Abstract

We demonstrate the direct imaging of the second harmonic generation radiation from a single nonlinear nanocrystal using defocused nonlinear microscopy. This technique allows the retrieval of complete information on the 3D orientation of a nanocrystal as well as possible deviations from its purely crystalline nature, in a simple experimental implementation. The obtained images are modeled by calculation of the radiation diagram from a nonlinear dipole that accounts for the excitation beam, the crystal symmetry and the particle size. Experimental demonstrations are performed on Potassium Titanyl Phosphase (KTP) nanocrystals. The shape and structure of the radiation images show a strong dependence on both crystal orientation and field polarization state, as expected by the specific nonlinear coherent coupling between the induced dipole and the excitation field polarization state.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. M. Flijrsheimer, C. Radiige, H. Salmen, M. Bösch, R. Terbrack, and H. Fuchs, "In-situ imaging of Langmuir monolayers by second-harmonic microscopy," Thin Solid Films 284, 659-662 (1996).
    [CrossRef]
  2. R. Gauderon, P. B. Lukins, and C. J. R. Sheppard, "Three-dimensional second-harmonic generation imaging with femtosecond laser pulses," Opt. Lett. 23, 1209-1212 (1998).
    [CrossRef]
  3. P. J. Campagnola, M. Wei, A. Lewis, and L. M. Loew, "High-Resolution Nonlinear Imaging of Live Cells by Second Harmonic Generation," Biophys. J. 77, 3341-3349 (1999).
    [CrossRef] [PubMed]
  4. L. Moreaux, O. Sandrea, and J. Mertz, "Membrane Imaging by Second Harmonic Generation Microscopy," J. Opt. Soc. Am. B 17, 1685-1689 (2000).
    [CrossRef]
  5. C. Anceau, S. Brasselet, and J. Zyss, "Local orientational distribution of molecular monolayers probed by nonlinear microscopy," Chem. Phys. Lett. 411, 98-102 (2005).
    [CrossRef]
  6. V. Le Floc’h, S. Brasselet, J.-F. Roch, and J. Zyss, "Monitoring of orientation in molecular ensembles by polarization sensitive nonlinear microscopy," J. Phys.Chem. B 107, 12403-12410 (2003).
    [CrossRef]
  7. P. Stoller, B. M. Kim, A. M. Rubenchik, K. M. Reiser, and L. B. Da Silva, "Polarization-dependent optical second harmonic imaging of a rat-tail tendon," J. Biomed. Opt. 7, 205-214 (2000).
    [CrossRef]
  8. K. Komorowska, S. Brasselet, J. Zyss, L. Pourlsen, M. Jazdzyk, H. J. Egelhaaf, J. Gierschner, and M. Hanack, "Nanometric scale investigation of the nonlinear efficiency of perhydrotriphynylene inclusion compounds," Chem. Phys. 318, 12-20 (2005).
    [CrossRef]
  9. R. M. Williams, W. R. Zipfel, and W. W. Webb, "Interpreting Second-Harmonic Generation Images of Collagen I Fibrils," Biophys. J. 88, 13771386 (2005).
    [CrossRef] [PubMed]
  10. J. Zyss, "Molecular Engineering Implications of Rotational Invariance in Quadratic Nonlinear Optics: from Dipolar to Octupolar Molecules and Materials," J. Chem. Phys. 98, 6583-6593 (1993)
    [CrossRef]
  11. E. Yew, and C. Sheppard, "Effects of axial field components on second harmonic generation microscopy," Opt. Express 14, 1167-1174 (2006).
    [CrossRef]
  12. G. Revillod, I. Russier-Antoine, E. Benichou, C. Jonin, and P-F. Brevet, "Investigating the interaction of crystal violet probe molecules on sodium dodecyl sulfate micelles with Hyper-Rayleigh scattering," J. Phys. Chem. B 109, 5383-5389 (2005).
