Abstract

We experimentally demonstrate an ultra high Q/V nanocavity on SOI substrate. The design is based on modal adaptation within the cavity and allows to measure a quality factor of 58.000 for a modal volume of 0.6(λ/n)3. This record Q/V value of 105 achieved for a structure standing on a physical substrate, rather than on membrane, is in very good agreement with theoretical predictions also shown. Based on these experimental results, we show that further refinements of the cavity design could lead to Q/V ratios close to 106.

© 2007 Optical Society of America

Full Article  |  PDF Article
Related Articles
Two physical mechanisms for boosting the quality factor to cavity volume ratio of photonic crystal microcavities

Ph. Lalanne, S. Mias, and J. P. Hugonin
Opt. Express 12(3) 458-467 (2004)

Detailed analysis by Fabry-Perot method of slab photonic crystal line-defect waveguides and cavities in aluminium-free material system

S. Combrié, E. Weidner, A. DeRossi, S. Bansropun, S. Cassette, A. Talneau, and H. Benisty
Opt. Express 14(16) 7353-7361 (2006)

A near-field actuated optical nanocavity

Benoit Cluzel, Loïc Lalouat, Philippe Velha, Emmanuel Picard, David Peyrade, Jean-Claude Rodier, Thomas Charvolin, Philippe Lalanne, Frédérique de Fornel, and Emmanuel Hadji
Opt. Express 16(1) 279-286 (2008)

References

  • View by:
  • |
  • |
  • |

  1. J. Poon, L. Zhu, G. DeRose, and A. Yariv, “Transmission and group delay of microring coupled-resonator optical waveguides,” Opt. Lett. 31, 456 (2006)
    [Crossref] [PubMed]
  2. A. Melloni and M. Martinelli, “Synthesis of Direct-Coupled-Resonators Bandpass Filters for WDM Systems,” J. Lightwave Technol. 20, 296 (2002)
    [Crossref]
  3. Bradley Schmidt, Qianfan Xu, Jagat Shakya, Sasikanth Manipatruni, and Michal Lipson, “Compact electro-optic modulator on silicon-on-insulator substrates using cavities with ultra-small modal volumes,” Opt. Express15, 3140 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-6-3140
    [Crossref] [PubMed]
  4. K. Sakoda, “Optical Properties of Photonic Crystals,” Springer (2004)
  5. O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O. Brien, P. D. Dapkus, and I. Kim, “Two-Dimensional Photonic Band-Gap Defect Mode Laser,” Science 84, 1819 (1999)
    [Crossref]
  6. D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultralow-threshold microcavity Raman laser on a microelectronic chip,” Nature 421, 925 (2003)
    [Crossref] [PubMed]
  7. T. Tanabe, M. Notomi, E. Kuramochi, A. Shinya, and H. Taniyama, “Trapping and delaying photons for one nanosecond in an ultrasmall high-Q photonic-crystal nanocavity,” Nature Photonics 1, 49 (2007)
    [Crossref]
  8. S. Noda, M. Fujita, and T. Asano, “Spontaneous-emission control by photonic crystals and nanocavities” Nature Photonics 1, 449 (2007)
    [Crossref]
  9. M. W. Pruessner, T. H. Stievater, and W. S. Rabinovich,” Integrated waveguide Fabry-Perot microcavities with silicon/air Bragg mirrors,” Opt. Lett. 32, 533 (2007)
    [Crossref] [PubMed]
  10. Y. Tanaka, T. Asano, R. Hatsuta, and S. Noda, “Investigation of point-defect cavity formed in twodimensional photonic crystal slab with one-sided dielectric cladding,” Appl. Phys. Lett. 88, 011112 (2006)
    [Crossref]
  11. J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, Henry I. Smith, and E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature 390, 143 (1997)
    [Crossref]
  12. D. Peyrade, E. Silberstein, Ph. Lalanne, A. Talneau, and Y. Chen, “Short Bragg mirrors with adiabatic modal conversion,” Appl. Phys. Lett. 81, 829 (2002)
    [Crossref]
  13. P. Velha, J. C. Rodier, P. Lalanne, J. P. Hugonin, D. Peyrade, E. Picard, T. Charvolin, and E. Hadji, “Ultracompact silicon-on-insulator ridge-waveguide mirrors with high reflectance,” Appl. Phys. Lett. 84, 171121 (2006)
    [Crossref]
  14. C. Sauvan, G. Lecamp, P. Lalanne, and J.P. Hugonin, “Modal-reflectivity enhancement by geometry tuning in Photonic Crystal microcavities,” Opt. Express.13, 245 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-1-245
    [Crossref] [PubMed]
  15. P Velha, J C Rodier, P Lalanne, J P Hugonin, D Peyrade, E Picard, T Charvolin, and E Hadji, “Ultra-high-reflectivity photonic-bandgap mirrors in a ridge SOI waveguide,” New Journal of Physics 8, 204 (2006)
    [Crossref]
  16. P. Yeh, “Optical Waves in Layered Media,” Wiley-Interscience (1988)
  17. E. Silberstein, P. Lalanne, J. P. Hugonin, and Q. Cao, “Use of grating theories in integrated optics,” J. Opt. Soc. Am. A 18, 2865–2875 (2001)
    [Crossref]
  18. G. Lecamp, J.P. Hugonin, and P. Lalanne, “Theoretical and computational concepts for periodic optical waveguides,” Opt. Express 15, 11042–60 (2007).
    [Crossref] [PubMed]
  19. H. Kim, I.M. Lee, and B. Lee, “Extended scattering-matrix method for efficient full parallel implementation of rigorous coupled-wave analysis,” J. Opt. Soc. Am. A 24, 2313–2327 (2007).
    [Crossref]

