Abstract

We report on phase measurements and adaptive phase distortion compensation of femtosecond pulses using multiphoton intrapulse interference phase scan (MIIPS) based on second harmonic generation in the plasma generated on the surface of silicon and metals.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. reference
    [CrossRef] [PubMed]
  2. V. V. Lozovoy and M. Dantus, "Coherent control in femtochemistry," Chemphyschem 6, 1970-2000 (2005).
    [CrossRef]
  3. R. Trebino and D. J. Kane, "Using Phase Retrieval to measure the intensity and phase of ultrashort pulses - frequency-resolved optical gating," J. Opt. Soc. Am. A. 10, 1101-1111 (1993).
    [CrossRef]
  4. C. Iaconis and I. A. Walmsley, "Spectral phase interferometry for direct electric-field reconstruction of ultrashort optical pulses," Opt. Lett. 23, 792-794 (1998).
    [CrossRef]
  5. B. von Vacano, T. Buckup, and M. Motzkus, "Shaper-assisted collinear SPIDER: fast and simple broadband pulse compression in nonlinear microscopy," J. Opt. Soc. Am. B 24, 1091-1100 (2007).
    [CrossRef] [PubMed]
  6. I. Pastirk, B. Resan, A. Fry, J. MacKay, and M. Dantus, "No loss spectral phase correction and arbitrary phase shaping of regeneratively amplified femtosecond pulses using MIIPS," Opt. Express 14, 9537-9543 (2006).
    [CrossRef]
  7. B. W. Xu, J. M. Gunn, J. M. Dela Cruz, V. V. Lozovoy, and M. Dantus, "Quantitative investigation of the multiphoton intrapulse interference phase scan method for simultaneous phase measurement and compensation of femtosecond laser pulses," J. Opt. Soc. Am. B 23, 750-759 (2006).
  8. M. Dantus, V. V. Lozovoy, and I. Pastirk, "MIIPS characterize and corrects femtosecond pulses," Laser Focus World 43, 101 (2007).
    [CrossRef]
  9. A. M. Weiner, D. E. Leaird, J. S. Patel, and J. R. Wullert, "Programmable Shaping of Femtosecond Optical Pulses by Use of 128-Element Liquid-Crystal Phase Modulator," IEEE J. Quantum Electron. 28, 908-920 (1992).
    [CrossRef]
  10. V. Hommes, M. Miclea, and R. Hergenroder, "Silicon surface morphology study after exposure to tailored femtosecond pulses," Appl. Surf. Sci. 252, 7449-7460 (2006).
  11. R. Stoian, M. Boyle, A. Thoss, A. Rosenfeld, G. Korn, and I. V. Hertel, "Dynamic temporal pulse shaping in advanced ultrafast laser material processing," Appl. Phys. A 77, 265-269 (2003).
  12. T. C. Gunaratne, X. Zhu, R. Amin, V. V. Lozovoy, and M. Dantus, "Influence of femtosecond pulse shaping on silicon micromachining monitored by laser induced breakdown spectroscopy and surface second harmonic generation," Phys. Rev. B. (in preparation) (2007).
    [CrossRef]
  13. R. W. Terhune, P. D. Maker, and C. M. Savage, "Optical Harmonic Generation in Calcite," Phys. Rev. Lett. 8, 404 (1962).
    [CrossRef]
  14. P. S. Pershan, "Nonlinear Optical Properties of Solids - Energy Considerations," Phys. Rev. 130, 919 (1963).
  15. E. Adler, "Nonlinear Optical Frequency Polarization in Dielectric," Physical Review A 134, A728 (1964).
    [CrossRef]
  16. N. Bloembergen, "Wave Propagation in Nonlinear Electromagnetic Media," Proc. IEEE 51, 124 (1963).
    [CrossRef]
  17. N. Bloembergen, and Y. R. Shen, "Optical Nonlinearities of a plasma," Phys. Rev. 141, 298-305 (1966).
    [CrossRef]
  18. N. G. Basov, V. Y. Bychenkov, O. N. Krokhin, M. V. Osipov, A. A. Rupasov, V. P. Silin, G. V. Sklizkov, A. N. Starodub, V. T. Tikhoncchuk, and A. S. Shikanov, "Second harmonic generation in a laser plasma," Sov. J. Quantum Electron 9, 1081-1102 (1979).
    [CrossRef]
  19. D. von der Linde, H. Schulz, T. Engers, and H. Schuler, "Second harmonic generation in plasmas produced by intense femtosecond laser pulses," IEEE J. Quantum Electron. 28, 2388-2397 (1992).
    [CrossRef] [PubMed]
  20. T. Engers, W. Fendel, H. Schuler, H. Schulz, and D. von der Linde, "second harmonic generation in plasmas prodused by femtosecond laser pulses," Phys. Rev. A 43, 4564-4567 (1991).
    [CrossRef]
  21. A. Terasevitch, C. Dietrich, K. Sokolowski-Tinten, and D. von der Linde, "3/2 harmonic generation by femtosecond laser pulses in steep-gradient plasmas," Phys. Rev. E 68, 026410 (2003).
    [CrossRef] [PubMed]
  22. N. D. Whitbread, J. A. R. Williams, J. S. Roberts, I. Bennion, and P. N. Robson, "Optical autocorrelator that used a surface-emitting second-harmonic generator on (211)B GaAs," Opt. Lett. 19, 2089-2091 (1994).
    [CrossRef] [PubMed]
  23. E. J. Canto-Said, P. Simon, C. Jordan, and G. Marowsky, "Surface second-harmonic generation in Si(111) for autocorrelation measurments of 248 nm femtosecond pulses," Opt. Lett. 18, 2038-2040 (1993).
  24. W. L. Kruer, The Physics of Laser Plasma Interactions (Addison-Wesley Publishing Co., 1988).