    [CrossRef]
  13. S. Brasselet, V. Le Floc’h, F. Treussart, J.-F. Roch, J. Zyss, E. Botzung-Appert, and A. Ibanez, "In situ diagnostics of the crystalline nature of single organic nanocrystals by nonlinear microscopy," Phys. Rev. Lett. 92, 207401 (2004).
    [CrossRef] [PubMed]
  14. F. Treussart, E. Botzung-Appert, N. T. Ha-Duong, A. Ibanez, J.-F. Roch, and R. Pansu," Second harmonic generation and fluorescence of CMONS dye nanocrystals grown in a sol-gel thin film," Chem. Phys. Chem. 4, 757-760 (2003).
    [CrossRef] [PubMed]
  15. E. Delahaye, N. Tancrez, T. Yi, I. Ledoux, J. Zyss, S. Brasselet, and R. Clément, "Second harmonic generation from individual hybrid MnPS3-based nanoparticles investigated by nonlinear microscopy" Chem. Phys. Lett. 429, 533-537 (2006).
    [CrossRef]
  16. L. Le Xuan, F. Marquier, D. Chauvat, S. Brasselet, F. Treussart, S. Perruchas, C. Tard, T. Gacoin, and J.-F. Roch, "Balanced homodyne detection in second harmonic generation microscopy," Appl. Phys. Lett. 89, 121118-1-3 (2006).
    [CrossRef]
  17. J. P. Long, B. S. Simpkins, D. J. Rowenhorst, and P. E. Pehrsson, "Far-field Imaging of Optical Second-Harmonic Generation in Single GaN Nanowires," Nanoletters 7, 831-836 (2007).
    [CrossRef]
  18. L. Le Xuan, C. Zhou, A. Slablab, D. Chauvat, C. Tard, S. Perruchas, T. Gacoin, P. Villeval, and J.-F. Roch, "Photostable blinking-free single nanocrystals for second harmonic microscopy," submitted.
  19. S. Brasselet and J. Zyss, "Nonlinear polarimetry of molecular crystals down to the nanoscale," C. R. Physique 8, 165-179 (2007).
    [CrossRef]
  20. M. Böhmer and J. Enderlein, "Orientation imaging of single molecules by wide-field epifluorescence microscopy," J. Opt. Soc. Am. B 20, 554-559 (2003).
    [CrossRef]
  21. J. Enderlein, and M. Böhmer, "Influence of interface dipole interactions on the efficiency of fluorescence light collection near surfaces," Opt. Lett. 28, 941-944 (2003).
    [CrossRef] [PubMed]
  22. M. A. Lieb, J. M. Zavislan, and L. Novotny, "Single-molecule orientations determined by direct emission pattern imaging," J. Opt. Soc. Am. B 21, 1210-1215 (2004).
    [CrossRef]
  23. X. Brokmann, M.-V. Ehrensperger, J.-P. Hermier, A. Triller, and M. Dahan, "Orientational imaging and tracking of single CdSe nanocrystals by defocused microscopy," Chem. Phys. Lett. 406, 210214 (2005).
    [CrossRef]
  24. J. Enderlein, "Theoretical study of detection of a dipole emitter through an objective with high numerical aperture," Opt. Lett. 25, 634-637 (2000).
    [CrossRef]
  25. H. Vanherzeele and J. D. Bierlein, "Magnitude of the nonlinear-optical coefficients of KTiOPO4," Opt. Lett. 17, 982-985 (1992).
    [CrossRef] [PubMed]
  26. B. Richards and E. Wolf, "Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanetic system," Proc. of the Royal Society of London.Series A. 153, 358-379 (1959).
    [CrossRef]
  27. D. Gachet, N. Sandeau, and H. Rigneault, "Far-field radiation pattern in Coherent Anti-stokes Raman Scattering (CARS) Microscopy," Biomedical Vibrational Spectroscopy III: Advances in Research and Industry, Proc SPIE 6093, 62 (2006).