2007 (5)

2006 (4)

P. Velha, J. C. Rodier, P. Lalanne, J. P. Hugonin, D. Peyrade, E. Picard, T. Charvolin, and E. Hadji, “Ultracompact silicon-on-insulator ridge-waveguide mirrors with high reflectance,” Appl. Phys. Lett. 84, 171121 (2006)
[Crossref]

P Velha, J C Rodier, P Lalanne, J P Hugonin, D Peyrade, E Picard, T Charvolin, and E Hadji, “Ultra-high-reflectivity photonic-bandgap mirrors in a ridge SOI waveguide,” New Journal of Physics 8, 204 (2006)
[Crossref]

Y. Tanaka, T. Asano, R. Hatsuta, and S. Noda, “Investigation of point-defect cavity formed in twodimensional photonic crystal slab with one-sided dielectric cladding,” Appl. Phys. Lett. 88, 011112 (2006)
[Crossref]

J. Poon, L. Zhu, G. DeRose, and A. Yariv, “Transmission and group delay of microring coupled-resonator optical waveguides,” Opt. Lett. 31, 456 (2006)
[Crossref] [PubMed]

2003 (1)

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultralow-threshold microcavity Raman laser on a microelectronic chip,” Nature 421, 925 (2003)
[Crossref] [PubMed]

2002 (2)

D. Peyrade, E. Silberstein, Ph. Lalanne, A. Talneau, and Y. Chen, “Short Bragg mirrors with adiabatic modal conversion,” Appl. Phys. Lett. 81, 829 (2002)
[Crossref]

A. Melloni and M. Martinelli, “Synthesis of Direct-Coupled-Resonators Bandpass Filters for WDM Systems,” J. Lightwave Technol. 20, 296 (2002)
[Crossref]

2001 (1)

1999 (1)

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O. Brien, P. D. Dapkus, and I. Kim, “Two-Dimensional Photonic Band-Gap Defect Mode Laser,” Science 84, 1819 (1999)
[Crossref]

1997 (1)

J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, Henry I. Smith, and E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature 390, 143 (1997)
[Crossref]

Armani, D. K.

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultralow-threshold microcavity Raman laser on a microelectronic chip,” Nature 421, 925 (2003)
[Crossref] [PubMed]

Asano, T.

S. Noda, M. Fujita, and T. Asano, “Spontaneous-emission control by photonic crystals and nanocavities” Nature Photonics 1, 449 (2007)
[Crossref]

Y. Tanaka, T. Asano, R. Hatsuta, and S. Noda, “Investigation of point-defect cavity formed in twodimensional photonic crystal slab with one-sided dielectric cladding,” Appl. Phys. Lett. 88, 011112 (2006)
[Crossref]

Brien, J. D. O.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O. Brien, P. D. Dapkus, and I. Kim, “Two-Dimensional Photonic Band-Gap Defect Mode Laser,” Science 84, 1819 (1999)
[Crossref]

Cao, Q.

