Abstract

Nonlinear photonic-crystal microresonators offer unique fundamental ways of enhancing a variety of nonlinear optical processes. This enhancement improves the performance of nonlinear optical devices to such an extent that their corresponding operation powers and switching times are suitable for their implementation in realistic ultrafast integrated optical devices. Here, we review three different nonlinear optical phenomena that can be strongly enhanced in photonic crystal microcavities. First, we discuss a system in which this enhancement has been successfully demonstrated both theoretically and experimentally, namely, a photonic crystal cavity showing optical bistability properties. In this part, we also present the physical basis for this dramatic improvement with respect to the case of traditional nonlinear devices based on nonlinear Fabry-Perot etalons. Secondly, we show how nonlinear photonic crystal cavities can be also used to obtain complete second-harmonic frequency conversion at very low input powers. Finally, we demonstrate that the nonlinear susceptibility of materials can be strongly modified via the so-called Purcell effect, present in the resonant cavities under study.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. R. W. Boyd, Nonlinear Optics (Academic Press, California, 1992).
  2. H. M. Gibbs, Optical Bistability: Controlling Light with Light (Academic Press, Orlando, FL, 1985).
  3. For a review on this topic, see K. J. Vahala, "Optical microcavities," Nature 424, 839-846 (2003).
    [CrossRef] [PubMed]
  4. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton Univ. Press, 1995).
  5. J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, "Photonic-bandgap microcavities in optical waveguides," Nature 390, 143-145 (1997).
    [CrossRef]
  6. S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and H. A. Haus, "Channel drop tunneling through localized states," Phys. Rev. Lett. 80, 960-963 (1998).
    [CrossRef]
  7. O. Painter, J. Vuckovic, and A. Scherer, "Defect modes of a two-dimensional photonic crystal in an optically thin dielectric slab," J. Opt. Soc. Am. B 16, 275-285 (1999).
    [CrossRef]
  8. S. Noda, A. Chutinan, and M. Imada, "Trapping and emission of photons by a single defect in a photonic bandgap structure," Nature 407, 608-610 (2000).
    [CrossRef] [PubMed]
  9. S. G. Johnson, S. Fan, A. Mekis, and J. D. Joannopoulos, "Multipole-cancellation mechanism for high-Q cavities in the absence of a complete photonic band gap," Appl. Phys. Lett. 78, 3388-3390 (2001).
    [CrossRef]
  10. T. Yoshie, J. Vuckovic, A. Scherer, H. Chen, and D. Deppe, "High quality two-dimensional photonic crystal slab cavities," Appl. Phys. Lett. 79, 4289-4291 (2001).
    [CrossRef]
  11. J. Vuckovic, M. Loncar, H. Mabuchi, and A. Scherer, "Design of photonic crystal microcavities for cavity QED," Phys. Rev. E 65, 016608 (2002).
    [CrossRef]
  12. Y. Akahane, T. Asano, B. S. Song, and S. Noda), "Investigation of high-Q channel drop filters using donor-type defects in two-dimensional photonic crystal slabs," Appl. Phys. Lett. 83, 1512-1514 (2003).
    [CrossRef]
  13. K. Srinivasan, P. E. Barclay, O. Painter, J. X. Chen, A. Y. Cho, and C. Gmachl, "Experimental demonstration of a high quality factor photonic crystal microcavity," Appl. Phys. Lett. 83, 1915-1917 (2003).
    [CrossRef]
  14. H. Y. Ryu, M. Notomi, and Y. H. Lee, "High-quality-factor and small-mode-volume hexapole modes in photoniccrystal-slab nanocavities," Appl. Phys. Lett. 83, 4294-4296 (2003).
    [CrossRef]
  15. A. Rodriguez, M. Ibanescu, J. D. Joannopoulos, and S. G. Johnson, "Disorder-immune confinement of light in photonic-crystal cavities," Opt. Lett. 30, 3192-3194 (2005).
    [CrossRef] [PubMed]
  16. S. Noda, M. Fujita, and T. Asano, "Spontaneous-emission control by photonic crystals and nanocavities," Nature Phot. 1, 449-458 (2007).
    [CrossRef]
  17. E. Centeno and D. Felbacq, "Optical bistability in finite-size nonlinear bidimensional photonic crystals doped by a microcavity," Phys. Rev. B 62, R7683-R7686 (2000).
    [CrossRef]
  18. M. Soljacic, S. G. Johnson, S. Fan, M. Ibanescu, E. Ippen, and J. D. Joannopoulos, "Photonic-crystal slow-light enhancement of non-linear phase sensitivity," J. Opt. Soc. Am. B 19, 2052-2059 (2002).
    [CrossRef]
  19. M. Soljacic, M. Ibanescu, S. G. Johnson, Y. Fink, and J. D. Joannopoulos, "Optimal bistable switching in nonlinear photonic crystals," Phys. Rev. E 66, 055601(R) (2002).
    [CrossRef]
  20. S. F. Mingaleev and Y. S. Kivshar, "Nonlinear transmission and light localization in photonic crystal waveguides," J. Opt. Soc. Am. B 19, 2241-2249 (2002).
    [CrossRef]
  21. A. R. Cowan and J. F. Young, "Optical bistability involving photonic crystal microcavities and Fano line shapes," Phys. Rev. E 68, 046606 (2003).
    [CrossRef]
  22. M. Soljacic, C. Luo, J. D. Joannopoulos, and S. Fan, "Nonlinear photonic crystal microdevices for optical integration," Opt. Lett. 28, 637-639 (2003).
    [CrossRef] [PubMed]
  23. M. Soljacic, M. Ibanescu, S. G. Johnson, J. D. Joannopoulos, and Y. Fink, "Optical bistability in axially modulated OmniGuide fibers," Opt. Lett. 28, 516-518 (2003).
    [CrossRef] [PubMed]
  24. M. F. Yanik, S. Fan, and M. Soljacic, "High-contrast all-optical bistable switching in photonic crystal microcavities," Appl. Phys. Lett. 83, 2739-2741 (2003).
    [CrossRef]
  25. M. F. Yanik, S. Fan, M. Soljacic, and J. D. Joannopoulos, "All-optical transistor action with bistable switching in a photonic crystal cross-waveguide geometry," Opt. Lett. 28, 2506-2508 (2003).
    [CrossRef] [PubMed]
  26. J. Trull, R. Vilaseca, J. Martorell, and R. Corbalan, "Second-harmonic generation in local modes of a truncated periodic structure," Opt. Lett. 20, 1746-1748 (1995).
    [CrossRef] [PubMed]
  27. T. V. Dolgova, A. I. Maidykovski, M. G. Martemyanov, A. A. Fedyanin, O. A. Aktsipetrov, G. Marowsky, V. A. Yakovlev, G. Mattei, N. Ohta, and S. Nakabayashi, "Giant optical second-harmonic generation in single and coupled microcavities formed from one-dimensional photonic crystals," J. Opt. Soc. Am. B 19, 2129-2140 (2002).