2007 (3)

B. von Vacano, T. Buckup, and M. Motzkus, "Shaper-assisted collinear SPIDER: fast and simple broadband pulse compression in nonlinear microscopy," J. Opt. Soc. Am. B 24, 1091-1100 (2007).
[CrossRef] [PubMed]

M. Dantus, V. V. Lozovoy, and I. Pastirk, "MIIPS characterize and corrects femtosecond pulses," Laser Focus World 43, 101 (2007).
[CrossRef]

T. C. Gunaratne, X. Zhu, R. Amin, V. V. Lozovoy, and M. Dantus, "Influence of femtosecond pulse shaping on silicon micromachining monitored by laser induced breakdown spectroscopy and surface second harmonic generation," Phys. Rev. B. (in preparation) (2007).
[CrossRef]

2006 (3)

2005 (1)

V. V. Lozovoy and M. Dantus, "Coherent control in femtochemistry," Chemphyschem 6, 1970-2000 (2005).
[CrossRef]

2003 (2)

R. Stoian, M. Boyle, A. Thoss, A. Rosenfeld, G. Korn, and I. V. Hertel, "Dynamic temporal pulse shaping in advanced ultrafast laser material processing," Appl. Phys. A 77, 265-269 (2003).

A. Terasevitch, C. Dietrich, K. Sokolowski-Tinten, and D. von der Linde, "3/2 harmonic generation by femtosecond laser pulses in steep-gradient plasmas," Phys. Rev. E 68, 026410 (2003).
[CrossRef] [PubMed]

1998 (1)

1994 (1)

1993 (2)

E. J. Canto-Said, P. Simon, C. Jordan, and G. Marowsky, "Surface second-harmonic generation in Si(111) for autocorrelation measurments of 248 nm femtosecond pulses," Opt. Lett. 18, 2038-2040 (1993).