Charvolin, T

P Velha, J C Rodier, P Lalanne, J P Hugonin, D Peyrade, E Picard, T Charvolin, and E Hadji, “Ultra-high-reflectivity photonic-bandgap mirrors in a ridge SOI waveguide,” New Journal of Physics 8, 204 (2006)
[Crossref]

Charvolin, T.

P. Velha, J. C. Rodier, P. Lalanne, J. P. Hugonin, D. Peyrade, E. Picard, T. Charvolin, and E. Hadji, “Ultracompact silicon-on-insulator ridge-waveguide mirrors with high reflectance,” Appl. Phys. Lett. 84, 171121 (2006)
[Crossref]

Chen, Y.

D. Peyrade, E. Silberstein, Ph. Lalanne, A. Talneau, and Y. Chen, “Short Bragg mirrors with adiabatic modal conversion,” Appl. Phys. Lett. 81, 829 (2002)
[Crossref]

Dapkus, P. D.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O. Brien, P. D. Dapkus, and I. Kim, “Two-Dimensional Photonic Band-Gap Defect Mode Laser,” Science 84, 1819 (1999)
[Crossref]

DeRose, G.

Fan, S.

J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, Henry I. Smith, and E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature 390, 143 (1997)
[Crossref]

Ferrera, J.

J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, Henry I. Smith, and E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature 390, 143 (1997)
[Crossref]

Foresi, J. S.

J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, Henry I. Smith, and E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature 390, 143 (1997)
[Crossref]

Fujita, M.

S. Noda, M. Fujita, and T. Asano, “Spontaneous-emission control by photonic crystals and nanocavities” Nature Photonics 1, 449 (2007)
[Crossref]

Hadji, E

P Velha, J C Rodier, P Lalanne, J P Hugonin, D Peyrade, E Picard, T Charvolin, and E Hadji, “Ultra-high-reflectivity photonic-bandgap mirrors in a ridge SOI waveguide,” New Journal of Physics 8, 204 (2006)
[Crossref]

Hadji, E.

P. Velha, J. C. Rodier, P. Lalanne, J. P. Hugonin, D. Peyrade, E. Picard, T. Charvolin, and E. Hadji, “Ultracompact silicon-on-insulator ridge-waveguide mirrors with high reflectance,” Appl. Phys. Lett. 84, 171121 (2006)
[Crossref]

Hatsuta, R.

Y. Tanaka, T. Asano, R. Hatsuta, and S. Noda, “Investigation of point-defect cavity formed in twodimensional photonic crystal slab with one-sided dielectric cladding,” Appl. Phys. Lett. 88, 011112 (2006)
[Crossref]

Hugonin, J P

P Velha, J C Rodier, P Lalanne, J P Hugonin, D Peyrade, E Picard, T Charvolin, and E Hadji, “Ultra-high-reflectivity photonic-bandgap mirrors in a ridge SOI waveguide,” New Journal of Physics 8, 204 (2006)
[Crossref]

Hugonin, J. P.

P. Velha, J. C. Rodier, P. Lalanne, J. P. Hugonin, D. Peyrade, E. Picard, T. Charvolin, and E. Hadji, “Ultracompact silicon-on-insulator ridge-waveguide mirrors with high reflectance,” Appl. Phys. Lett. 84, 171121 (2006)
[Crossref]

E. Silberstein, P. Lalanne, J. P. Hugonin, and Q. Cao, “Use of grating theories in integrated optics,” J. Opt. Soc. Am. A 18, 2865–2875 (2001)
[Crossref]

Hugonin, J.P.

G. Lecamp, J.P. Hugonin, and P. Lalanne, “Theoretical and computational concepts for periodic optical waveguides,” Opt. Express 15, 11042–60 (2007).
[Crossref] [PubMed]

C. Sauvan, G. Lecamp, P. Lalanne, and J.P. Hugonin, “Modal-reflectivity enhancement by geometry tuning in Photonic Crystal microcavities,” Opt. Express.13, 245 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-1-245
[Crossref] [PubMed]

Ippen, E. P.

J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, Henry I. Smith, and E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature 390, 143 (1997)
[Crossref]

Joannopoulos, J. D.

J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, Henry I. Smith, and E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature 390, 143 (1997)
[Crossref]

Kim, H.