    [CrossRef]
  28. F. F. Ren, R. Li, C. Cheng, and H. T. Wang, J. R. Qiu, J. H. Si, and K. Hirao, "Giant enhancement of second harmonic generation in a finite photonic crystal with a single defect and dual-localized modes," Phys. Rev. B 70, 245109 (2004).
    [CrossRef]
  29. M. G. Martemyanov, E. M. Kim, T. V. Dolgova, A. A. Fedyanin, O. A. Aktsipetrov, and G. Marowsky, "Thirdharmonic generation in silicon photonic crystals and microcavities," Phys. Rev. B 70, 073311 (2004).
    [CrossRef]
  30. M. Soljacic and J. D. Joannopoulos, "Enhancement of nonlinear effects using photonic crystals," Nature Mater. 3, 211-219 (2004).
    [CrossRef]
  31. P. E. Barclay, K. Srinivasan, and O. Painter, "Nonlinear response of silicon photonic crystal microresonators excited via an integrated waveguide and fiber taper," Opt. Express 13, 801-820 (2005).
    [CrossRef] [PubMed]
  32. T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya, and E. Kuramochi, "Fast bistable all-optical switch and memory on a silicon photonic crystal on-chip," Opt. Lett. 30, 2575-2577 (2005).
    [CrossRef] [PubMed]
  33. M. Notomi, A. Shinya, S. Mitsugi, G. Kira, E. Kuramochi, and T. Tanabe, "Optical bistable switching action of Si high-Q photonic-crystal nanocavities," Opt. Express 13, 2678-2687 (2005).
    [CrossRef] [PubMed]
  34. F. F. Ren, R. Li, C. Cheng, J. Chen, Y. X. Fan, J. P. Ding, and H. T. Wang, "Low-threshold and high-efficiency optical parametric oscillator using a one-dimensional single-defect photonic crystal with quadratic nonlinearity," Phys. Rev. B 73, 033104 (2006).
    [CrossRef]
  35. A. Rodriguez, M. Soljacic, J. D. Joannopoulos, and S. G. Johnson, "χ(2) and χ (3) harmonic generation at a critical power in inhomogeneous doubly resonant cavities," Opt. Express 15, 7303-7318 (2007).
    [CrossRef] [PubMed]
  36. P. Bermel, A. Rodriguez, J. D. Joannopoulos, and M. Soljacic, "Tailoring optical nonlinearities via the Purcell effect," Phys. Rev. Lett. 99, 053601 (2007).
    [CrossRef] [PubMed]
  37. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech, Norwood, MA, 2000).
  38. H. A. Haus, Waves and Fields in Optoelectronics (Prentice-Hall, Englewood Cliffs, NJ, 1984).
  39. J. Bravo-Abad, S. Fan, S. G. Johnson, J. D. Joannopoulos, and M. Soljacic, "Modeling nonlinear optical phenomena in nanophotonics," J. Lightwave Technol. 25, 2539-2546 (2007).
    [CrossRef]
  40. A. Farjadpour, D. Roundy, A. Rodriguez, M. Ibanescu, P. Bermel, J. D. Joannopoulos, S. G. Johnson, and G. W. Burr "Improving accuracy by subpixel smoothing in the finite-difference time domain," Opt. Lett. 31, 2972-2974 (2006).
    [CrossRef] [PubMed]
  41. G. D’Aguanno, M. Centini, M. Scalora, C. Sibilia, Y. Dumeige, P. Vidakovic, J. A. Levenson, M. J. Bloemer, C. M. Bowden, J.W. Haus, and M. Bertolotti, "Photonic band edge effects in finite structures and applications to |(2) interactions," Phys. Rev. E 64, 016609 (2001).
    [CrossRef]
  42. M. L. Povinelli, S. G. Johnson, and J. D. Joannopoulos, "Slow-light, band-edge waveguides for tunable time delays," Opt. Express 13, 7145-7159 (2005).
    [CrossRef] [PubMed]
  43. Y. Xu, R. K. Lee, and A. Yariv, "Propagation and second-harmonic generation of electromagnetic waves in a coupled-resonator optical waveguide," J. Opt. Soc. Am. B 17, 387-400 (2000).
    [CrossRef]
  44. J. E. Heebner, R. W. Boyd, and Q. H. Park, "Slow light, induced dispersion, enhanced nonlinearity, and optical solitons in a resonator-array waveguide," Phys. Rev. E 65, 036619 (2002).
    [CrossRef]
  45. VMODE is actually the effective modal volume (weighted by local χ(3)) but it is quantitatively very similar to the usual definition of modal volume.
  46. M. Notomi, Personal communication (2007).
  47. Q. F. Xu and M. Lipson, "Carrier-induced optical bistability in Silicon ring resonators," Opt. Lett. 31, 341-343 (2006).
    [CrossRef] [PubMed]
  48. S. Pearl, H. Lotem, Y. Shimony, and S. Rosenwaks, "Optimization of laser intracavity second-harmonic generation by a linear dispersion element," J. Opt. Soc. Am. B 16, 1705-1711 (1999).
    [CrossRef]
  49. A. V. Balakin, V. A. Bushuev, B. I. Mantsyzov, I. A. Ozheredov, E. V. Petrov, A. P. Shkurinov, P. Masselin, and G. Mouret, "Enhancement of sum frequency generation near the photonic band edge under the quasiphase matching condition," Phys. Rev. E 63, 046609 (2001).
    [CrossRef]
  50. A. H. Norton and C. M. de Sterke, "Optimal poling of nonlinear photonic crystals for frequency conversion," Opt. Lett. 28, 188-190 (2003).
    [CrossRef] [PubMed]
  51. G. D’ Aguanno, M. Centini, M. Scalora, C. Sibilia, M. Bertolotti, M. J. Bloemer, and C. M. Bowden, "Generalized coupled-mode theory for |(2) interactions in finite multi-layered structures," J. Opt. Soc. Am. B 19, 2111-2121 (2002).
    [CrossRef]
  52. A. R. Cowan and J. F. Young, "Mode matching for second-harmonic generation in photonic crystal waveguides," Phys. Rev. E 65, 085106 (2002).
  53. A. M. Malvezzi, G. Vecchi, M. Patrini, G. Guizzetti, L. C. Andreani, F. Romanato, L. Businaro, E. Di Fabrizio, A. Passaseo, and M. De Vittorio, "Resonant second-harmonic generation in a GaAs photonic crystal waveguide," Phys. Rev. B 68, 161306 (2003).
    [CrossRef]
  54. P. P. Markowicz, H. Tiryaki, H. Pudavar, P. N. Prasad, N. N. Lepeshkin, and R.W. Boyd, "Dramatic enhancement of third-harmonic generation in three-dimensional photonic crystals," Phys. Rev. Lett. 92, 083903 (2004).
    [CrossRef] [PubMed]
  55. V. Berger, "Second-harmonic generation in monolithic cavities," J. Opt. Soc. Am. B 14, 1351-1360 (1997).
    [CrossRef]
  56. Y. Dumeige and P. Feron, "Wispering-gallery-mode analysis of phase-matched doubly resonant second-harmonic generation," Phys. Rev. A 74, 063804 (2006).
    [CrossRef]
  57. J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, "Interactions between light waves in a nonlinear dielectric," Phys. Rev. 127, 1918-1939 (1962).
    [CrossRef]
  58. A. Ashkin, G. Boyd, and J. M. Dziedzic, "Resonant optical second harmonic generation and mixing," IEEE J. Quantum Electron. 2, 109-124 (1966).
    [CrossRef]
