Abstract

Quasi-continuous wave (cw) laser action has been demonstrated by direct diode pumping of a new extremely broadband Cr3+-doped crystal. In contrast to previous works, where large-frame pump lasers have been employed, we have shown that low-power direct diode pumping of LiInGeO4 is feasible, opening up the way for realizing compact and efficient laser sources for telecommunication applications.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. M. Yu. Sharonov, A. B. Bykov, P. Rojas, V. Petricevic, and R. R. Alfano, "Spectroscopy of chromium centers in LiScGeO4 and LiInGeO4 single crystals," Phys. Rev. B 72, 115111 (2005).
    [CrossRef]
  2. V. Petricevic, S. K. Gayen, R. R. Alfano, K. Yamagishi, H. Anzai, and Y. Yamaguchi, "Laser action in chromium-doped forsterite," Appl. Phys. Lett. 52, 1040 (1988).
    [CrossRef]
  3. V. Petricevic, A. Bykov, J. M. Evans, and R. R. Alfano, "Room-temperature near-infrared tunable laser operation of Cr4+:Ca2GeO4," Opt. Lett. 21, 1750 (1996).
    [CrossRef] [PubMed]
  4. M. Sharonov, V. Petricevic, A. Bykov, and R. R. Alfano, "Near-infrared laser operation of Cr3+ centers in chromium-doped LiInGeO4 and LiScGeO4 crystals," Opt. Lett. 30, 851 (2005).
    [CrossRef] [PubMed]
  5. C. W. Struck, and W. H. Fonger, "Unified model of the temperature quenching of narrow-line and broad-band emissions," J. Lumin. 10, 1 (1975)
    [CrossRef]
  6. A. E. Siegman, Lasers (University Science Books, Mill Valley, USA, 1986).
  7. H. W. H. Lee, S. A. Payne, and L. L. Chase, "Excited-state absorption of Cr3+ in LiCaAlF6: Effects of asymmetric distortions and intensity selection rules," Phys. Rev. B 39, 8907 (1989).
    [CrossRef]
  8. E. Sorokin, S. Naumov, and I. T. Sorokina, "Ultrabroadband infrared solid-state lasers," IEEE J. Sel. Top. Quantum Electron. 11, 690-712 (2005).
    [CrossRef]
  9. L. L. Isaacs, Di Yao, BaoPing Wang, A. B. Bykov, V. Petricevic, R. R. Alfano, "The Thermal Properties of Cr (IV) Doped Solid State Tunable Laser Materials," presented at the 16th IUPAC Conference on Chemical Thermodynamics (ICCT- 2000), Halifax, Nova Scotia, Canada, 6-11 August 2000.
  10. A. B. Bykov, V. Petricevic, M. Yu. Sharonov, J. Steiner, L. L. Isaacs, T. Avrahami, R. DiBlasi, S. Sengupta, and R. R. Alfano, "Flux growth and optical characterization of Cr-doped LiInGeO4," J. Cryst. Growth 274, 149 (2005).
    [CrossRef]

2005 (4)

M. Yu. Sharonov, A. B. Bykov, P. Rojas, V. Petricevic, and R. R. Alfano, "Spectroscopy of chromium centers in LiScGeO4 and LiInGeO4 single crystals," Phys. Rev. B 72, 115111 (2005).
[CrossRef]

M. Sharonov, V. Petricevic, A. Bykov, and R. R. Alfano, "Near-infrared laser operation of Cr3+ centers in chromium-doped LiInGeO4 and LiScGeO4 crystals," Opt. Lett. 30, 851 (2005).
[CrossRef] [PubMed]

E. Sorokin, S. Naumov, and I. T. Sorokina, "Ultrabroadband infrared solid-state lasers," IEEE J. Sel. Top. Quantum Electron. 11, 690-712 (2005).
[CrossRef]

A. B. Bykov, V. Petricevic, M. Yu. Sharonov, J. Steiner, L. L. Isaacs, T. Avrahami, R. DiBlasi, S. Sengupta, and R. R. Alfano, "Flux growth and optical characterization of Cr-doped LiInGeO4," J. Cryst. Growth 274, 149 (2005).
[CrossRef]