Kim, I.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O. Brien, P. D. Dapkus, and I. Kim, “Two-Dimensional Photonic Band-Gap Defect Mode Laser,” Science 84, 1819 (1999)
[Crossref]

Kimerling, L. C.

J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, Henry I. Smith, and E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature 390, 143 (1997)
[Crossref]

Kippenberg, T. J.

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultralow-threshold microcavity Raman laser on a microelectronic chip,” Nature 421, 925 (2003)
[Crossref] [PubMed]

Kuramochi, E.

T. Tanabe, M. Notomi, E. Kuramochi, A. Shinya, and H. Taniyama, “Trapping and delaying photons for one nanosecond in an ultrasmall high-Q photonic-crystal nanocavity,” Nature Photonics 1, 49 (2007)
[Crossref]

Lalanne, P

P Velha, J C Rodier, P Lalanne, J P Hugonin, D Peyrade, E Picard, T Charvolin, and E Hadji, “Ultra-high-reflectivity photonic-bandgap mirrors in a ridge SOI waveguide,” New Journal of Physics 8, 204 (2006)
[Crossref]

Lalanne, P.

G. Lecamp, J.P. Hugonin, and P. Lalanne, “Theoretical and computational concepts for periodic optical waveguides,” Opt. Express 15, 11042–60 (2007).
[Crossref] [PubMed]

P. Velha, J. C. Rodier, P. Lalanne, J. P. Hugonin, D. Peyrade, E. Picard, T. Charvolin, and E. Hadji, “Ultracompact silicon-on-insulator ridge-waveguide mirrors with high reflectance,” Appl. Phys. Lett. 84, 171121 (2006)
[Crossref]

E. Silberstein, P. Lalanne, J. P. Hugonin, and Q. Cao, “Use of grating theories in integrated optics,” J. Opt. Soc. Am. A 18, 2865–2875 (2001)
[Crossref]

C. Sauvan, G. Lecamp, P. Lalanne, and J.P. Hugonin, “Modal-reflectivity enhancement by geometry tuning in Photonic Crystal microcavities,” Opt. Express.13, 245 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-1-245
[Crossref] [PubMed]

Lalanne, Ph.

D. Peyrade, E. Silberstein, Ph. Lalanne, A. Talneau, and Y. Chen, “Short Bragg mirrors with adiabatic modal conversion,” Appl. Phys. Lett. 81, 829 (2002)
[Crossref]

Lecamp, G.

G. Lecamp, J.P. Hugonin, and P. Lalanne, “Theoretical and computational concepts for periodic optical waveguides,” Opt. Express 15, 11042–60 (2007).
[Crossref] [PubMed]

C. Sauvan, G. Lecamp, P. Lalanne, and J.P. Hugonin, “Modal-reflectivity enhancement by geometry tuning in Photonic Crystal microcavities,” Opt. Express.13, 245 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-1-245
[Crossref] [PubMed]

Lee, B.

Lee, I.M.

Lee, R. K.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O. Brien, P. D. Dapkus, and I. Kim, “Two-Dimensional Photonic Band-Gap Defect Mode Laser,” Science 84, 1819 (1999)
[Crossref]

Lipson, Michal

Bradley Schmidt, Qianfan Xu, Jagat Shakya, Sasikanth Manipatruni, and Michal Lipson, “Compact electro-optic modulator on silicon-on-insulator substrates using cavities with ultra-small modal volumes,” Opt. Express15, 3140 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-6-3140
[Crossref] [PubMed]

Manipatruni, Sasikanth

Bradley Schmidt, Qianfan Xu, Jagat Shakya, Sasikanth Manipatruni, and Michal Lipson, “Compact electro-optic modulator on silicon-on-insulator substrates using cavities with ultra-small modal volumes,” Opt. Express15, 3140 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-6-3140
[Crossref] [PubMed]

Martinelli, M.

Melloni, A.

Noda, S.

S. Noda, M. Fujita, and T. Asano, “Spontaneous-emission control by photonic crystals and nanocavities” Nature Photonics 1, 449 (2007)
[Crossref]

Y. Tanaka, T. Asano, R. Hatsuta, and S. Noda, “Investigation of point-defect cavity formed in twodimensional photonic crystal slab with one-sided dielectric cladding,” Appl. Phys. Lett. 88, 011112 (2006)
[Crossref]

Notomi, M.