  59. R. Smith, "Theory of intracavity optical second-harmonic generation," IEEE J. Quantum Electron. 6, 215-223 (1970).
    [CrossRef]
  60. A. Ferguson and M. Dunn, "Intracavity second harmonic generation in continuous-wave dye lasers," IEEE J. Quantum Electron. 13, 751-756 (1977).
    [CrossRef]
  61. M. Brieger, H. Busener, A. Hese, F. V. Moers, and A. Renn, "Enhancement of single frequency SHG in a passive ring resonator," Opt. Commun. 38, 423-426 (1981).
    [CrossRef]
  62. J. C. Bergquist, H. Hemmati, and W. M. Itano, "High power second harmonic generation of 257 nm radiation in an external ring cavity," Opt. Comm. 43, 437-442 (1982).
    [CrossRef]
  63. W. J. Kozlovsky, W. P. Risk,W. Lenth, B. G. Kim, G. L. Bona, H. Jaeckel, and D. J. Webb, "Blue light generation by resonator-enhanced frequency doubling of an extended-cavity diode laser," Appl. Phys. Lett. 65, 525-527 (1994).
    [CrossRef]
  64. G. J. Dixon, C. E. Tanner, and C. E. Wieman, "432-nm source based on efficient second-harmonic generation of GaAlAs diode-laser radiation in a self-locking external resonant cavity," Opt. Lett. 14, 731-733 (1989).
    [CrossRef] [PubMed]
  65. M. J. Collett and R. B. Levien, "Two-photon loss model of intracavity second-harmonic generation," Phys. Rev. A 43, 5068-5072 (1991).
    [CrossRef] [PubMed]
  66. M. A. Persaud, J. M. Tolchard, and A. I. Ferguson, "Efficient generation of picosecond pulses at 243 nm," IEEE J. Quantum Electron. 26, 1253-1258 (1990).
    [CrossRef]
  67. Z. Y. Ou and H. J. Kimble, "Enhanced conversion efficiency for harmonic generation with double resonance," Opt. Lett. 18, 1053-1055 (1993).
    [CrossRef] [PubMed]
  68. G. T. Moore, K. Koch, and E. C. Cheung, "Optical parametric oscillation with intracavity second-harmonic generation," Opt. Commun. 113, 463-470 (1995).
    [CrossRef]
  69. K. Schneider, S. Schiller, J. Mlynek, M. Bode, and I. Freitag, "1.1-W single-frequency 532-nm radiation by second-harmonic generation of a miniature Nd:YAG ring laser," Opt. Lett. 21, 1999-2001 (1996).
    [CrossRef] [PubMed]
  70. X. Mu, Y. J. Ding, H. Yang, and G. J. Salamo, "Cavity-enhanced and quasiphase-matched mutli-order reflectionsecond-harmonic generation from GaAs/AlAs and GaAs/AlGaAs multilayers," Appl. Phys. Lett. 79, 569-571 (2001).
    [CrossRef]
  71. J. Hald, "Second harmonic generation in an external ring cavity with a Brewster-cut nonlinear cystal: theoretical considerations," Opt. Commun. 197, 169-173 (2001).
    [CrossRef]
  72. G. McConnell, A. I. Ferguson, and N. Langford, "Cavity-augmented frequency tripling of a continuous wave mode-locked laser," J. Phys. D: Appl.Phys 34, 2408-2413 (2001).
    [CrossRef]
  73. T. M. Liu, C. T. Yu, and C. K. Sun, "2 Ghz repetition-rate femtosecond blue sources by second-harmonic generation in a resonantly enhanced cavity," Appl. Phys. Lett. 86, 061112 (2005).
    [CrossRef]
  74. L. Scaccabarozzi, M. M. Fejer, Y. Huo, S. Fan, X. Yu, and J. S. Harris, "Enhanced second-harmonic generation in AlGaAs/AlxOy tightly confining waveguides and resonant cavities," Opt. Lett. 31, 3626-3628 (2006).
    [CrossRef] [PubMed]
  75. A. Di Falco, C. Conti, and G. Assanto, "Impedance matching in photonic crystal microcavities for secondharmonic generation," Opt. Lett. 31, 250-252 (2006).
    [CrossRef] [PubMed]
  76. K. Koch and G. T. Moore, "Singly resonant cavity-enhanced frequency tripling," J. Opt. Soc. Am. B 16, 448-459 (1999).
    [CrossRef]
  77. E. M. Purcell, "Spontaneous emission probabilities at radio frequencies," Phys. Rev. 69, 681-686 (1946).
  78. D. Kleppner, "Inhibited spontaneous emission," Phys. Rev. Lett. 47, 233-236 (1981).
    [CrossRef]
  79. H. Y. Ryu and M. Notomi, "Enhancement of spontaneous emission from the resonant modes of a photonic crystal slab single-defect cavity," Opt. Lett. 28, 2390-2392 (2003).
    [CrossRef] [PubMed]
  80. P. Bermel, J. D. Joannopoulos, Y. Fink, P. A. Lane, and C. Tapalian, "Properties of radiating pointlike sources in cylindrical omnidirectionally reflecting waveguides," Phys. Rev. B 69, 035316 (2004).
    [CrossRef]
  81. D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vuckovic, "Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal," Phys. Rev. Lett. 95, 013904 (2005).
    [CrossRef] [PubMed]
  82. S. John and T. Quang, "Resonant nonlinear dielectric response in a photonic band gap material," Phys. Rev. Lett. 76, 2484-2487 (1996).
    [CrossRef] [PubMed]
  83. D. Miller, S. Smith, and B. Wherrett, "The microscopic mechanism of 3rd-order optical nonlinearity in InSb," Opt. Commun. 35, 221-226 (1980).
    [CrossRef]
  84. M. Nielsen and I. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, England, 2000).
  85. J. J. Sakurai, Modern Quantum Mechanics (Addison-Wesley, Reading, MA, 1994).
  86. G. Lenz, J. Zimmermann, T. Katsufuji, M. E. Lines, H. Y. Hwang, S. Spalter, R. E. Slusher, S. W. Cheong, J. S. Sanghera, and I. D. Aggarwal, "Large Kerr effect in bulk Se-based chalcogenide glasses," Opt. Lett. 25, 254-256 (2000).
    [CrossRef]
  87. V. Savona, L. C. Andreani, P. Schwendimann, and A. Quattropani, "Quantum well excitons in semiconductor microcavities: unified treatment of weak and strong coupling regimes", Solid State Comm. 93, 733-739 (1995).
    [CrossRef]
  88. X. Brokmann, L. Coolen, M. Dahan, and J. P. Hermier, "Measurement of the radiative and nonradiative decay rates of single CdSe nanocrystals through a controlled modification of their spontaneous emission," Phys. Rev. Lett. 93, 107403 (2004).
    [CrossRef] [PubMed]
  89. H. Shinojima, "Optical nonlinearity in CdSSe microcrystallites embedded in glasses," IEICE Trans. Electron.E 90-C, 127-134 (2007).
    [CrossRef]
  90. D. V. Talapin, A. L. Rogach, A. Kornowski, M. Haase, and H. Weller, "Highly luminescent monodisperse CdSe and CdSe/ZnS nanocrystals synthesized in a hexadecylamine-trioctylphosphine oxide-trioctylphospine mixture," Nano Lett. 1, 207-211 (2001).
    [CrossRef]
  91. N. M. Litchinitser, A. Abeeluck, C. Headley, and B. Eggleton, "Antiresonant reflecting photonic crystal optical waveguides," Opt. Lett. 27, 1592-1594 (2002).
    [CrossRef]

