerosp. Electron. Syst. 40, 837–850 (2004).
[CrossRef]

Martinez-Corral, Manuel

Raul Martinez-Cuenca, Amparo Pons, Genaro Saavedra, Manuel Martinez-Corral, and Bahram Javidi, “Optically-corrected elemental images for undistorted Integral image display,” Opt. Express14, 9657–9663 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-21-9657.
[CrossRef] [PubMed]

Martinez-Cuenca, Raul

Raul Martinez-Cuenca, Amparo Pons, Genaro Saavedra, Manuel Martinez-Corral, and Bahram Javidi, “Optically-corrected elemental images for undistorted Integral image display,” Opt. Express14, 9657–9663 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-21-9657.
[CrossRef] [PubMed]

Matoba, O.

Merolla, J.-M.

L. Duraffourg, J.-M. Merolla, J.-P. Goedgebuer, N. Butterlin, and W. Rhods, “Photon counting in the 1540-nm wavelength region with a Germanium avalanche photodiode,” IEEE J. Quantum Electron. 37, 75–79 (2001).
[CrossRef]

Morris, G. M.

E. A. Watson and G. M. Morris, “Comparison of infrared upconversion methods for photon-limited imaging,” J. Appl. Phys. 67, 6075–6084 (1990).
[CrossRef]

G. M. Morris, “Scene matching using photon-limited images,” J. Opt. Soc. Am. A. 1, 482–488 (1984).
[CrossRef]

Muise, R. R.

A. Mahalanobis, R. R. Muise, S. R. Stanfill, and A. V. Nevel, “Design and application of quadratic correlation filters for target detection,” IEEE Trans. on Aerosp. Electron. Syst. 40, 837–850 (2004).
[CrossRef]

Nasrabadi, N. M.

H. Kwon and N. M. Nasrabadi, “Kernel RX-algorithm: a nonlinear anomaly detector for hyperspectral imagery,” IEEE Trans. on Geosci. Remote Sens. 43, 388–397 (2005).
[CrossRef]

Nevel, A. V.

A. Mahalanobis, R. R. Muise, S. R. Stanfill, and A. V. Nevel, “Design and application of quadratic correlation filters for target detection,” IEEE Trans. on Aerosp. Electron. Syst. 40, 837–850 (2004).
[CrossRef]

Owens, P. C. M.

Park, J.-H.

J.-H. Park, J. Kim, and B. Lee, “Three-dimensional optical correlator using a sub-image array,” Opt. Express13, 5116–5126 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-13-5116.
[CrossRef] [PubMed]

Ponce-Diaz, R.

Pons, Amparo

Raul Martinez-Cuenca, Amparo Pons, Genaro Saavedra, Manuel Martinez-Corral, and Bahram Javidi, “Optically-corrected elemental images for undistorted Integral image display,” Opt. Express14, 9657–9663 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-21-9657.
[CrossRef] [PubMed]

Rarity, J. G.

D. Stucki, G. Ribordy, A. Stefanov, H. Zbinden, J. G. Rarity, and T. Wall, “Photon counting for quantum key distribution with Peltier cooled InGaAs/InP APDs,” J. Mod. Opt. 48, 1967–1981 (2001).
[CrossRef]

J. G. Rarity, T. E. Wall, K. D. Ridley, P. C. M. Owens, and P. R. Tapster, “Single-photon counting for the 1300–1600-nm range by use of Peltier-cooled and passively quenched InGaAs avalanche photodiodes,” Appl. Opt. 39, 6746–6753 (2000).
[CrossRef]

Refregier, P.

Rhods, W.

L. Duraffourg, J.-M. Merolla, J.-P. Goedgebuer, N. Butterlin, and W. Rhods, “Photon counting in the 1540-nm wavelength region with a Germanium avalanche photodiode,” IEEE J. Quantum Electron. 37, 75–79 (2001).
[CrossRef]

Ribordy, G.

D. Stucki, G. Ribordy, A. Stefanov, H. Zbinden, J. G. Rarity, and T. Wall, “Photon counting for quantum key distribution with Peltier cooled InGaAs/InP APDs,” J. Mod. Opt. 48, 1967–1981 (2001).
[CrossRef]

Ridley, K. D.

Robertson, M. J.

Saavedra, Genaro

Raul Martinez-Cuenca, Amparo Pons, Genaro Saavedra, Manuel Martinez-Corral, and Bahram Javidi, “Optically-corrected elemental images for undistorted Integral image display,” Opt. Express14, 9657–9663 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-21-9657.
[CrossRef] [PubMed]

Saveljev, V. V.

Smith, J. M.

Son, J. Y.

Stanfill, S. R.

A. Mahalanobis, R. R. Muise, S. R. Stanfill, and A. V. Nevel, “Design and application of quadratic correlation filters for target detection,” IEEE Trans. on Aerosp. Electron. Syst. 40, 837–850 (2004).
[CrossRef]

Stefanov, A.

