Abstract

Femtosecond single-pulsed supercontinua (SC) are produced in a short sub-cm piece of photonic crystal fiber. The SC span from 450 nm to more than 1.1 µm with 1-nJ energy injection. UV light down to 340 nm is observed with increased injection power. Using such a single-pulsed SC we implemented a compact transient absorption spectrometer with broadband detection and 150-fs FWHM time resolution to monitor the ultrafast dynamics of the electronic states of malachite green in ethanol excited to the S2 state. The full spectral evolution is observed from 450 nm to 1050 nm, with high sensitivity and a signal-to-noise ratio as high as 1000.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. J. K. Ranka, R. S. Windeler, and A. J. Stentz, "Visible continuum generation in air silica microstructure optical fibers with anomalous dispersion at 800nm," Opt. Lett. 25, 25-27 (2000).
    [CrossRef]
  2. A. Husakou and J. Herrmann, "Supercontinuum Generation of Higher-Order Solitons by Fission in Photonic Crystal Fibers," Phys. Rev. Lett. 87, 203,901 (2001).
    [CrossRef]
  3. J. M. Dudley, G. Genty, and S. Coen, "Supercontinuum generation in photonic crystal fiber," Rev. Mod. Phys. 78, 1135-1184 (2006).
    [CrossRef]
  4. L. Tartara, I. Cristiani, and V. Degiorgio, "Blue light and infrared continuum generation by soliton fission in a microstructured fiber," Appl. Phys. B 77, 307-311 (2003).
    [CrossRef]
  5. J. M. Dudley, X. Gu, L. Xu, M. Kimmel, E. Zeek, P. O’Shea, R. Trebino, S. Coen, and R. S. Windeler, "Crosscorrelation frequency resolved optical gating analysis of broadband continuum generation in photonic crystal fiber: simulations and experiments," Opt. Express 10, 1215-1221 (2002).
    [PubMed]
  6. V. Nagarajan, E. Johnson, P. Schellenberg, W. Parson, and R. Windeler, "A compact versatile femtosecond spectrometer," Rev. Sci. Instrum. 73, 4145-4149 (2002).
    [CrossRef]
  7. M. Punke, F. Hoos, C. Karnutsch, U. Lemmer, N. Linder, and K. Streubel, "High-repetition-rate white-light pump-probe spectroscopy with a tapered fiber," Opt. Lett. 31, 1157-1159 (2006).
    [CrossRef] [PubMed]
  8. G. Oster and Y. Nishijima, "Fluorescence and internal rotation: their dependence on viscosity of the medium," J. Am. Chem. Soc. 78, 1581-1584 (1956).
    [CrossRef]
  9. M. Yoshizawa, K. Suzuki, A. Kubo, and S. Saikan, "Femtosecond study of S2 fluorescence in malachite green in solutions," Chem. Phys. Lett. 290, 43-48 (1998).
    [CrossRef]
  10. Y. Kanematsu, H. Ozawa, I. Tanaka, and S. Kinoshita, "Femtosecond optical Kerr-gate measurement of fluorescence spectra of dye solutions," J. Lumin. 87-89, 917-919 (2000).
    [CrossRef]
  11. A. C. Bhasikuttan, A. V. Sapre, and T. Okada, "Ultrafast relaxation dynamics from the S2 State of Malachite Green studied with Femtosecond upconversion Spectroscopy," J. Phys. Chem. A 107, 3030-3035 (2003).
    [CrossRef]
  12. S. H. Cho, B. E. Bouma, E. P. Ippen, and J. G. Fujimoto, "Low-repetition-rate high-peak-power Kerr-lens modelocked Ti:Al2O3 laser with a multiple-pass cavity," Opt. Lett. 24, 417-419 (1999).
    [CrossRef]
  13. M. M. Martin, P. Plaza, and Y. H. Meyer, "Ultrafast conformational relaxation of triphenylmethane dyes: Spectral Characterization," J. Phys. Chem. 95, 9310-9314 (1992).
    [CrossRef]
  14. T. Robl and A. Seilmeier, "Ground-state recovery of electronically excited malachite green via transient vibrational heating," Chem. Phys. Lett. 147, 544-550 (1988).
    [CrossRef]

2006

2003

L. Tartara, I. Cristiani, and V. Degiorgio, "Blue light and infrared continuum generation by soliton fission in a microstructured fiber," Appl. Phys. B 77, 307-311 (2003).
[CrossRef]

A. C. Bhasikuttan, A. V. Sapre, and T. Okada, "Ultrafast relaxation dynamics from the S2 State of Malachite Green studied with Femtosecond upconversion Spectroscopy," J. Phys. Chem. A 107, 3030-3035 (2003).
[CrossRef]

2002

2001

A. Husakou and J. Herrmann, "Supercontinuum Generation of Higher-Order Solitons by Fission in Photonic Crystal Fibers," Phys. Rev. Lett. 87, 203,901 (2001).
[CrossRef]

2000

J. K. Ranka, R. S. Windeler, and A. J. Stentz, "Visible continuum generation in air silica microstructure optical fibers with anomalous dispersion at 800nm," Opt. Lett. 25, 25-27 (2000).
[CrossRef]