T. Tanabe, M. Notomi, E. Kuramochi, A. Shinya, and H. Taniyama, “Trapping and delaying photons for one nanosecond in an ultrasmall high-Q photonic-crystal nanocavity,” Nature Photonics 1, 49 (2007)
[Crossref]

Painter, O.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O. Brien, P. D. Dapkus, and I. Kim, “Two-Dimensional Photonic Band-Gap Defect Mode Laser,” Science 84, 1819 (1999)
[Crossref]

Peyrade, D

P Velha, J C Rodier, P Lalanne, J P Hugonin, D Peyrade, E Picard, T Charvolin, and E Hadji, “Ultra-high-reflectivity photonic-bandgap mirrors in a ridge SOI waveguide,” New Journal of Physics 8, 204 (2006)
[Crossref]

Peyrade, D.

P. Velha, J. C. Rodier, P. Lalanne, J. P. Hugonin, D. Peyrade, E. Picard, T. Charvolin, and E. Hadji, “Ultracompact silicon-on-insulator ridge-waveguide mirrors with high reflectance,” Appl. Phys. Lett. 84, 171121 (2006)
[Crossref]

D. Peyrade, E. Silberstein, Ph. Lalanne, A. Talneau, and Y. Chen, “Short Bragg mirrors with adiabatic modal conversion,” Appl. Phys. Lett. 81, 829 (2002)
[Crossref]

Picard, E

P Velha, J C Rodier, P Lalanne, J P Hugonin, D Peyrade, E Picard, T Charvolin, and E Hadji, “Ultra-high-reflectivity photonic-bandgap mirrors in a ridge SOI waveguide,” New Journal of Physics 8, 204 (2006)
[Crossref]

Picard, E.

P. Velha, J. C. Rodier, P. Lalanne, J. P. Hugonin, D. Peyrade, E. Picard, T. Charvolin, and E. Hadji, “Ultracompact silicon-on-insulator ridge-waveguide mirrors with high reflectance,” Appl. Phys. Lett. 84, 171121 (2006)
[Crossref]

Poon, J.

Pruessner, M. W.

Rabinovich, W. S.

Rodier, J C

P Velha, J C Rodier, P Lalanne, J P Hugonin, D Peyrade, E Picard, T Charvolin, and E Hadji, “Ultra-high-reflectivity photonic-bandgap mirrors in a ridge SOI waveguide,” New Journal of Physics 8, 204 (2006)
[Crossref]

Rodier, J. C.

P. Velha, J. C. Rodier, P. Lalanne, J. P. Hugonin, D. Peyrade, E. Picard, T. Charvolin, and E. Hadji, “Ultracompact silicon-on-insulator ridge-waveguide mirrors with high reflectance,” Appl. Phys. Lett. 84, 171121 (2006)
[Crossref]

Sakoda, K.

K. Sakoda, “Optical Properties of Photonic Crystals,” Springer (2004)

Sauvan, C.

C. Sauvan, G. Lecamp, P. Lalanne, and J.P. Hugonin, “Modal-reflectivity enhancement by geometry tuning in Photonic Crystal microcavities,” Opt. Express.13, 245 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-1-245
[Crossref] [PubMed]

Scherer, A.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O. Brien, P. D. Dapkus, and I. Kim, “Two-Dimensional Photonic Band-Gap Defect Mode Laser,” Science 84, 1819 (1999)
[Crossref]

Schmidt, Bradley

Bradley Schmidt, Qianfan Xu, Jagat Shakya, Sasikanth Manipatruni, and Michal Lipson, “Compact electro-optic modulator on silicon-on-insulator substrates using cavities with ultra-small modal volumes,” Opt. Express15, 3140 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-6-3140
[Crossref] [PubMed]

Shakya, Jagat

Bradley Schmidt, Qianfan Xu, Jagat Shakya, Sasikanth Manipatruni, and Michal Lipson, “Compact electro-optic modulator on silicon-on-insulator substrates using cavities with ultra-small modal volumes,” Opt. Express15, 3140 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-6-3140
[Crossref] [PubMed]

Shinya, A.

T. Tanabe, M. Notomi, E. Kuramochi, A. Shinya, and H. Taniyama, “Trapping and delaying photons for one nanosecond in an ultrasmall high-Q photonic-crystal nanocavity,” Nature Photonics 1, 49 (2007)
[Crossref]

Silberstein, E.