2007 (5)

S. Noda, M. Fujita, and T. Asano, "Spontaneous-emission control by photonic crystals and nanocavities," Nature Phot. 1, 449-458 (2007).
[CrossRef]

A. Rodriguez, M. Soljacic, J. D. Joannopoulos, and S. G. Johnson, "χ(2) and χ (3) harmonic generation at a critical power in inhomogeneous doubly resonant cavities," Opt. Express 15, 7303-7318 (2007).
[CrossRef] [PubMed]

P. Bermel, A. Rodriguez, J. D. Joannopoulos, and M. Soljacic, "Tailoring optical nonlinearities via the Purcell effect," Phys. Rev. Lett. 99, 053601 (2007).
[CrossRef] [PubMed]

J. Bravo-Abad, S. Fan, S. G. Johnson, J. D. Joannopoulos, and M. Soljacic, "Modeling nonlinear optical phenomena in nanophotonics," J. Lightwave Technol. 25, 2539-2546 (2007).
[CrossRef]

H. Shinojima, "Optical nonlinearity in CdSSe microcrystallites embedded in glasses," IEICE Trans. Electron.E 90-C, 127-134 (2007).
[CrossRef]

2006 (6)

2005 (7)

2004 (6)

X. Brokmann, L. Coolen, M. Dahan, and J. P. Hermier, "Measurement of the radiative and nonradiative decay rates of single CdSe nanocrystals through a controlled modification of their spontaneous emission," Phys. Rev. Lett. 93, 107403 (2004).
[CrossRef] [PubMed]

F. F. Ren, R. Li, C. Cheng, and H. T. Wang, J. R. Qiu, J. H. Si, and K. Hirao, "Giant enhancement of second harmonic generation in a finite photonic crystal with a single defect and dual-localized modes," Phys. Rev. B 70, 245109 (2004).
[CrossRef]

M. G. Martemyanov, E. M. Kim, T. V. Dolgova, A. A. Fedyanin, O. A. Aktsipetrov, and G. Marowsky, "Thirdharmonic generation in silicon photonic crystals and microcavities," Phys. Rev. B 70, 073311 (2004).
[CrossRef]

M. Soljacic and J. D. Joannopoulos, "Enhancement of nonlinear effects using photonic crystals," Nature Mater. 3, 211-219 (2004).
[CrossRef]

P. Bermel, J. D. Joannopoulos, Y. Fink, P. A. Lane, and C. Tapalian, "Properties of radiating pointlike sources in cylindrical omnidirectionally reflecting waveguides," Phys. Rev. B 69, 035316 (2004).
[CrossRef]

P. P. Markowicz, H. Tiryaki, H. Pudavar, P. N. Prasad, N. N. Lepeshkin, and R.W. Boyd, "Dramatic enhancement of third-harmonic generation in three-dimensional photonic crystals," Phys. Rev. Lett. 92, 083903 (2004).
[CrossRef] [PubMed]

2003 (12)

A. M. Malvezzi, G. Vecchi, M. Patrini, G. Guizzetti, L. C. Andreani, F. Romanato, L. Businaro, E. Di Fabrizio, A. Passaseo, and M. De Vittorio, "Resonant second-harmonic generation in a GaAs photonic crystal waveguide," Phys. Rev. B 68, 161306 (2003).
[CrossRef]

A. H. Norton and C. M. de Sterke, "Optimal poling of nonlinear photonic crystals for frequency conversion," Opt. Lett. 28, 188-190 (2003).
[CrossRef] [PubMed]

H. Y. Ryu and M. Notomi, "Enhancement of spontaneous emission from the resonant modes of a photonic crystal slab single-defect cavity," Opt. Lett. 28, 2390-2392 (2003).
[CrossRef] [PubMed]

Y. Akahane, T. Asano, B. S. Song, and S. Noda), "Investigation of high-Q channel drop filters using donor-type defects in two-dimensional photonic crystal slabs," Appl. Phys. Lett. 83, 1512-1514 (2003).
[CrossRef]

K. Srinivasan, P. E. Barclay, O. Painter, J. X. Chen, A. Y. Cho, and C. Gmachl, "Experimental demonstration of a high quality factor photonic crystal microcavity," Appl. Phys. Lett. 83, 1915-1917 (2003).
[CrossRef]

H. Y. Ryu, M. Notomi, and Y. H. Lee, "High-quality-factor and small-mode-volume hexapole modes in photoniccrystal-slab nanocavities," Appl. Phys. Lett. 83, 4294-4296 (2003).
[CrossRef]

A. R. Cowan and J. F. Young, "Optical bistability involving photonic crystal microcavities and Fano line shapes," Phys. Rev. E 68, 046606 (2003).
[CrossRef]

M. Soljacic, C. Luo, J. D. Joannopoulos, and S. Fan, "Nonlinear photonic crystal microdevices for optical integration," Opt. Lett. 28, 637-639 (2003).
[CrossRef] [PubMed]

M. Soljacic, M. Ibanescu, S. G. Johnson, J. D. Joannopoulos, and Y. Fink, "Optical bistability in axially modulated OmniGuide fibers," Opt. Lett. 28, 516-518 (2003).
[CrossRef] [PubMed]

M. F. Yanik, S. Fan, and M. Soljacic, "High-contrast all-optical bistable switching in photonic crystal microcavities," Appl. Phys. Lett. 83, 2739-2741 (2003).
[CrossRef]

M. F. Yanik, S. Fan, M. Soljacic, and J. D. Joannopoulos, "All-optical transistor action with bistable switching in a photonic crystal cross-waveguide geometry," Opt. Lett. 28, 2506-2508 (2003).
[CrossRef] [PubMed]

For a review on this topic, see K. J. Vahala, "Optical microcavities," Nature 424, 839-846 (2003).
[CrossRef] [PubMed]

2002 (8)

J. Vuckovic, M. Loncar, H. Mabuchi, and A. Scherer, "Design of photonic crystal microcavities for cavity QED," Phys. Rev. E 65, 016608 (2002).
[CrossRef]

T. V. Dolgova, A. I. Maidykovski, M. G. Martemyanov, A. A. Fedyanin, O. A. Aktsipetrov, G. Marowsky, V. A. Yakovlev, G. Mattei, N. Ohta, and S. Nakabayashi, "Giant optical second-harmonic generation in single and coupled microcavities formed from one-dimensional photonic crystals," J. Opt. Soc. Am. B 19, 2129-2140 (2002).
[CrossRef]

M. Soljacic, S. G. Johnson, S. Fan, M. Ibanescu, E. Ippen, and J. D. Joannopoulos, "Photonic-crystal slow-light enhancement of non-linear phase sensitivity," J. Opt. Soc. Am. B 19, 2052-2059 (2002).
[CrossRef]

S. F. Mingaleev and Y. S. Kivshar, "Nonlinear transmission and light localization in photonic crystal waveguides," J. Opt. Soc. Am. B 19, 2241-2249 (2002).
[CrossRef]

J. E. Heebner, R. W. Boyd, and Q. H. Park, "Slow light, induced dispersion, enhanced nonlinearity, and optical solitons in a resonator-array waveguide," Phys. Rev. E 65, 036619 (2002).
[CrossRef]

G. D’ Aguanno, M. Centini, M. Scalora, C. Sibilia, M. Bertolotti, M. J. Bloemer, and C. M. Bowden, "Generalized coupled-mode theory for |(2) interactions in finite multi-layered structures," J. Opt. Soc. Am. B 19, 2111-2121 (2002).
[CrossRef]

A. R. Cowan and J. F. Young, "Mode matching for second-harmonic generation in photonic crystal waveguides," Phys. Rev. E 65, 085106 (2002).