2007

J. P. Long, B. S. Simpkins, D. J. Rowenhorst, and P. E. Pehrsson, "Far-field Imaging of Optical Second-Harmonic Generation in Single GaN Nanowires," Nanoletters 7, 831-836 (2007).
[CrossRef]

S. Brasselet and J. Zyss, "Nonlinear polarimetry of molecular crystals down to the nanoscale," C. R. Physique 8, 165-179 (2007).
[CrossRef]

2006

D. Gachet, N. Sandeau, and H. Rigneault, "Far-field radiation pattern in Coherent Anti-stokes Raman Scattering (CARS) Microscopy," Biomedical Vibrational Spectroscopy III: Advances in Research and Industry, Proc SPIE 6093, 62 (2006).

E. Delahaye, N. Tancrez, T. Yi, I. Ledoux, J. Zyss, S. Brasselet, and R. Clément, "Second harmonic generation from individual hybrid MnPS3-based nanoparticles investigated by nonlinear microscopy" Chem. Phys. Lett. 429, 533-537 (2006).
[CrossRef]

E. Yew, and C. Sheppard, "Effects of axial field components on second harmonic generation microscopy," Opt. Express 14, 1167-1174 (2006).
[CrossRef]

2005

X. Brokmann, M.-V. Ehrensperger, J.-P. Hermier, A. Triller, and M. Dahan, "Orientational imaging and tracking of single CdSe nanocrystals by defocused microscopy," Chem. Phys. Lett. 406, 210214 (2005).
[CrossRef]

C. Anceau, S. Brasselet, and J. Zyss, "Local orientational distribution of molecular monolayers probed by nonlinear microscopy," Chem. Phys. Lett. 411, 98-102 (2005).
[CrossRef]

K. Komorowska, S. Brasselet, J. Zyss, L. Pourlsen, M. Jazdzyk, H. J. Egelhaaf, J. Gierschner, and M. Hanack, "Nanometric scale investigation of the nonlinear efficiency of perhydrotriphynylene inclusion compounds," Chem. Phys. 318, 12-20 (2005).
[CrossRef]

R. M. Williams, W. R. Zipfel, and W. W. Webb, "Interpreting Second-Harmonic Generation Images of Collagen I Fibrils," Biophys. J. 88, 13771386 (2005).
[CrossRef] [PubMed]

G. Revillod, I. Russier-Antoine, E. Benichou, C. Jonin, and P-F. Brevet, "Investigating the interaction of crystal violet probe molecules on sodium dodecyl sulfate micelles with Hyper-Rayleigh scattering," J. Phys. Chem. B 109, 5383-5389 (2005).
[CrossRef]

2004

S. Brasselet, V. Le Floc’h, F. Treussart, J.-F. Roch, J. Zyss, E. Botzung-Appert, and A. Ibanez, "In situ diagnostics of the crystalline nature of single organic nanocrystals by nonlinear microscopy," Phys. Rev. Lett. 92, 207401 (2004).
[CrossRef] [PubMed]

M. A. Lieb, J. M. Zavislan, and L. Novotny, "Single-molecule orientations determined by direct emission pattern imaging," J. Opt. Soc. Am. B 21, 1210-1215 (2004).
[CrossRef]

2003

M. Böhmer and J. Enderlein, "Orientation imaging of single molecules by wide-field epifluorescence microscopy," J. Opt. Soc. Am. B 20, 554-559 (2003).
[CrossRef]

J. Enderlein, and M. Böhmer, "Influence of interface dipole interactions on the efficiency of fluorescence light collection near surfaces," Opt. Lett. 28, 941-944 (2003).
[CrossRef] [PubMed]

F. Treussart, E. Botzung-Appert, N. T. Ha-Duong, A. Ibanez, J.-F. Roch, and R. Pansu," Second harmonic generation and fluorescence of CMONS dye nanocrystals grown in a sol-gel thin film," Chem. Phys. Chem. 4, 757-760 (2003).
[CrossRef] [PubMed]

