Abstract

We experimentally demonstrate an ultra high Q/V nanocavity on SOI substrate. The design is based on modal adaptation within the cavity and allows to measure a quality factor of 58.000 for a modal volume of 0.6(λ/n)3. This record Q/V value of 105 achieved for a structure standing on a physical substrate, rather than on membrane, is in very good agreement with theoretical predictions also shown. Based on these experimental results, we show that further refinements of the cavity design could lead to Q/V ratios close to 106.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. J. Poon, L. Zhu, G. DeRose, and A. Yariv, "Transmission and group delay of microring coupled-resonator optical waveguides," Opt. Lett. 31, 456 (2006)
    [CrossRef] [PubMed]
  2. A. Melloni and M. Martinelli, "Synthesis of Direct-Coupled-Resonators Bandpass Filters for WDM Systems," J. Lightwave Technol. 20, 296 (2002)
    [CrossRef]
  3. B. Schmidt, Q. Xu, J. Shakya, S. Manipatruni, and M. Lipson, "Compact electro-optic modulator on silicon-on-insulator substrates using cavities with ultra-small modal volumes," Opt. Express 15, 3140 (2007).
    [CrossRef] [PubMed]
  4. K. Sakoda, Optical Properties of Photonic Crystals (Springer 2004).
  5. O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O. Brien, P. D. Dapkus, I. Kim, "Two-Dimensional Photonic Band-Gap Defect Mode Laser," Science 84, 1819 (1999).
    [CrossRef]
  6. D. K. Armani, T. J. Kippenberg, S. M. Spillane and K. J. Vahala, "Ultralow-threshold microcavity Raman laser on a microelectronic chip," Nature 421, 925 (2003).
    [CrossRef] [PubMed]
  7. T. Tanabe, M. Notomi, E. Kuramochi, A. Shinya and H. Taniyama, "Trapping and delaying photons for one nanosecond in an ultrasmall high-Q photonic-crystal nanocavity," Nat. Photonics 1, 49 (2007).
    [CrossRef]
  8. S. Noda, M. Fujita and T. Asano, "Spontaneous-emission control by photonic crystals and nanocavities" Nat. Photonics 1, 449 (2007).
    [CrossRef]
  9. M. W. Pruessner, T. H. Stievater, and W. S. Rabinovich," Integrated waveguide Fabry-Perot microcavities with silicon/air Bragg mirrors," Opt. Lett. 32, 533 (2007).
    [CrossRef] [PubMed]
  10. Y. Tanaka, T. Asano, R. Hatsuta, and S. Noda, "Investigation of point-defect cavity formed in two-dimensional photonic crystal slab with one-sided dielectric cladding," Appl. Phys. Lett. 88, 011112 (2006).
    [CrossRef]
  11. J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, HenryI. Smith and E. P. Ippen, "Photonic-bandgap microcavities in optical waveguides," Nature 390, 143 (1997).
    [CrossRef]
  12. D. Peyrade, E. Silberstein, Ph. Lalanne, A. Talneau, and Y. Chen, "Short Bragg mirrors with adiabatic modal conversion," Appl. Phys. Lett. 81, 829 (2002).
    [CrossRef]
  13. P. Velha, J. C. Rodier, P. Lalanne, J. P. Hugonin, D. Peyrade, E. Picard, T. Charvolin, E. Hadji, "Ultracompact silicon-on-insulator ridge-waveguide mirrors with high reflectance," Appl. Phys. Lett. 84, 171121 (2006).
    [CrossRef]
  14. C. Sauvan, G. Lecamp, P. Lalanne and J. P. Hugonin, "Modal-reflectivity enhancement by geometry tuning in Photonic Crystal microcavities," Opt. Express. 13, 245 (2005).
    [CrossRef] [PubMed]
  15. P. Velha, J. C. Rodier, P. Lalanne, J. P. Hugonin, D. Peyrade, E. Picard, T. Charvolin and E. Hadji, "Ultra-high-reflectivity photonic-bandgap mirrors in a ridge SOI waveguide," New J. Phys. 8, 204 (2006).
    [CrossRef]
  16. P. Yeh, Optical Waves in Layered Media (Wiley-Interscience 1988).
  17. E. Silberstein, P. Lalanne, J. P. Hugonin, and Q. Cao, "Use of grating theories in integrated optics," J. Opt. Soc. Am. A 18, 2865-2875 (2001).
    [CrossRef]
  18. G. Lecamp, J. P. Hugonin and P. Lalanne, "Theoretical and computational concepts for periodic optical waveguides," Opt. Express 15, 11042-60 (2007).
    [CrossRef] [PubMed]
  19. H. Kim, I. M. Lee and B. Lee, "Extended scattering-matrix method for efficient full parallel implementation of rigorous coupled-wave analysis," J. Opt. Soc. Am. A 24, 2313-2327 (2007).
    [CrossRef]