N. M. Litchinitser, A. Abeeluck, C. Headley, and B. Eggleton, "Antiresonant reflecting photonic crystal optical waveguides," Opt. Lett. 27, 1592-1594 (2002).
[CrossRef]

2001 (8)

D. V. Talapin, A. L. Rogach, A. Kornowski, M. Haase, and H. Weller, "Highly luminescent monodisperse CdSe and CdSe/ZnS nanocrystals synthesized in a hexadecylamine-trioctylphosphine oxide-trioctylphospine mixture," Nano Lett. 1, 207-211 (2001).
[CrossRef]

A. V. Balakin, V. A. Bushuev, B. I. Mantsyzov, I. A. Ozheredov, E. V. Petrov, A. P. Shkurinov, P. Masselin, and G. Mouret, "Enhancement of sum frequency generation near the photonic band edge under the quasiphase matching condition," Phys. Rev. E 63, 046609 (2001).
[CrossRef]

X. Mu, Y. J. Ding, H. Yang, and G. J. Salamo, "Cavity-enhanced and quasiphase-matched mutli-order reflectionsecond-harmonic generation from GaAs/AlAs and GaAs/AlGaAs multilayers," Appl. Phys. Lett. 79, 569-571 (2001).
[CrossRef]

J. Hald, "Second harmonic generation in an external ring cavity with a Brewster-cut nonlinear cystal: theoretical considerations," Opt. Commun. 197, 169-173 (2001).
[CrossRef]

G. McConnell, A. I. Ferguson, and N. Langford, "Cavity-augmented frequency tripling of a continuous wave mode-locked laser," J. Phys. D: Appl.Phys 34, 2408-2413 (2001).
[CrossRef]

G. D’Aguanno, M. Centini, M. Scalora, C. Sibilia, Y. Dumeige, P. Vidakovic, J. A. Levenson, M. J. Bloemer, C. M. Bowden, J.W. Haus, and M. Bertolotti, "Photonic band edge effects in finite structures and applications to |(2) interactions," Phys. Rev. E 64, 016609 (2001).
[CrossRef]

S. G. Johnson, S. Fan, A. Mekis, and J. D. Joannopoulos, "Multipole-cancellation mechanism for high-Q cavities in the absence of a complete photonic band gap," Appl. Phys. Lett. 78, 3388-3390 (2001).
[CrossRef]

T. Yoshie, J. Vuckovic, A. Scherer, H. Chen, and D. Deppe, "High quality two-dimensional photonic crystal slab cavities," Appl. Phys. Lett. 79, 4289-4291 (2001).
[CrossRef]

2000 (4)

S. Noda, A. Chutinan, and M. Imada, "Trapping and emission of photons by a single defect in a photonic bandgap structure," Nature 407, 608-610 (2000).
[CrossRef] [PubMed]

E. Centeno and D. Felbacq, "Optical bistability in finite-size nonlinear bidimensional photonic crystals doped by a microcavity," Phys. Rev. B 62, R7683-R7686 (2000).
[CrossRef]

Y. Xu, R. K. Lee, and A. Yariv, "Propagation and second-harmonic generation of electromagnetic waves in a coupled-resonator optical waveguide," J. Opt. Soc. Am. B 17, 387-400 (2000).
[CrossRef]

G. Lenz, J. Zimmermann, T. Katsufuji, M. E. Lines, H. Y. Hwang, S. Spalter, R. E. Slusher, S. W. Cheong, J. S. Sanghera, and I. D. Aggarwal, "Large Kerr effect in bulk Se-based chalcogenide glasses," Opt. Lett. 25, 254-256 (2000).
[CrossRef]

1999 (3)

1998 (1)

S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and H. A. Haus, "Channel drop tunneling through localized states," Phys. Rev. Lett. 80, 960-963 (1998).
[CrossRef]

1997 (2)

J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, "Photonic-bandgap microcavities in optical waveguides," Nature 390, 143-145 (1997).
[CrossRef]

V. Berger, "Second-harmonic generation in monolithic cavities," J. Opt. Soc. Am. B 14, 1351-1360 (1997).
[CrossRef]

1996 (2)

1995 (3)

V. Savona, L. C. Andreani, P. Schwendimann, and A. Quattropani, "Quantum well excitons in semiconductor microcavities: unified treatment of weak and strong coupling regimes", Solid State Comm. 93, 733-739 (1995).
[CrossRef]

G. T. Moore, K. Koch, and E. C. Cheung, "Optical parametric oscillation with intracavity second-harmonic generation," Opt. Commun. 113, 463-470 (1995).
[CrossRef]

J. Trull, R. Vilaseca, J. Martorell, and R. Corbalan, "Second-harmonic generation in local modes of a truncated periodic structure," Opt. Lett. 20, 1746-1748 (1995).
[CrossRef] [PubMed]

1994 (1)

W. J. Kozlovsky, W. P. Risk,W. Lenth, B. G. Kim, G. L. Bona, H. Jaeckel, and D. J. Webb, "Blue light generation by resonator-enhanced frequency doubling of an extended-cavity diode laser," Appl. Phys. Lett. 65, 525-527 (1994).
[CrossRef]

1993 (1)

1991 (1)

M. J. Collett and R. B. Levien, "Two-photon loss model of intracavity second-harmonic generation," Phys. Rev. A 43, 5068-5072 (1991).
[CrossRef] [PubMed]

1990 (1)

M. A. Persaud, J. M. Tolchard, and A. I. Ferguson, "Efficient generation of picosecond pulses at 243 nm," IEEE J. Quantum Electron. 26, 1253-1258 (1990).
[CrossRef]

1989 (1)

1982 (1)

J. C. Bergquist, H. Hemmati, and W. M. Itano, "High power second harmonic generation of 257 nm radiation in an external ring cavity," Opt. Comm. 43, 437-442 (1982).
[CrossRef]

1981 (2)

D. Kleppner, "Inhibited spontaneous emission," Phys. Rev. Lett. 47, 233-236 (1981).
[CrossRef]

M. Brieger, H. Busener, A. Hese, F. V. Moers, and A. Renn, "Enhancement of single frequency SHG in a passive ring resonator," Opt. Commun. 38, 423-426 (1981).
[CrossRef]

1980 (1)

D. Miller, S. Smith, and B. Wherrett, "The microscopic mechanism of 3rd-order optical nonlinearity in InSb," Opt. Commun. 35, 221-226 (1980).
[CrossRef]

1977 (1)

A. Ferguson and M. Dunn, "Intracavity second harmonic generation in continuous-wave dye lasers," IEEE J. Quantum Electron. 13, 751-756 (1977).
[CrossRef]

1970 (1)

R. Smith, "Theory of intracavity optical second-harmonic generation," IEEE J. Quantum Electron. 6, 215-223 (1970).
[CrossRef]

1966 (1)

A. Ashkin, G. Boyd, and J. M. Dziedzic, "Resonant optical second harmonic generation and mixing," IEEE J. Quantum Electron. 2, 109-124 (1966).
[CrossRef]

1962 (1)

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, "Interactions between light waves in a nonlinear dielectric," Phys. Rev. 127, 1918-1939 (1962).
[CrossRef]

1946 (1)

E. M. Purcell, "Spontaneous emission probabilities at radio frequencies," Phys. Rev. 69, 681-686 (1946).

Appl. Phys. Lett. (9)

Y. Akahane, T. Asano, B. S. Song, and S. Noda), "Investigation of high-Q channel drop filters using donor-type defects in two-dimensional photonic crystal slabs," Appl. Phys. Lett. 83, 1512-1514 (2003).
[CrossRef]

K. Srinivasan, P. E. Barclay, O. Painter, J. X. Chen, A. Y. Cho, and C. Gmachl, "Experimental demonstration of a high quality factor photonic crystal microcavity," Appl. Phys. Lett. 83, 1915-1917 (2003).
[CrossRef]

H. Y. Ryu, M. Notomi, and Y. H. Lee, "High-quality-factor and small-mode-volume hexapole modes in photoniccrystal-slab nanocavities," Appl. Phys. Lett. 83, 4294-4296 (2003).
[CrossRef]