V. Le Floc’h, S. Brasselet, J.-F. Roch, and J. Zyss, "Monitoring of orientation in molecular ensembles by polarization sensitive nonlinear microscopy," J. Phys.Chem. B 107, 12403-12410 (2003).
[CrossRef]

2000

1999

P. J. Campagnola, M. Wei, A. Lewis, and L. M. Loew, "High-Resolution Nonlinear Imaging of Live Cells by Second Harmonic Generation," Biophys. J. 77, 3341-3349 (1999).
[CrossRef] [PubMed]

1998

1996

M. Flijrsheimer, C. Radiige, H. Salmen, M. Bösch, R. Terbrack, and H. Fuchs, "In-situ imaging of Langmuir monolayers by second-harmonic microscopy," Thin Solid Films 284, 659-662 (1996).
[CrossRef]

1993

J. Zyss, "Molecular Engineering Implications of Rotational Invariance in Quadratic Nonlinear Optics: from Dipolar to Octupolar Molecules and Materials," J. Chem. Phys. 98, 6583-6593 (1993)
[CrossRef]

1992

1959

B. Richards and E. Wolf, "Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanetic system," Proc. of the Royal Society of London.Series A. 153, 358-379 (1959).
[CrossRef]

Biomedical Vibrational Spectroscopy III: Advances in Research and Industry, Proc SPIE

D. Gachet, N. Sandeau, and H. Rigneault, "Far-field radiation pattern in Coherent Anti-stokes Raman Scattering (CARS) Microscopy," Biomedical Vibrational Spectroscopy III: Advances in Research and Industry, Proc SPIE 6093, 62 (2006).

Biophys. J.

P. J. Campagnola, M. Wei, A. Lewis, and L. M. Loew, "High-Resolution Nonlinear Imaging of Live Cells by Second Harmonic Generation," Biophys. J. 77, 3341-3349 (1999).
[CrossRef] [PubMed]

R. M. Williams, W. R. Zipfel, and W. W. Webb, "Interpreting Second-Harmonic Generation Images of Collagen I Fibrils," Biophys. J. 88, 13771386 (2005).
[CrossRef] [PubMed]

C. R. Physique

S. Brasselet and J. Zyss, "Nonlinear polarimetry of molecular crystals down to the nanoscale," C. R. Physique 8, 165-179 (2007).
[CrossRef]

Chem. Phys.

K. Komorowska, S. Brasselet, J. Zyss, L. Pourlsen, M. Jazdzyk, H. J. Egelhaaf, J. Gierschner, and M. Hanack, "Nanometric scale investigation of the nonlinear efficiency of perhydrotriphynylene inclusion compounds," Chem. Phys. 318, 12-20 (2005).
[CrossRef]

Chem. Phys. Chem.

F. Treussart, E. Botzung-Appert, N. T. Ha-Duong, A. Ibanez, J.-F. Roch, and R. Pansu," Second harmonic generation and fluorescence of CMONS dye nanocrystals grown in a sol-gel thin film," Chem. Phys. Chem. 4, 757-760 (2003).
[CrossRef] [PubMed]

Chem. Phys. Lett.

E. Delahaye, N. Tancrez, T. Yi, I. Ledoux, J. Zyss, S. Brasselet, and R. Clément, "Second harmonic generation from individual hybrid MnPS3-based nanoparticles investigated by nonlinear microscopy" Chem. Phys. Lett. 429, 533-537 (2006).
[CrossRef]

C. Anceau, S. Brasselet, and J. Zyss, "Local orientational distribution of molecular monolayers probed by nonlinear microscopy," Chem. Phys. Lett. 411, 98-102 (2005).
[CrossRef]