R. Trebino and D. J. Kane, "Using Phase Retrieval to measure the intensity and phase of ultrashort pulses - frequency-resolved optical gating," J. Opt. Soc. Am. A. 10, 1101-1111 (1993).
[CrossRef]

1992 (2)

A. M. Weiner, D. E. Leaird, J. S. Patel, and J. R. Wullert, "Programmable Shaping of Femtosecond Optical Pulses by Use of 128-Element Liquid-Crystal Phase Modulator," IEEE J. Quantum Electron. 28, 908-920 (1992).
[CrossRef]

D. von der Linde, H. Schulz, T. Engers, and H. Schuler, "Second harmonic generation in plasmas produced by intense femtosecond laser pulses," IEEE J. Quantum Electron. 28, 2388-2397 (1992).
[CrossRef] [PubMed]

1991 (1)

T. Engers, W. Fendel, H. Schuler, H. Schulz, and D. von der Linde, "second harmonic generation in plasmas prodused by femtosecond laser pulses," Phys. Rev. A 43, 4564-4567 (1991).
[CrossRef]

1979 (1)

N. G. Basov, V. Y. Bychenkov, O. N. Krokhin, M. V. Osipov, A. A. Rupasov, V. P. Silin, G. V. Sklizkov, A. N. Starodub, V. T. Tikhoncchuk, and A. S. Shikanov, "Second harmonic generation in a laser plasma," Sov. J. Quantum Electron 9, 1081-1102 (1979).
[CrossRef]

1966 (1)

N. Bloembergen, and Y. R. Shen, "Optical Nonlinearities of a plasma," Phys. Rev. 141, 298-305 (1966).
[CrossRef]

1964 (1)

E. Adler, "Nonlinear Optical Frequency Polarization in Dielectric," Physical Review A 134, A728 (1964).
[CrossRef]

1963 (2)

N. Bloembergen, "Wave Propagation in Nonlinear Electromagnetic Media," Proc. IEEE 51, 124 (1963).
[CrossRef]

P. S. Pershan, "Nonlinear Optical Properties of Solids - Energy Considerations," Phys. Rev. 130, 919 (1963).

1962 (1)

R. W. Terhune, P. D. Maker, and C. M. Savage, "Optical Harmonic Generation in Calcite," Phys. Rev. Lett. 8, 404 (1962).
[CrossRef]

Appl. Phys. A (1)

R. Stoian, M. Boyle, A. Thoss, A. Rosenfeld, G. Korn, and I. V. Hertel, "Dynamic temporal pulse shaping in advanced ultrafast laser material processing," Appl. Phys. A 77, 265-269 (2003).

Appl. Surf. Sci. (1)

V. Hommes, M. Miclea, and R. Hergenroder, "Silicon surface morphology study after exposure to tailored femtosecond pulses," Appl. Surf. Sci. 252, 7449-7460 (2006).

Chemphyschem (1)

V. V. Lozovoy and M. Dantus, "Coherent control in femtochemistry," Chemphyschem 6, 1970-2000 (2005).
[CrossRef]

IEEE J. Quantum Electron. (2)

A. M. Weiner, D. E. Leaird, J. S. Patel, and J. R. Wullert, "Programmable Shaping of Femtosecond Optical Pulses by Use of 128-Element Liquid-Crystal Phase Modulator," IEEE J. Quantum Electron. 28, 908-920 (1992).
[CrossRef]

D. von der Linde, H. Schulz, T. Engers, and H. Schuler, "Second harmonic generation in plasmas produced by intense femtosecond laser pulses," IEEE J. Quantum Electron. 28, 2388-2397 (1992).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A. (1)

R. Trebino and D. J. Kane, "Using Phase Retrieval to measure the intensity and phase of ultrashort pulses - frequency-resolved optical gating," J. Opt. Soc. Am. A. 10, 1101-1111 (1993).
[CrossRef]

J. Opt. Soc. Am. B (2)

Laser Focus World (1)

M. Dantus, V. V. Lozovoy, and I. Pastirk, "MIIPS characterize and corrects femtosecond pulses," Laser Focus World 43, 101 (2007).
[CrossRef]

Opt. Express (1)

Opt. Lett. (3)

Phys. Rev. (2)

N. Bloembergen, and Y. R. Shen, "Optical Nonlinearities of a plasma," Phys. Rev. 141, 298-305 (1966).
[CrossRef]

P. S. Pershan, "Nonlinear Optical Properties of Solids - Energy Considerations," Phys. Rev. 130, 919 (1963).

Phys. Rev. A (1)

T. Engers, W. Fendel, H. Schuler, H. Schulz, and D. von der Linde, "second harmonic generation in plasmas prodused by femtosecond laser pulses," Phys. Rev. A 43, 4564-4567 (1991).
[CrossRef]