S. G. Johnson, S. Fan, A. Mekis, and J. D. Joannopoulos, "Multipole-cancellation mechanism for high-Q cavities in the absence of a complete photonic band gap," Appl. Phys. Lett. 78, 3388-3390 (2001).
[CrossRef]

T. Yoshie, J. Vuckovic, A. Scherer, H. Chen, and D. Deppe, "High quality two-dimensional photonic crystal slab cavities," Appl. Phys. Lett. 79, 4289-4291 (2001).
[CrossRef]

M. F. Yanik, S. Fan, and M. Soljacic, "High-contrast all-optical bistable switching in photonic crystal microcavities," Appl. Phys. Lett. 83, 2739-2741 (2003).
[CrossRef]

W. J. Kozlovsky, W. P. Risk,W. Lenth, B. G. Kim, G. L. Bona, H. Jaeckel, and D. J. Webb, "Blue light generation by resonator-enhanced frequency doubling of an extended-cavity diode laser," Appl. Phys. Lett. 65, 525-527 (1994).
[CrossRef]

X. Mu, Y. J. Ding, H. Yang, and G. J. Salamo, "Cavity-enhanced and quasiphase-matched mutli-order reflectionsecond-harmonic generation from GaAs/AlAs and GaAs/AlGaAs multilayers," Appl. Phys. Lett. 79, 569-571 (2001).
[CrossRef]

T. M. Liu, C. T. Yu, and C. K. Sun, "2 Ghz repetition-rate femtosecond blue sources by second-harmonic generation in a resonantly enhanced cavity," Appl. Phys. Lett. 86, 061112 (2005).
[CrossRef]

E (1)

H. Shinojima, "Optical nonlinearity in CdSSe microcrystallites embedded in glasses," IEICE Trans. Electron.E 90-C, 127-134 (2007).
[CrossRef]

IEEE J. Quantum Electron. (4)

M. A. Persaud, J. M. Tolchard, and A. I. Ferguson, "Efficient generation of picosecond pulses at 243 nm," IEEE J. Quantum Electron. 26, 1253-1258 (1990).
[CrossRef]

A. Ashkin, G. Boyd, and J. M. Dziedzic, "Resonant optical second harmonic generation and mixing," IEEE J. Quantum Electron. 2, 109-124 (1966).
[CrossRef]

R. Smith, "Theory of intracavity optical second-harmonic generation," IEEE J. Quantum Electron. 6, 215-223 (1970).
[CrossRef]

A. Ferguson and M. Dunn, "Intracavity second harmonic generation in continuous-wave dye lasers," IEEE J. Quantum Electron. 13, 751-756 (1977).
[CrossRef]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. B (9)

V. Berger, "Second-harmonic generation in monolithic cavities," J. Opt. Soc. Am. B 14, 1351-1360 (1997).
[CrossRef]

O. Painter, J. Vuckovic, and A. Scherer, "Defect modes of a two-dimensional photonic crystal in an optically thin dielectric slab," J. Opt. Soc. Am. B 16, 275-285 (1999).
[CrossRef]

K. Koch and G. T. Moore, "Singly resonant cavity-enhanced frequency tripling," J. Opt. Soc. Am. B 16, 448-459 (1999).
[CrossRef]

S. Pearl, H. Lotem, Y. Shimony, and S. Rosenwaks, "Optimization of laser intracavity second-harmonic generation by a linear dispersion element," J. Opt. Soc. Am. B 16, 1705-1711 (1999).
[CrossRef]

Y. Xu, R. K. Lee, and A. Yariv, "Propagation and second-harmonic generation of electromagnetic waves in a coupled-resonator optical waveguide," J. Opt. Soc. Am. B 17, 387-400 (2000).
[CrossRef]

M. Soljacic, S. G. Johnson, S. Fan, M. Ibanescu, E. Ippen, and J. D. Joannopoulos, "Photonic-crystal slow-light enhancement of non-linear phase sensitivity," J. Opt. Soc. Am. B 19, 2052-2059 (2002).
[CrossRef]

G. D’ Aguanno, M. Centini, M. Scalora, C. Sibilia, M. Bertolotti, M. J. Bloemer, and C. M. Bowden, "Generalized coupled-mode theory for |(2) interactions in finite multi-layered structures," J. Opt. Soc. Am. B 19, 2111-2121 (2002).
[CrossRef]

T. V. Dolgova, A. I. Maidykovski, M. G. Martemyanov, A. A. Fedyanin, O. A. Aktsipetrov, G. Marowsky, V. A. Yakovlev, G. Mattei, N. Ohta, and S. Nakabayashi, "Giant optical second-harmonic generation in single and coupled microcavities formed from one-dimensional photonic crystals," J. Opt. Soc. Am. B 19, 2129-2140 (2002).
[CrossRef]

S. F. Mingaleev and Y. S. Kivshar, "Nonlinear transmission and light localization in photonic crystal waveguides," J. Opt. Soc. Am. B 19, 2241-2249 (2002).
[CrossRef]

J. Phys. D: Appl.Phys (1)

G. McConnell, A. I. Ferguson, and N. Langford, "Cavity-augmented frequency tripling of a continuous wave mode-locked laser," J. Phys. D: Appl.Phys 34, 2408-2413 (2001).
[CrossRef]

Nano Lett. (1)

D. V. Talapin, A. L. Rogach, A. Kornowski, M. Haase, and H. Weller, "Highly luminescent monodisperse CdSe and CdSe/ZnS nanocrystals synthesized in a hexadecylamine-trioctylphosphine oxide-trioctylphospine mixture," Nano Lett. 1, 207-211 (2001).
[CrossRef]

Nature (3)

S. Noda, A. Chutinan, and M. Imada, "Trapping and emission of photons by a single defect in a photonic bandgap structure," Nature 407, 608-610 (2000).
[CrossRef] [PubMed]

J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, "Photonic-bandgap microcavities in optical waveguides," Nature 390, 143-145 (1997).
[CrossRef]

For a review on this topic, see K. J. Vahala, "Optical microcavities," Nature 424, 839-846 (2003).
[CrossRef] [PubMed]

Nature Mater. (1)

M. Soljacic and J. D. Joannopoulos, "Enhancement of nonlinear effects using photonic crystals," Nature Mater. 3, 211-219 (2004).
[CrossRef]

Nature Phot. (1)

S. Noda, M. Fujita, and T. Asano, "Spontaneous-emission control by photonic crystals and nanocavities," Nature Phot. 1, 449-458 (2007).
[CrossRef]

Opt. Comm. (1)

J. C. Bergquist, H. Hemmati, and W. M. Itano, "High power second harmonic generation of 257 nm radiation in an external ring cavity," Opt. Comm. 43, 437-442 (1982).
[CrossRef]

Opt. Commun. (4)

J. Hald, "Second harmonic generation in an external ring cavity with a Brewster-cut nonlinear cystal: theoretical considerations," Opt. Commun. 197, 169-173 (2001).
[CrossRef]

D. Miller, S. Smith, and B. Wherrett, "The microscopic mechanism of 3rd-order optical nonlinearity in InSb," Opt. Commun. 35, 221-226 (1980).
[CrossRef]

G. T. Moore, K. Koch, and E. C. Cheung, "Optical parametric oscillation with intracavity second-harmonic generation," Opt. Commun. 113, 463-470 (1995).
[CrossRef]

M. Brieger, H. Busener, A. Hese, F. V. Moers, and A. Renn, "Enhancement of single frequency SHG in a passive ring resonator," Opt. Commun. 38, 423-426 (1981).
[CrossRef]