X. Brokmann, M.-V. Ehrensperger, J.-P. Hermier, A. Triller, and M. Dahan, "Orientational imaging and tracking of single CdSe nanocrystals by defocused microscopy," Chem. Phys. Lett. 406, 210214 (2005).
[CrossRef]

J. Biomed. Opt.

P. Stoller, B. M. Kim, A. M. Rubenchik, K. M. Reiser, and L. B. Da Silva, "Polarization-dependent optical second harmonic imaging of a rat-tail tendon," J. Biomed. Opt. 7, 205-214 (2000).
[CrossRef]

J. Chem. Phys.

J. Zyss, "Molecular Engineering Implications of Rotational Invariance in Quadratic Nonlinear Optics: from Dipolar to Octupolar Molecules and Materials," J. Chem. Phys. 98, 6583-6593 (1993)
[CrossRef]

J. Opt. Soc. Am. B

J. Phys. Chem. B

G. Revillod, I. Russier-Antoine, E. Benichou, C. Jonin, and P-F. Brevet, "Investigating the interaction of crystal violet probe molecules on sodium dodecyl sulfate micelles with Hyper-Rayleigh scattering," J. Phys. Chem. B 109, 5383-5389 (2005).
[CrossRef]

J. Phys.Chem. B

V. Le Floc’h, S. Brasselet, J.-F. Roch, and J. Zyss, "Monitoring of orientation in molecular ensembles by polarization sensitive nonlinear microscopy," J. Phys.Chem. B 107, 12403-12410 (2003).
[CrossRef]

Nanoletters

J. P. Long, B. S. Simpkins, D. J. Rowenhorst, and P. E. Pehrsson, "Far-field Imaging of Optical Second-Harmonic Generation in Single GaN Nanowires," Nanoletters 7, 831-836 (2007).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. Lett.

S. Brasselet, V. Le Floc’h, F. Treussart, J.-F. Roch, J. Zyss, E. Botzung-Appert, and A. Ibanez, "In situ diagnostics of the crystalline nature of single organic nanocrystals by nonlinear microscopy," Phys. Rev. Lett. 92, 207401 (2004).
[CrossRef] [PubMed]

Series A.

B. Richards and E. Wolf, "Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanetic system," Proc. of the Royal Society of London.Series A. 153, 358-379 (1959).
[CrossRef]

Thin Solid Films

M. Flijrsheimer, C. Radiige, H. Salmen, M. Bösch, R. Terbrack, and H. Fuchs, "In-situ imaging of Langmuir monolayers by second-harmonic microscopy," Thin Solid Films 284, 659-662 (1996).
[CrossRef]

Other

L. Le Xuan, C. Zhou, A. Slablab, D. Chauvat, C. Tard, S. Perruchas, T. Gacoin, P. Villeval, and J.-F. Roch, "Photostable blinking-free single nanocrystals for second harmonic microscopy," submitted.

L. Le Xuan, F. Marquier, D. Chauvat, S. Brasselet, F. Treussart, S. Perruchas, C. Tard, T. Gacoin, and J.-F. Roch, "Balanced homodyne detection in second harmonic generation microscopy," Appl. Phys. Lett. 89, 121118-1-3 (2006).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

(a) Simplified scheme of the defocused imaging microscope. O : high numerical aperture microscope objective, L : imaging lens. (b) Orientation Euler angles (θ,ϕ,ψ) of the KTP crystalline unit cell (1,2,3) in the macroscopic frame (X,Y,Z).

Fig. 2.
Fig. 2.