Phys. Rev. B. (1)

T. C. Gunaratne, X. Zhu, R. Amin, V. V. Lozovoy, and M. Dantus, "Influence of femtosecond pulse shaping on silicon micromachining monitored by laser induced breakdown spectroscopy and surface second harmonic generation," Phys. Rev. B. (in preparation) (2007).
[CrossRef]

Phys. Rev. E (1)

A. Terasevitch, C. Dietrich, K. Sokolowski-Tinten, and D. von der Linde, "3/2 harmonic generation by femtosecond laser pulses in steep-gradient plasmas," Phys. Rev. E 68, 026410 (2003).
[CrossRef] [PubMed]

Phys. Rev. Lett. (1)

R. W. Terhune, P. D. Maker, and C. M. Savage, "Optical Harmonic Generation in Calcite," Phys. Rev. Lett. 8, 404 (1962).
[CrossRef]

Physical Review A (1)

E. Adler, "Nonlinear Optical Frequency Polarization in Dielectric," Physical Review A 134, A728 (1964).
[CrossRef]

Proc. IEEE (1)

N. Bloembergen, "Wave Propagation in Nonlinear Electromagnetic Media," Proc. IEEE 51, 124 (1963).
[CrossRef]

Sov. J. Quantum Electron (1)

N. G. Basov, V. Y. Bychenkov, O. N. Krokhin, M. V. Osipov, A. A. Rupasov, V. P. Silin, G. V. Sklizkov, A. N. Starodub, V. T. Tikhoncchuk, and A. S. Shikanov, "Second harmonic generation in a laser plasma," Sov. J. Quantum Electron 9, 1081-1102 (1979).
[CrossRef]

Other (2)

reference
[CrossRef] [PubMed]

W. L. Kruer, The Physics of Laser Plasma Interactions (Addison-Wesley Publishing Co., 1988).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Comparison of SHG-FROG and MIIPS traces for compressed (TL) and uncompressed pulses. The two sets of measurements were made using the same laser pulses, a 40x, 0.6 NA microscope objective and a SHG crystal. The dashed lines coincide with the MIIPS features observed for TL pulses and are used as a guide to the eye.

Fig. 2.
Fig. 2.

Schematic of the experimental setup. L1, L2 and L3 are 300, 600 and 50 mm focal length lenses. P pinhole, BS beams splitter that transmits 800 nm and reflects 300–600 nm.

Fig. 3.
Fig. 3.

Emission signal is plotted for three different intensities showing the plasma emission (PE), atomic emission (LIBS) and SSHG signal. Note the absence of LIBS and SSHG signal in the spectrum taken with the intensity of <0.1 µJ/pulse but dominant PE signal.

Fig. 4.
Fig. 4.

MIIPS traces obtained after adaptive phase compensation using a BBO SHG crystal (left) and SSHG on the surface of silicon wafer (right).

Fig. 5.
Fig. 5.

MIIPS traces obtained after the first MIIPS scan without compensation using a BBO SHG crystal (left) and SSHG on the surface of silicon wafer (right). The top panels show MIIPS traces after the introduction of 2,000 fs2 positive chirp. The bottom panels show the MIIPS traces after the introduction of -2,000 fs2 negative chirp. The dashed lines correspond to the position of MIIPS features for TL pulses.

Fig. 6.
Fig. 6.

Phases retrieved using SSHG-MIIIPS from the surface of a silicon wafer. The top panel shows the residual phase distortions after adaptive phase compensation using MIIPS. The deviations correspond to ±1 standard deviations following 5 repetitions of the measurements. The bottom panel shows the spectrum of the incident laser pulses together with the measured positive and negative chirp phases (±2,000 fs2) introduced. Notice the excellent agreement between the phases introduce (dashed lines) and the phases measured (blue lines) using SSHG-MIIPS.

Fig. 7.
Fig. 7.

MIIPS traces obtained using surface generated second harmonic on Cu and Al samples indicating usefulness of MIIPS method to measure phase of the pulse interacting with the sample during metal micromachining.

Metrics