Opt. Express (4)

Opt. Lett. (17)

T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya, and E. Kuramochi, "Fast bistable all-optical switch and memory on a silicon photonic crystal on-chip," Opt. Lett. 30, 2575-2577 (2005).
[CrossRef] [PubMed]

A. Rodriguez, M. Ibanescu, J. D. Joannopoulos, and S. G. Johnson, "Disorder-immune confinement of light in photonic-crystal cavities," Opt. Lett. 30, 3192-3194 (2005).
[CrossRef] [PubMed]

A. Di Falco, C. Conti, and G. Assanto, "Impedance matching in photonic crystal microcavities for secondharmonic generation," Opt. Lett. 31, 250-252 (2006).
[CrossRef] [PubMed]

Q. F. Xu and M. Lipson, "Carrier-induced optical bistability in Silicon ring resonators," Opt. Lett. 31, 341-343 (2006).
[CrossRef] [PubMed]

A. Farjadpour, D. Roundy, A. Rodriguez, M. Ibanescu, P. Bermel, J. D. Joannopoulos, S. G. Johnson, and G. W. Burr "Improving accuracy by subpixel smoothing in the finite-difference time domain," Opt. Lett. 31, 2972-2974 (2006).
[CrossRef] [PubMed]

L. Scaccabarozzi, M. M. Fejer, Y. Huo, S. Fan, X. Yu, and J. S. Harris, "Enhanced second-harmonic generation in AlGaAs/AlxOy tightly confining waveguides and resonant cavities," Opt. Lett. 31, 3626-3628 (2006).
[CrossRef] [PubMed]

K. Schneider, S. Schiller, J. Mlynek, M. Bode, and I. Freitag, "1.1-W single-frequency 532-nm radiation by second-harmonic generation of a miniature Nd:YAG ring laser," Opt. Lett. 21, 1999-2001 (1996).
[CrossRef] [PubMed]

G. Lenz, J. Zimmermann, T. Katsufuji, M. E. Lines, H. Y. Hwang, S. Spalter, R. E. Slusher, S. W. Cheong, J. S. Sanghera, and I. D. Aggarwal, "Large Kerr effect in bulk Se-based chalcogenide glasses," Opt. Lett. 25, 254-256 (2000).
[CrossRef]

G. J. Dixon, C. E. Tanner, and C. E. Wieman, "432-nm source based on efficient second-harmonic generation of GaAlAs diode-laser radiation in a self-locking external resonant cavity," Opt. Lett. 14, 731-733 (1989).
[CrossRef] [PubMed]

Z. Y. Ou and H. J. Kimble, "Enhanced conversion efficiency for harmonic generation with double resonance," Opt. Lett. 18, 1053-1055 (1993).
[CrossRef] [PubMed]

J. Trull, R. Vilaseca, J. Martorell, and R. Corbalan, "Second-harmonic generation in local modes of a truncated periodic structure," Opt. Lett. 20, 1746-1748 (1995).
[CrossRef] [PubMed]

N. M. Litchinitser, A. Abeeluck, C. Headley, and B. Eggleton, "Antiresonant reflecting photonic crystal optical waveguides," Opt. Lett. 27, 1592-1594 (2002).
[CrossRef]

A. H. Norton and C. M. de Sterke, "Optimal poling of nonlinear photonic crystals for frequency conversion," Opt. Lett. 28, 188-190 (2003).
[CrossRef] [PubMed]

M. Soljacic, M. Ibanescu, S. G. Johnson, J. D. Joannopoulos, and Y. Fink, "Optical bistability in axially modulated OmniGuide fibers," Opt. Lett. 28, 516-518 (2003).
[CrossRef] [PubMed]

M. Soljacic, C. Luo, J. D. Joannopoulos, and S. Fan, "Nonlinear photonic crystal microdevices for optical integration," Opt. Lett. 28, 637-639 (2003).
[CrossRef] [PubMed]

H. Y. Ryu and M. Notomi, "Enhancement of spontaneous emission from the resonant modes of a photonic crystal slab single-defect cavity," Opt. Lett. 28, 2390-2392 (2003).
[CrossRef] [PubMed]

M. F. Yanik, S. Fan, M. Soljacic, and J. D. Joannopoulos, "All-optical transistor action with bistable switching in a photonic crystal cross-waveguide geometry," Opt. Lett. 28, 2506-2508 (2003).
[CrossRef] [PubMed]

Phys. Rev. (2)

E. M. Purcell, "Spontaneous emission probabilities at radio frequencies," Phys. Rev. 69, 681-686 (1946).

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, "Interactions between light waves in a nonlinear dielectric," Phys. Rev. 127, 1918-1939 (1962).
[CrossRef]

Phys. Rev. A (2)

Y. Dumeige and P. Feron, "Wispering-gallery-mode analysis of phase-matched doubly resonant second-harmonic generation," Phys. Rev. A 74, 063804 (2006).
[CrossRef]

M. J. Collett and R. B. Levien, "Two-photon loss model of intracavity second-harmonic generation," Phys. Rev. A 43, 5068-5072 (1991).
[CrossRef] [PubMed]

Phys. Rev. B (6)

P. Bermel, J. D. Joannopoulos, Y. Fink, P. A. Lane, and C. Tapalian, "Properties of radiating pointlike sources in cylindrical omnidirectionally reflecting waveguides," Phys. Rev. B 69, 035316 (2004).
[CrossRef]

A. M. Malvezzi, G. Vecchi, M. Patrini, G. Guizzetti, L. C. Andreani, F. Romanato, L. Businaro, E. Di Fabrizio, A. Passaseo, and M. De Vittorio, "Resonant second-harmonic generation in a GaAs photonic crystal waveguide," Phys. Rev. B 68, 161306 (2003).
[CrossRef]

F. F. Ren, R. Li, C. Cheng, J. Chen, Y. X. Fan, J. P. Ding, and H. T. Wang, "Low-threshold and high-efficiency optical parametric oscillator using a one-dimensional single-defect photonic crystal with quadratic nonlinearity," Phys. Rev. B 73, 033104 (2006).
[CrossRef]

E. Centeno and D. Felbacq, "Optical bistability in finite-size nonlinear bidimensional photonic crystals doped by a microcavity," Phys. Rev. B 62, R7683-R7686 (2000).
[CrossRef]

F. F. Ren, R. Li, C. Cheng, and H. T. Wang, J. R. Qiu, J. H. Si, and K. Hirao, "Giant enhancement of second harmonic generation in a finite photonic crystal with a single defect and dual-localized modes," Phys. Rev. B 70, 245109 (2004).
[CrossRef]

M. G. Martemyanov, E. M. Kim, T. V. Dolgova, A. A. Fedyanin, O. A. Aktsipetrov, and G. Marowsky, "Thirdharmonic generation in silicon photonic crystals and microcavities," Phys. Rev. B 70, 073311 (2004).
[CrossRef]

Phys. Rev. E (6)

A. R. Cowan and J. F. Young, "Optical bistability involving photonic crystal microcavities and Fano line shapes," Phys. Rev. E 68, 046606 (2003).
[CrossRef]

J. Vuckovic, M. Loncar, H. Mabuchi, and A. Scherer, "Design of photonic crystal microcavities for cavity QED," Phys. Rev. E 65, 016608 (2002).
[CrossRef]

G. D’Aguanno, M. Centini, M. Scalora, C. Sibilia, Y. Dumeige, P. Vidakovic, J. A. Levenson, M. J. Bloemer, C. M. Bowden, J.W. Haus, and M. Bertolotti, "Photonic band edge effects in finite structures and applications to |(2) interactions," Phys. Rev. E 64, 016609 (2001).
[CrossRef]

J. E. Heebner, R. W. Boyd, and Q. H. Park, "Slow light, induced dispersion, enhanced nonlinearity, and optical solitons in a resonator-array waveguide," Phys. Rev. E 65, 036619 (2002).
[CrossRef]

A. V. Balakin, V. A. Bushuev, B. I. Mantsyzov, I. A. Ozheredov, E. V. Petrov, A. P. Shkurinov, P. Masselin, and G. Mouret, "Enhancement of sum frequency generation near the photonic band edge under the quasiphase matching condition," Phys. Rev. E 63, 046609 (2001).
[CrossRef]

A. R. Cowan and J. F. Young, "Mode matching for second-harmonic generation in photonic crystal waveguides," Phys. Rev. E 65, 085106 (2002).