(a–c) : calculated emission patterns from a single KTP nanocrystal centered on F, with orientation (θ=45°,φ=0°,ψ=0°), for increasing sizes : (a) 10 nm (b) 80 nm, (c) 150 nm. The KTP nanocrystal is excited by a polarization in the X direction. The images size is 600×600 µm2. (d–f) : Angular dependence of the SHG emission in the (X,Z) plane for the same nanocrystals. The black squares represent the shape of the nanocrystals, chosen arbitrarily as cubic for the simulation. The color scale is normalized to the maximum value of the intensity for each image. The parameters used in the vectorial model calculation are the experimental ones : objective magnification m=100, numerical aperture N.A.=1.4, imaging lens focal length fL=180 nm, defocusing distance in the image space ΔZ=-15 mm, incident fundamental wavelength λ=945 nm, embedding polymer index n=1.5.

Fig. 3.
Fig. 3.

Schematic representation of the polarimetric and defocused imaging measurements. Z is the optical axis, perpendicular to the sample. The X and Y axes, lying in the sample plane, provide the analysis framework for the polarization directions detected by the two avalanche photodiodes APD1 and APD2, working in the single photon counting mode.

Fig. 4.
Fig. 4.

(a–e) Experimental defocused images of a KTP nanocrystal for several incident polarization directions relative to the X axis: (a) 0°, (b) 60°, (c) 90°, (d) 120° and (e) 150°. The images sizes are 600×600µm2. The integration time for each image is 5 s. (f-j) Corresponding calculated images, leading to the orientation parameters (θ=30°±5°,ϕ=115°±5°,ψ=90°±20°). (k,l) Experimental polarimetric analysis IX and IY of this nanocrystal (circle markers) and corresponding calculated polarization responses (lines) for the Euler set of angles deduced from the defocused imaging analysis.

Fig. 5.
Fig. 5.

(a–d) and (e–h) examples of defocused images of two single KTP nanocrystals. Experimental (top) and calculated (bottom) images are obtained for different incident polarization directions relative to the X axis: (a,c,e,g) 0° and (b,d,f,h) 90°. The nanocrystals are found to be oriented along the (θ=67°±5°,ϕ=46°±5°,ψ=45°±20°) angles (left) and (θ=-55°±5°,ϕ=65°±5°,ψ=90°±20°) angles (right). The size of the images is 600×600µm2.

Fig. 6.
Fig. 6.

(a–c) Defocused images of a nanocrystal for several incident polarization directions relative to the X (horizontal) axis: (a) 0°, (b) 306° and (c) 90°. The images sizes are 800×800µm2. This nano-object is visibly constituted of several distinct sub-domains. (d) Polarimetric analysis of this nano-cluster of nanocrystals. The adjustment of polarimetric responses (black line) is done using two nanocrystals 1 and 2 of respective orientations (θ 1=20°,ϕ 1=260°,ψ 1=0°) and (θ 2=45°,ϕ 2=350°,ψ 2=0°).

Fig. 7.
Fig. 7.

Optical scheme of the defocused imaging microscope. O : high numerical aperture microscope objective, L : imaging lens. For seek of simplicity in the dipole radiation calculation, the distance between O and L is assumed to be equal to zero. The reference spheres of O and L, named respectively SO and SI, are respectively centered on F and FL .

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

p I 2 ω ( r ) = J , K χ IJK ( 2 ) ( θ , φ , ψ ) E J ω ( r ) E K ω ( r )
χ IJK ( 2 ) ( θ , φ , ψ ) = i , j , k χ ijk ( 2 ) ( i · I ) ( j · J ) ( k · K ) ( θ , φ , ψ )
E in 2 ω ( r ) k 2 exp [ ik f e r r ] f e r r 3 ( f e r r ) × [ ( f e r r ) × p 2 ω ( r ) ]
E out 2 ω ( r ) = m cos θ out n cos θ in [ ( E in 2 ω ( r ) · e r ) e r + ( E in 2 ω ( r ) · e θ ) e θ + ( E in 2 ω ( r ) · e φ ) e φ ] ,
E 2 ω ( R , r ) Ω out E in 2 ω ( r ) exp [ i ( k · R ) ] dk X dk Z ,
k = k f L e r R f L 2 2 f L ( e r · R ) + R 2

Metrics