D. Peyrade, E. Silberstein, Ph. Lalanne, A. Talneau, and Y. Chen, “Short Bragg mirrors with adiabatic modal conversion,” Appl. Phys. Lett. 81, 829 (2002)
[Crossref]

E. Silberstein, P. Lalanne, J. P. Hugonin, and Q. Cao, “Use of grating theories in integrated optics,” J. Opt. Soc. Am. A 18, 2865–2875 (2001)
[Crossref]

Smith, Henry I.

J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, Henry I. Smith, and E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature 390, 143 (1997)
[Crossref]

Spillane, S. M.

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultralow-threshold microcavity Raman laser on a microelectronic chip,” Nature 421, 925 (2003)
[Crossref] [PubMed]

Steinmeyer, G.

J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, Henry I. Smith, and E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature 390, 143 (1997)
[Crossref]

Stievater, T. H.

Talneau, A.

D. Peyrade, E. Silberstein, Ph. Lalanne, A. Talneau, and Y. Chen, “Short Bragg mirrors with adiabatic modal conversion,” Appl. Phys. Lett. 81, 829 (2002)
[Crossref]

Tanabe, T.

T. Tanabe, M. Notomi, E. Kuramochi, A. Shinya, and H. Taniyama, “Trapping and delaying photons for one nanosecond in an ultrasmall high-Q photonic-crystal nanocavity,” Nature Photonics 1, 49 (2007)
[Crossref]

Tanaka, Y.

Y. Tanaka, T. Asano, R. Hatsuta, and S. Noda, “Investigation of point-defect cavity formed in twodimensional photonic crystal slab with one-sided dielectric cladding,” Appl. Phys. Lett. 88, 011112 (2006)
[Crossref]

Taniyama, H.

T. Tanabe, M. Notomi, E. Kuramochi, A. Shinya, and H. Taniyama, “Trapping and delaying photons for one nanosecond in an ultrasmall high-Q photonic-crystal nanocavity,” Nature Photonics 1, 49 (2007)
[Crossref]

Thoen, E. R.

J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, Henry I. Smith, and E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature 390, 143 (1997)
[Crossref]

Vahala, K. J.

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultralow-threshold microcavity Raman laser on a microelectronic chip,” Nature 421, 925 (2003)
[Crossref] [PubMed]

Velha, P

P Velha, J C Rodier, P Lalanne, J P Hugonin, D Peyrade, E Picard, T Charvolin, and E Hadji, “Ultra-high-reflectivity photonic-bandgap mirrors in a ridge SOI waveguide,” New Journal of Physics 8, 204 (2006)
[Crossref]

Velha, P.

P. Velha, J. C. Rodier, P. Lalanne, J. P. Hugonin, D. Peyrade, E. Picard, T. Charvolin, and E. Hadji, “Ultracompact silicon-on-insulator ridge-waveguide mirrors with high reflectance,” Appl. Phys. Lett. 84, 171121 (2006)
[Crossref]

Villeneuve, P. R.

J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, Henry I. Smith, and E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature 390, 143 (1997)
[Crossref]

Xu, Qianfan

Bradley Schmidt, Qianfan Xu, Jagat Shakya, Sasikanth Manipatruni, and Michal Lipson, “Compact electro-optic modulator on silicon-on-insulator substrates using cavities with ultra-small modal volumes,” Opt. Express15, 3140 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-6-3140
[Crossref] [PubMed]

Yariv, A.

J. Poon, L. Zhu, G. DeRose, and A. Yariv, “Transmission and group delay of microring coupled-resonator optical waveguides,” Opt. Lett. 31, 456 (2006)
[Crossref] [PubMed]

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O. Brien, P. D. Dapkus, and I. Kim, “Two-Dimensional Photonic Band-Gap Defect Mode Laser,” Science 84, 1819 (1999)
[Crossref]

Yeh, P.

P. Yeh, “Optical Waves in Layered Media,” Wiley-Interscience (1988)

Zhu, L.