Phys. Rev. Lett. (7)

P. P. Markowicz, H. Tiryaki, H. Pudavar, P. N. Prasad, N. N. Lepeshkin, and R.W. Boyd, "Dramatic enhancement of third-harmonic generation in three-dimensional photonic crystals," Phys. Rev. Lett. 92, 083903 (2004).
[CrossRef] [PubMed]

P. Bermel, A. Rodriguez, J. D. Joannopoulos, and M. Soljacic, "Tailoring optical nonlinearities via the Purcell effect," Phys. Rev. Lett. 99, 053601 (2007).
[CrossRef] [PubMed]

S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and H. A. Haus, "Channel drop tunneling through localized states," Phys. Rev. Lett. 80, 960-963 (1998).
[CrossRef]

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vuckovic, "Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal," Phys. Rev. Lett. 95, 013904 (2005).
[CrossRef] [PubMed]

S. John and T. Quang, "Resonant nonlinear dielectric response in a photonic band gap material," Phys. Rev. Lett. 76, 2484-2487 (1996).
[CrossRef] [PubMed]

D. Kleppner, "Inhibited spontaneous emission," Phys. Rev. Lett. 47, 233-236 (1981).
[CrossRef]

X. Brokmann, L. Coolen, M. Dahan, and J. P. Hermier, "Measurement of the radiative and nonradiative decay rates of single CdSe nanocrystals through a controlled modification of their spontaneous emission," Phys. Rev. Lett. 93, 107403 (2004).
[CrossRef] [PubMed]

Solid State Comm. (1)

V. Savona, L. C. Andreani, P. Schwendimann, and A. Quattropani, "Quantum well excitons in semiconductor microcavities: unified treatment of weak and strong coupling regimes", Solid State Comm. 93, 733-739 (1995).
[CrossRef]

Other (10)

M. Nielsen and I. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, England, 2000).

J. J. Sakurai, Modern Quantum Mechanics (Addison-Wesley, Reading, MA, 1994).

M. Soljacic, M. Ibanescu, S. G. Johnson, Y. Fink, and J. D. Joannopoulos, "Optimal bistable switching in nonlinear photonic crystals," Phys. Rev. E 66, 055601(R) (2002).
[CrossRef]

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton Univ. Press, 1995).

R. W. Boyd, Nonlinear Optics (Academic Press, California, 1992).

H. M. Gibbs, Optical Bistability: Controlling Light with Light (Academic Press, Orlando, FL, 1985).

A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech, Norwood, MA, 2000).

H. A. Haus, Waves and Fields in Optoelectronics (Prentice-Hall, Englewood Cliffs, NJ, 1984).

VMODE is actually the effective modal volume (weighted by local χ(3)) but it is quantitatively very similar to the usual definition of modal volume.

M. Notomi, Personal communication (2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Sketch of a system composed by an optical resonator coupled symmetrically to both an input and output ports. ωc is the corresponding resonant frequency and Γ is the width of the resonance. Pin and Pout label the incoming and outgoing powers through the structure, respectively. Inset shows the typical linear transmission spectrum corresponding to this system.

Fig. 2.
Fig. 2.

(a) Evolution of the transmission spectra through the system sketched in Fig. 1 when the refractive index of the resonator is increased by δn. As can be seen in this panel, δn shifts the original resonant frequency of the cavity ωc (dashed line) towards the frequency of the external illumination ωp (blue dashed line). (b) Dependence of Pout/Pin as a function of the outgoing power for Δ=3 (see text for details on this magnitude). (c) Same function as (b) but this time Pout is plotted as a function of Pin for several values of Δ. Dotted lines display the unstable branches of the hysteresis loop for each case.

Fig. 3.
Fig. 3.

(a) Photonic crystal implementation of the system sketched in Fig. 1. The PhC is made by a periodic two dimensional distribution of high dielectric rods (εH =12.25, yellow regions in the figure) in a low-ε background (εL =2.25). The rods have a radius of r=0.25a. A point defect, introduced by increasing the radius of the central rod to r=0.33a, is symmetrically coupled to two single mode PhC waveguides on the left and right. The electric field pointing into the page is depicted with positive (negative) values in red (blue). (b) Computed dependence of the output power (Pout ) as a function of the input power (Pin ) for the structure shown in panel (a) when the central rod is assumed to be made by a nonlinear Kerr-like material. Green line displays the results obtained from a perturbation theory analysis while the blue dots correspond to the result of a nonlinear FDTD simulation. Dashed lines represent the unstable branch of the bistable loop.

Fig. 4.
Fig. 4.

Schematic diagram of waveguide-cavity system. Input light from a waveguide (left) at one frequency ω 1 is coupled to a doubly-resonant cavity (with resonances at ω 1 and ω 2, with respective lifetimes Q 1 and Q 2) and converted to a cavity mode at another frequency ω 2 by a χ (2) process. The converted light is radiated back into the waveguide at both frequencies.

Fig. 5.
Fig. 5.

Plot of conversion efficiency Pω2out/Pin (black), and reflection Pω1out/Pin vs. P in for the schematic geometry in Fig. 4 (Here in/out denotes input/output power at frequency ω). The maximum conversion efficiency is achieved at the expected critical power P 0. To compute this figure, we have chosen conservative modal parameters ω 1=0.3 2πc/a, Q 1=104, Q 2=2Q1, 1/VHG ≈10-5a-3 (where a is the characteristic length scale of the system, see Ref. [35] for further details on this calculation).

Fig. 6.
Fig. 6.

A 7×7 square lattice of dielectric rods (ε=12.25) in air, with a single defect rod in the middle. On top of the dielectric structure outlined in black, the Ez field is plotted, with positive (negative) values in red (blue). A small region of nonlinear material, e.g., a CdSe nanocrystal, with transition frequency ωelec , is placed in the defect rod.

Fig. 7.
Fig. 7.

(a) Numerical calculation of the enhancement of SE for the set-up in Fig. 6, given by the ratio of the rate of emission in the PhC, T -1 1,purcell, divided by the emission rate in vacuum, T -1 1,vac. (b) Kerr enhancement η≡Reχ(3) purcell /Reχ (3) vac as a function of electronic transition frequency (ω elec) for a system of dielectric rods in air, with the parameter values listed in the text.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

P out P in = 1 1 + ( ( ω ω c ) Γ ) 2
P out P in = 1 1 + ( P out P 0 Δ ) 2
χ ( 3 ) = 4 3 N μ 4 T 1 T 2 2 ( Δ T 2 i ) h ¯ 3 ( 1 + Δ 2 T 2 2 ) 2 ,
Re χ ( 3 ) 4 3 N μ 4 ( 1 h ¯ Δ ) 3 T 1 T 2 .

Metrics