D. Stucki, G. Ribordy, A. Stefanov, H. Zbinden, J. G. Rarity, and T. Wall, “Photon counting for quantum key distribution with Peltier cooled InGaAs/InP APDs,” J. Mod. Opt. 48, 1967–1981 (2001).
[CrossRef]

Stern, A.

A. Stern and B. Javidi, “Three-dimensional image sensing, visualization, and processing using integral imaging,” Proceedings of the IEEE 94, 591–607 (2006).
[CrossRef]

Stucki, D.

D. Stucki, G. Ribordy, A. Stefanov, H. Zbinden, J. G. Rarity, and T. Wall, “Photon counting for quantum key distribution with Peltier cooled InGaAs/InP APDs,” J. Mod. Opt. 48, 1967–1981 (2001).
[CrossRef]

Szeliski, R.

V. Vaish, R. Szeliski, C. L. Zitnick, S. B. Kang, and M. Levoy, “Reconstructing occluded surfaces using synthetic: stereo, focus and robust measures,” Proceedings of the IEEE CVPR’06 (2006).

Tajahuerce, E.

Tapster, P. R.

Townsend, P. D.

Vaish, V.

V. Vaish, R. Szeliski, C. L. Zitnick, S. B. Kang, and M. Levoy, “Reconstructing occluded surfaces using synthetic: stereo, focus and robust measures,” Proceedings of the IEEE CVPR’06 (2006).

Walker, A. C.

Wall, T.

D. Stucki, G. Ribordy, A. Stefanov, H. Zbinden, J. G. Rarity, and T. Wall, “Photon counting for quantum key distribution with Peltier cooled InGaAs/InP APDs,” J. Mod. Opt. 48, 1967–1981 (2001).
[CrossRef]

Wall, T. E.

Watson, E.

S. Yeom, B. Javidi, and E. Watson, “Three-dimensional distortion-tolerant object recognition using photon-counting integral imaging,” Opt. Express15, 1513–1533 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-4-1513.
[CrossRef] [PubMed]

S. Yeom, B. Javidi, and E. Watson, “Photon counting passive 3D image sensing for automatic target recognition,” Opt. Express13, 9310–9330 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-23-9310.
[CrossRef] [PubMed]

Watson, E. A.

E. A. Watson and G. M. Morris, “Comparison of infrared upconversion methods for photon-limited imaging,” J. Appl. Phys. 67, 6075–6084 (1990).
[CrossRef]

Yeom, S.

S. Yeom, B. Javidi, and E. Watson, “Three-dimensional distortion-tolerant object recognition using photon-counting integral imaging,” Opt. Express15, 1513–1533 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-4-1513.
[CrossRef] [PubMed]

S. Yeom, B. Javidi, and E. Watson, “Photon counting passive 3D image sensing for automatic target recognition,” Opt. Express13, 9310–9330 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-23-9310.
[CrossRef] [PubMed]

Zbinden, H.

D. Stucki, G. Ribordy, A. Stefanov, H. Zbinden, J. G. Rarity, and T. Wall, “Photon counting for quantum key distribution with Peltier cooled InGaAs/InP APDs,” J. Mod. Opt. 48, 1967–1981 (2001).
[CrossRef]

Zitnick, C. L.

V. Vaish, R. Szeliski, C. L. Zitnick, S. B. Kang, and M. Levoy, “Reconstructing occluded surfaces using synthetic: stereo, focus and robust measures,” Proceedings of the IEEE CVPR’06 (2006).

Appl. Opt. (4)

IEEE J. Quantum Electron. (1)

L. Duraffourg, J.-M. Merolla, J.-P. Goedgebuer, N. Butterlin, and W. Rhods, “Photon counting in the 1540-nm wavelength region with a Germanium avalanche photodiode,” IEEE J. Quantum Electron. 37, 75–79 (2001).
[CrossRef]

IEEE Trans. on Aerosp. Electron. Syst. (1)

A. Mahalanobis, R. R. Muise, S. R. Stanfill, and A. V. Nevel, “Design and application of quadratic correlation filters for target detection,” IEEE Trans. on Aerosp. Electron. Syst. 40, 837–850 (2004).
[CrossRef]

IEEE Trans. on Geosci. Remote Sens. (1)

H. Kwon and N. M. Nasrabadi, “Kernel RX-algorithm: a nonlinear anomaly detector for hyperspectral imagery,” IEEE Trans. on Geosci. Remote Sens. 43, 388–397 (2005).
[CrossRef]

J. Appl. Phys. (1)

E. A. Watson and G. M. Morris, “Comparison of infrared upconversion methods for photon-limited imaging,” J. Appl. Phys. 67, 6075–6084 (1990).
[CrossRef]

J. Mod. Opt. (1)

D. Stucki, G. Ribordy, A. Stefanov, H. Zbinden, J. G. Rarity, and T. Wall, “Photon counting for quantum key distribution with Peltier cooled InGaAs/InP APDs,” J. Mod. Opt. 48, 1967–1981 (2001).
[CrossRef]

J. Opt. Soc. Am. A. (1)

G. M. Morris, “Scene matching using photon-limited images,” J. Opt. Soc. Am. A. 1, 482–488 (1984).
[CrossRef]

Opt. Lett. (2)

Optics and Photonics News (1)

J.-S. Jang and B. Javidi, “Time-multiplexed integral imaging for 3D sensing and display,” Optics and Photonics News 15, 36–43 (2004).