2007 (6)

2006 (4)

J. Poon, L. Zhu, G. DeRose, and A. Yariv, "Transmission and group delay of microring coupled-resonator optical waveguides," Opt. Lett. 31, 456 (2006)
[CrossRef] [PubMed]

Y. Tanaka, T. Asano, R. Hatsuta, and S. Noda, "Investigation of point-defect cavity formed in two-dimensional photonic crystal slab with one-sided dielectric cladding," Appl. Phys. Lett. 88, 011112 (2006).
[CrossRef]

P. Velha, J. C. Rodier, P. Lalanne, J. P. Hugonin, D. Peyrade, E. Picard, T. Charvolin, E. Hadji, "Ultracompact silicon-on-insulator ridge-waveguide mirrors with high reflectance," Appl. Phys. Lett. 84, 171121 (2006).
[CrossRef]

P. Velha, J. C. Rodier, P. Lalanne, J. P. Hugonin, D. Peyrade, E. Picard, T. Charvolin and E. Hadji, "Ultra-high-reflectivity photonic-bandgap mirrors in a ridge SOI waveguide," New J. Phys. 8, 204 (2006).
[CrossRef]

2005 (1)

C. Sauvan, G. Lecamp, P. Lalanne and J. P. Hugonin, "Modal-reflectivity enhancement by geometry tuning in Photonic Crystal microcavities," Opt. Express. 13, 245 (2005).
[CrossRef] [PubMed]

2003 (1)

D. K. Armani, T. J. Kippenberg, S. M. Spillane and K. J. Vahala, "Ultralow-threshold microcavity Raman laser on a microelectronic chip," Nature 421, 925 (2003).
[CrossRef] [PubMed]

2002 (2)

D. Peyrade, E. Silberstein, Ph. Lalanne, A. Talneau, and Y. Chen, "Short Bragg mirrors with adiabatic modal conversion," Appl. Phys. Lett. 81, 829 (2002).
[CrossRef]

A. Melloni and M. Martinelli, "Synthesis of Direct-Coupled-Resonators Bandpass Filters for WDM Systems," J. Lightwave Technol. 20, 296 (2002)
[CrossRef]

2001 (1)

1999 (1)

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O. Brien, P. D. Dapkus, I. Kim, "Two-Dimensional Photonic Band-Gap Defect Mode Laser," Science 84, 1819 (1999).
[CrossRef]

1997 (1)

J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, HenryI. Smith and E. P. Ippen, "Photonic-bandgap microcavities in optical waveguides," Nature 390, 143 (1997).
[CrossRef]

Appl. Phys. Lett. (3)

Y. Tanaka, T. Asano, R. Hatsuta, and S. Noda, "Investigation of point-defect cavity formed in two-dimensional photonic crystal slab with one-sided dielectric cladding," Appl. Phys. Lett. 88, 011112 (2006).
[CrossRef]

D. Peyrade, E. Silberstein, Ph. Lalanne, A. Talneau, and Y. Chen, "Short Bragg mirrors with adiabatic modal conversion," Appl. Phys. Lett. 81, 829 (2002).
[CrossRef]