Appl. Phys. Lett. (3)

Y. Tanaka, T. Asano, R. Hatsuta, and S. Noda, “Investigation of point-defect cavity formed in twodimensional photonic crystal slab with one-sided dielectric cladding,” Appl. Phys. Lett. 88, 011112 (2006)
[Crossref]

D. Peyrade, E. Silberstein, Ph. Lalanne, A. Talneau, and Y. Chen, “Short Bragg mirrors with adiabatic modal conversion,” Appl. Phys. Lett. 81, 829 (2002)
[Crossref]

P. Velha, J. C. Rodier, P. Lalanne, J. P. Hugonin, D. Peyrade, E. Picard, T. Charvolin, and E. Hadji, “Ultracompact silicon-on-insulator ridge-waveguide mirrors with high reflectance,” Appl. Phys. Lett. 84, 171121 (2006)
[Crossref]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. A (2)

Nature (2)

J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, Henry I. Smith, and E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature 390, 143 (1997)
[Crossref]

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultralow-threshold microcavity Raman laser on a microelectronic chip,” Nature 421, 925 (2003)
[Crossref] [PubMed]

Nature Photonics (2)

T. Tanabe, M. Notomi, E. Kuramochi, A. Shinya, and H. Taniyama, “Trapping and delaying photons for one nanosecond in an ultrasmall high-Q photonic-crystal nanocavity,” Nature Photonics 1, 49 (2007)
[Crossref]

S. Noda, M. Fujita, and T. Asano, “Spontaneous-emission control by photonic crystals and nanocavities” Nature Photonics 1, 449 (2007)
[Crossref]

New Journal of Physics (1)

P Velha, J C Rodier, P Lalanne, J P Hugonin, D Peyrade, E Picard, T Charvolin, and E Hadji, “Ultra-high-reflectivity photonic-bandgap mirrors in a ridge SOI waveguide,” New Journal of Physics 8, 204 (2006)
[Crossref]

Opt. Express (1)

Opt. Lett. (2)

Science (1)

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O. Brien, P. D. Dapkus, and I. Kim, “Two-Dimensional Photonic Band-Gap Defect Mode Laser,” Science 84, 1819 (1999)
[Crossref]

Other (4)

Bradley Schmidt, Qianfan Xu, Jagat Shakya, Sasikanth Manipatruni, and Michal Lipson, “Compact electro-optic modulator on silicon-on-insulator substrates using cavities with ultra-small modal volumes,” Opt. Express15, 3140 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-6-3140
[Crossref] [PubMed]

K. Sakoda, “Optical Properties of Photonic Crystals,” Springer (2004)

P. Yeh, “Optical Waves in Layered Media,” Wiley-Interscience (1988)

C. Sauvan, G. Lecamp, P. Lalanne, and J.P. Hugonin, “Modal-reflectivity enhancement by geometry tuning in Photonic Crystal microcavities,” Opt. Express.13, 245 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-1-245
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig.1. .
Fig.1. .

EM picture of the lineic Fabry-Perot cavity inserted in the silicon waveguide. On both sides of the cavity, each mirror is composed of a taper and of a periodic section. The taper is located on the cavity side of the mirror and is made of four holes with increasing diameter (130, 170, 200, 200 nm) and separated by increasing distances (300, 320, 350 nm respectively). The periodic mirror is made of N holes (N=4 on the picture) with a diameter of 200 nm and a period of 370 nm. The inset presents a magnification of the tapered zone.

Fig. 2.
Fig. 2.

Resonant cavity peak collected above the cavity. The insert d etails the resonant peak for two regulated temperature of the sample. Left-inset is fitted with a lorentzian curve replicated with a dashed line in the right-inset.

Fig. 3.
Fig. 3.

Evolution of the resonant peak with increasing the number of holes in the periodic mirror (N). The black curve presents the normalized transmission across the cavities, the grey one shows the vertical losses collected by the top of the sample in arbitrary units with inverted axis.

Fig. 4.
Fig. 4.

Experimental (dots) evolution of the Q factor for the lineic Fabry-Perot cavity with increasing N. The shaded region represents the theoretical values for an increasing number of holes in the periodic mirror of the cavity and for a tolerance of +/- 10 nm on the nominal value of the hole diameters. The dot curve shows the optimum Q factor value calculated for an optimal cavity length for each N.

Fig. 5.
Fig. 5.

Evolution of the normalized quality factor QNORM as a function of the resonant wavelength of for N=3 to N=7. The labeled numbers represent the experimental values (Qexpr). h is the cavity length given by the relation h=λ/neff.

Tables (1)

Tables Icon

Table 1. Experimental Cavity Q’s and Tmax for N ranging from 3 to 7 designed with the same tapering section.

Metrics