Proceedings of the IEEE (1)

A. Stern and B. Javidi, “Three-dimensional image sensing, visualization, and processing using integral imaging,” Proceedings of the IEEE 94, 591–607 (2006).
[CrossRef]

Other (10)

S. H. Hong and B. Javidi, “Distortion-tolerant 3D recognition of occluded objects using computational integral imaging,” Opt. Express14, 12085–12095 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-25-12085.
[CrossRef] [PubMed]

V. Vaish, R. Szeliski, C. L. Zitnick, S. B. Kang, and M. Levoy, “Reconstructing occluded surfaces using synthetic: stereo, focus and robust measures,” Proceedings of the IEEE CVPR’06 (2006).

S. M. Kay, Fundamentals of Statistical Signal Processing (Prentice Hall, New Jersey, 1993).

Raul Martinez-Cuenca, Amparo Pons, Genaro Saavedra, Manuel Martinez-Corral, and Bahram Javidi, “Optically-corrected elemental images for undistorted Integral image display,” Opt. Express14, 9657–9663 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-21-9657.
[CrossRef] [PubMed]

S. H. Hong, J. S. Jang, and B. Javidi, “Three-dimensional volumetric object reconstruction using computational integral imaging,” Opt. Express12, 483–491 (2004), http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-3-483.
[CrossRef] [PubMed]

J.-H. Park, J. Kim, and B. Lee, “Three-dimensional optical correlator using a sub-image array,” Opt. Express13, 5116–5126 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-13-5116.
[CrossRef] [PubMed]

S. Yeom, B. Javidi, and E. Watson, “Photon counting passive 3D image sensing for automatic target recognition,” Opt. Express13, 9310–9330 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-23-9310.
[CrossRef] [PubMed]

S. Yeom, B. Javidi, and E. Watson, “Three-dimensional distortion-tolerant object recognition using photon-counting integral imaging,” Opt. Express15, 1513–1533 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-4-1513.
[CrossRef] [PubMed]

F. Sadjadi, ed., Selected Papers on Automatic Target Recognition, (SPIE-CDROM, 1999).

J. W. Goodman, Statistical Optics, (Jonh wiley & Sons, inc., 1985), Chap 9.

Supplementary Material (2)

» Media 1: AVI (4725 KB)     
» Media 2: AVI (6431 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

(a) II recording system, (b) II reconstruction model.

Fig. 2.
Fig. 2.

Elemental images for (a) reference target, (b) true-class target with partial occlusion, (c) false-class target.

Fig. 3.
Fig. 3.

Central image of elemental images in Fig. 2, (a) reference target, (b) true-class target with partial occlusion, (c) false-class target.

Fig. 4.
Fig. 4.

Movies of reconstructed images of the partially occluded true-class target, (a) d=30~50 mm (the movie file size: 4.61 MB) [Media 1] (b) d=66~80 mm (the movie file size: 6.27 MB) [Media 2].

Fig. 5.
Fig. 5.

Sample mean and error bars (standard deviation) for nonlinear matched filtering for, (a) elemental images without reconstruction, (b) reconstruction of input scenes in the 3D space.

Fig. 6.
Fig. 6.

Comparison of recognition performance between elemental images and 3D reconstruction, (a) Fisher ratios, ROC curves when (b) Np =500, (b) Np =100.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

x ̂ A 1 N A n = 1 N A x n .
P d ( y ( i ) ; λ ( i ) ) = λ ( i ) y ( i ) e λ ( i ) y ( i ) ! , y ( i ) = 0 , 1 , 2 , ,
λ ( i ) = N P [ x ( i ) i = 1 N T x ( i ) ] ,
P d ( y 1 , , y N A ; λ A ) = n = 1 N A λ A y n e λ A y n ! .
λ ̂ A = 1 N A n = 1 N A y n .
C rs ( ν ) = i = 1 N T x r ( i ) y s ( i ) ( i = 1 N T x r ( i ) 2 ) 1 2 ( i = 1 N T y s ( i ) ) ν ,
D rs ( ν ) = d = 1 N d [ i Ω d x ̂ r ( i ; z d ) λ ̂ s ( i ; z d ) ( i Ω d x ̂ r ( i ; z d ) 2 ) 1 2 ( i Ω d λ ̂ s ( i ; z d ) ) ν ] ,

Metrics