Y. Kanematsu, H. Ozawa, I. Tanaka, and S. Kinoshita, "Femtosecond optical Kerr-gate measurement of fluorescence spectra of dye solutions," J. Lumin. 87-89, 917-919 (2000).
[CrossRef]

1999

1998

M. Yoshizawa, K. Suzuki, A. Kubo, and S. Saikan, "Femtosecond study of S2 fluorescence in malachite green in solutions," Chem. Phys. Lett. 290, 43-48 (1998).
[CrossRef]

1992

M. M. Martin, P. Plaza, and Y. H. Meyer, "Ultrafast conformational relaxation of triphenylmethane dyes: Spectral Characterization," J. Phys. Chem. 95, 9310-9314 (1992).
[CrossRef]

1988

T. Robl and A. Seilmeier, "Ground-state recovery of electronically excited malachite green via transient vibrational heating," Chem. Phys. Lett. 147, 544-550 (1988).
[CrossRef]

1956

G. Oster and Y. Nishijima, "Fluorescence and internal rotation: their dependence on viscosity of the medium," J. Am. Chem. Soc. 78, 1581-1584 (1956).
[CrossRef]

Appl. Phys. B

L. Tartara, I. Cristiani, and V. Degiorgio, "Blue light and infrared continuum generation by soliton fission in a microstructured fiber," Appl. Phys. B 77, 307-311 (2003).
[CrossRef]

Chem. Phys. Lett.

M. Yoshizawa, K. Suzuki, A. Kubo, and S. Saikan, "Femtosecond study of S2 fluorescence in malachite green in solutions," Chem. Phys. Lett. 290, 43-48 (1998).
[CrossRef]

T. Robl and A. Seilmeier, "Ground-state recovery of electronically excited malachite green via transient vibrational heating," Chem. Phys. Lett. 147, 544-550 (1988).
[CrossRef]

J. Am. Chem. Soc.

G. Oster and Y. Nishijima, "Fluorescence and internal rotation: their dependence on viscosity of the medium," J. Am. Chem. Soc. 78, 1581-1584 (1956).
[CrossRef]

J. Lumin.

Y. Kanematsu, H. Ozawa, I. Tanaka, and S. Kinoshita, "Femtosecond optical Kerr-gate measurement of fluorescence spectra of dye solutions," J. Lumin. 87-89, 917-919 (2000).
[CrossRef]

J. Phys. Chem.

M. M. Martin, P. Plaza, and Y. H. Meyer, "Ultrafast conformational relaxation of triphenylmethane dyes: Spectral Characterization," J. Phys. Chem. 95, 9310-9314 (1992).
[CrossRef]

J. Phys. Chem. A

A. C. Bhasikuttan, A. V. Sapre, and T. Okada, "Ultrafast relaxation dynamics from the S2 State of Malachite Green studied with Femtosecond upconversion Spectroscopy," J. Phys. Chem. A 107, 3030-3035 (2003).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. Lett.

A. Husakou and J. Herrmann, "Supercontinuum Generation of Higher-Order Solitons by Fission in Photonic Crystal Fibers," Phys. Rev. Lett. 87, 203,901 (2001).
[CrossRef]

Rev. Mod. Phys.

J. M. Dudley, G. Genty, and S. Coen, "Supercontinuum generation in photonic crystal fiber," Rev. Mod. Phys. 78, 1135-1184 (2006).
[CrossRef]

Rev. Sci. Instrum.

V. Nagarajan, E. Johnson, P. Schellenberg, W. Parson, and R. Windeler, "A compact versatile femtosecond spectrometer," Rev. Sci. Instrum. 73, 4145-4149 (2002).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

(Color online) (a) Spectra obtained by coupling incident infrared light into the LP01 transverse mode (solid black curve) and in a supposedly leaky mode (red dashed curve) of the fiber (length 8 mm). (b) Cross-sction of the fiber. (c) Temporal distribution of the spectrum displayed in (a) for the LP01 mode. The solid red curve is a polynomial fit to the spectro-temporal distribution which reveals the chirp of the SC.

Fig. 2.
Fig. 2.

(Color online) a) Stationary absorption spectrum ofMG in ethanol. The arrow shows the excitation wavelength of 425 nm. b) Temporally- and spectrally-resolved transient absorption spectra (in false colors) of MG excited to the S2 state. These data are reconstructed from 3 different experimental runs with different central detection wavelengths and merged at 540 nm and 850 nm. Here the PCF length is 6.5 mm.

Fig. 3.
Fig. 3.

(Color online) Kinetic traces (in black) and their best fits to a biexponential curve (in red) at a) 490 nm, c) 800 nm, and to a triexponential curve at b) 680 nm. The time scale is linear below 1 ps and logarithmic above. Data are extracted from Fig. 2(b), and averaged on a 10-nm window, that is over 4 adjacent columns of the 2D plot displayed in Fig. 2(b). The standard deviation of the residuals to the fit gives a typical noise level of 5×10-5.

Metrics