P. Velha, J. C. Rodier, P. Lalanne, J. P. Hugonin, D. Peyrade, E. Picard, T. Charvolin, E. Hadji, "Ultracompact silicon-on-insulator ridge-waveguide mirrors with high reflectance," Appl. Phys. Lett. 84, 171121 (2006).
[CrossRef]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. A (2)

Nat. Photonics (2)

T. Tanabe, M. Notomi, E. Kuramochi, A. Shinya and H. Taniyama, "Trapping and delaying photons for one nanosecond in an ultrasmall high-Q photonic-crystal nanocavity," Nat. Photonics 1, 49 (2007).
[CrossRef]

S. Noda, M. Fujita and T. Asano, "Spontaneous-emission control by photonic crystals and nanocavities" Nat. Photonics 1, 449 (2007).
[CrossRef]

Nature (2)

J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, HenryI. Smith and E. P. Ippen, "Photonic-bandgap microcavities in optical waveguides," Nature 390, 143 (1997).
[CrossRef]

D. K. Armani, T. J. Kippenberg, S. M. Spillane and K. J. Vahala, "Ultralow-threshold microcavity Raman laser on a microelectronic chip," Nature 421, 925 (2003).
[CrossRef] [PubMed]

New J. Phys. (1)

P. Velha, J. C. Rodier, P. Lalanne, J. P. Hugonin, D. Peyrade, E. Picard, T. Charvolin and E. Hadji, "Ultra-high-reflectivity photonic-bandgap mirrors in a ridge SOI waveguide," New J. Phys. 8, 204 (2006).
[CrossRef]

Opt. Express (2)

Opt. Express. (1)

C. Sauvan, G. Lecamp, P. Lalanne and J. P. Hugonin, "Modal-reflectivity enhancement by geometry tuning in Photonic Crystal microcavities," Opt. Express. 13, 245 (2005).
[CrossRef] [PubMed]

Opt. Lett. (2)

Science (1)

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O. Brien, P. D. Dapkus, I. Kim, "Two-Dimensional Photonic Band-Gap Defect Mode Laser," Science 84, 1819 (1999).
[CrossRef]

Other (2)

P. Yeh, Optical Waves in Layered Media (Wiley-Interscience 1988).

K. Sakoda, Optical Properties of Photonic Crystals (Springer 2004).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig.1. .
Fig.1. .

EM picture of the lineic Fabry-Perot cavity inserted in the silicon waveguide. On both sides of the cavity, each mirror is composed of a taper and of a periodic section. The taper is located on the cavity side of the mirror and is made of four holes with increasing diameter (130, 170, 200, 200 nm) and separated by increasing distances (300, 320, 350 nm respectively). The periodic mirror is made of N holes (N=4 on the picture) with a diameter of 200 nm and a period of 370 nm. The inset presents a magnification of the tapered zone.

Fig. 2.
Fig. 2.

Resonant cavity peak collected above the cavity. The insert d etails the resonant peak for two regulated temperature of the sample. Left-inset is fitted with a lorentzian curve replicated with a dashed line in the right-inset.

Fig. 3.
Fig. 3.

Evolution of the resonant peak with increasing the number of holes in the periodic mirror (N). The black curve presents the normalized transmission across the cavities, the grey one shows the vertical losses collected by the top of the sample in arbitrary units with inverted axis.

Fig. 4.
Fig. 4.

Experimental (dots) evolution of the Q factor for the lineic Fabry-Perot cavity with increasing N. The shaded region represents the theoretical values for an increasing number of holes in the periodic mirror of the cavity and for a tolerance of +/- 10 nm on the nominal value of the hole diameters. The dot curve shows the optimum Q factor value calculated for an optimal cavity length for each N.

Fig. 5.
Fig. 5.

Evolution of the normalized quality factor QNORM as a function of the resonant wavelength of for N=3 to N=7. The labeled numbers represent the experimental values (Qexpr). h is the cavity length given by the relation h=λ/neff.

Tables (1)

Tables Icon

Table 1. Experimental Cavity Q’s and Tmax for N ranging from 3 to 7 designed with the same tapering section.

Metrics