1996 (1)

1989 (1)

H. W. H. Lee, S. A. Payne, and L. L. Chase, "Excited-state absorption of Cr3+ in LiCaAlF6: Effects of asymmetric distortions and intensity selection rules," Phys. Rev. B 39, 8907 (1989).
[CrossRef]

1988 (1)

V. Petricevic, S. K. Gayen, R. R. Alfano, K. Yamagishi, H. Anzai, and Y. Yamaguchi, "Laser action in chromium-doped forsterite," Appl. Phys. Lett. 52, 1040 (1988).
[CrossRef]

1975 (1)

C. W. Struck, and W. H. Fonger, "Unified model of the temperature quenching of narrow-line and broad-band emissions," J. Lumin. 10, 1 (1975)
[CrossRef]

Appl. Phys. Lett. (1)

V. Petricevic, S. K. Gayen, R. R. Alfano, K. Yamagishi, H. Anzai, and Y. Yamaguchi, "Laser action in chromium-doped forsterite," Appl. Phys. Lett. 52, 1040 (1988).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

E. Sorokin, S. Naumov, and I. T. Sorokina, "Ultrabroadband infrared solid-state lasers," IEEE J. Sel. Top. Quantum Electron. 11, 690-712 (2005).
[CrossRef]

J. Cryst. Growth (1)

A. B. Bykov, V. Petricevic, M. Yu. Sharonov, J. Steiner, L. L. Isaacs, T. Avrahami, R. DiBlasi, S. Sengupta, and R. R. Alfano, "Flux growth and optical characterization of Cr-doped LiInGeO4," J. Cryst. Growth 274, 149 (2005).
[CrossRef]

J. Lumin. (1)

C. W. Struck, and W. H. Fonger, "Unified model of the temperature quenching of narrow-line and broad-band emissions," J. Lumin. 10, 1 (1975)
[CrossRef]

Opt. Lett. (2)

Phys. Rev. B (2)

M. Yu. Sharonov, A. B. Bykov, P. Rojas, V. Petricevic, and R. R. Alfano, "Spectroscopy of chromium centers in LiScGeO4 and LiInGeO4 single crystals," Phys. Rev. B 72, 115111 (2005).
[CrossRef]

H. W. H. Lee, S. A. Payne, and L. L. Chase, "Excited-state absorption of Cr3+ in LiCaAlF6: Effects of asymmetric distortions and intensity selection rules," Phys. Rev. B 39, 8907 (1989).
[CrossRef]

Other (2)

L. L. Isaacs, Di Yao, BaoPing Wang, A. B. Bykov, V. Petricevic, R. R. Alfano, "The Thermal Properties of Cr (IV) Doped Solid State Tunable Laser Materials," presented at the 16th IUPAC Conference on Chemical Thermodynamics (ICCT- 2000), Halifax, Nova Scotia, Canada, 6-11 August 2000.

A. E. Siegman, Lasers (University Science Books, Mill Valley, USA, 1986).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Schematic. L1: 100 mm focal length, plano-convex lens; L2: 75 mm focal length, plano-convex lens; M1: Dichroic mirror, ROC=-50mm; OC: Output coupler with 2.5% transmission, M2: plane high reflecting cavity end mirror.

Fig. 2.
Fig. 2.

Relaxation oscillations in the Cr:LiInGeO4 laser. The damping time constant is 5.6 µs, as indicated by the blue line, the oscillation frequency is ωsp=1.57×106 s-1.

Fig. 3.
Fig. 3.

Spectrum of the free running diode pumped Cr:LiInGeO4 laser.

Fig. 4.
Fig. 4.

Decrease in output signal due to temperature quenching of the Cr3+ fluorescence. Pump pulse duration: 1 ms. Dashed blue line: Linear fit.

Fig. 5.
Fig. 5.

Single gain-switched laser pulse

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

τ sp = 2 τ 2 r
ω sp = ( r 1 ) γ 2 γ c ( r γ 2 2 ) 2 .
δ 0 = γ c T ln ( 1 R OC )

Metrics