Abstract

We demonstrate a Raman laser made from a grating-free highly-nonlinear photonic crystal fiber. The laser threshold power is lower than 600 mW and laser power characteristics recorded in experiments are accurately described from the usual simplest model dealing only with stationary evolutions of total optical powers [J. Opt. Soc. Am. 69, 803–807 (1979)]. In our theoretical treatment, reflectivity coefficients are fixed parameters, in strong contrast with procedures usually implemented to describe Raman fiber lasers made with fiber Bragg gratings. Experimental investigations of the spectral properties of our grating-free Raman fiber laser evidence that the shape of the Stokes power spectrum remains remarkably Gaussian whatever the incident pump power. Increasing the incident pump power induces a drift of the Stokes wavelength together with a broadening of the Stokes optical spectrum. Investigations on the role of light polarization on laser characteristics show that our grating-free Raman fiber laser behaves as a Raman laser made with a standard polarization maintaining fiber.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. M. D. Mermelstein, C. Headley, J.-C. Bouteiller, P. Steinvurzel, C. Horn, K. Feder, and B. J. Eggleton, "Configurable three-wavelength Raman fiber laser for Raman amplification and dynamic gain flattening," IEEE Photon. Technol. Lett. 13,1286-1288 (2001).
    [CrossRef]
  2. F. Vanholsbeeck, S. Coen, P. Emplit, C. Martinelli, and T. Sylvestre, "Cascaded Raman generation in optical fibers: influence of chromatic dispersion and Rayleigh backscattering," Opt. Lett. 29,998-1000 (2004).
    [CrossRef] [PubMed]
  3. B. A. Cumberland, S. V. Popov, J. R. Taylor, O. I. Medvedkov, S. A. Vasiliev, and E. M. Dianov, "2.1 μm continuous-wave Raman laser in GeO2 fiber," Opt. Lett. 32,1848-1850 (2007).
    [CrossRef] [PubMed]
  4. D. A. Chestnut and J. R. Taylor, "Wavelength-versatile subpicosecond pulsed lasers using Raman gain in figure-of-eight fiber geometries," Opt. Lett. 30,2982-2984 (2005).
    [CrossRef] [PubMed]
  5. P. Yan, S. Ruan, C. Guo, Y. Yu, and L. Li, "Efficient, tunable photonic crystal fiber Raman laser," Microwave Opt. Technol. Lett. 49,395-397 (2007).
    [CrossRef]
  6. Y. Zhao and S. D. Jackson, "Highly efficient free running cascaded Raman fiber laser that uses broadband pumping," Opt. Express 13,4731-4736 (2005).
    [CrossRef] [PubMed]
  7. C. A. Codemard, P. Dupriez, Y. Jeong, J. K. Sahu, M. Ibsen, and J. Nilsson, "High-power continuous-wave cladding-pumped Raman fiber laser," Opt. Lett. 31,2290-2292 (2006).
    [CrossRef] [PubMed]
  8. Y. Zhao and S. D. Jackson, "Highly efficient first order Raman fibre lasers using very short Ge-doped silica fibres," Opt. Commun. 253,172-176 (2005).
    [CrossRef]
  9. J.C. Travers, S. V. Popov, and J. R. Taylor, "Efficient continuous-wave holey fiber Raman laser," Appl. Phys. Lett. 87,031106 (2005).
    [CrossRef]
  10. Z. Xiong, N. Moore, Z. G. Li, and G. C. Lim, "10-W Raman Fiber Lasers at 1248 nm Using Phosphosilicate Fibers," IEEE J. Lightwave Technol. 21,2377-2381 (2003).
    [CrossRef]
  11. J. AuYeung and A. Yariv, "Theory of cw Raman oscillation in optical fibers," J. Opt. Soc. Am. 69,803-807 (1979).
    [CrossRef]
  12. S. A. Babin, D. V. Churkin, and E. V. Podivilov, "Intensity interactions in cascades of a two-stage Raman fiber laser," Opt. Commun. 226,329-335 (2003).
    [CrossRef]
  13. M. Krause, S. Cierullies, and H. Renner, "Stabilizing effect of line broadening in Raman fiber lasers" Opt. Commun. 227,355-361 (2003).
    [CrossRef]
  14. J. C. Bouteiller, "Spectral modeling of Raman fiber lasers," IEEE Photon. Technol. Lett. 15,1698-1700 (2003).
    [CrossRef]
  15. R. Vallée, E. Bélanger, B. Déry, M. Bernier, and D. Faucher, "Highly efficient and high-power Raman fiber laser based on broadband chirped fiber Bragg gratings," IEEE J. Lightwave Technol. 24,5039-5042 (2006).
    [CrossRef]
  16. P. Suret and S. Randoux, "Influence of spectral broadening on steady characteristics of Raman fiber lasers: from experiments to questions about the validity of usual models," Opt. Commun. 237,201-212 (2004).
    [CrossRef]
  17. R. H. Stolen, "Polarization effects in fiber Raman and Brillouin lasers," IEEE J. Quantum Electron. QE-15,1157-1160 (1979).
    [CrossRef]
  18. S. Randoux, A. Doutté, and P. Suret, "Polarization-resolved analysis of the characteristics of a Raman laser made with a polarization maintaining fiber," Opt. Commun. 260,232-241 (2006).
    [CrossRef]
  19. S. A. Babin, D. V. Churkin, A. E. Ismagulov, S. I. Kablukov, and E. V. Podivilov, "Spectral broadening in Raman fiber lasers," Opt. Lett. 31,3007-3009 (2006).
    [CrossRef] [PubMed]
  20. S. A. Babin, D. V. Churkin, A. E. Ismagulov, S. I. Kablukov, and E. V. Podivilov, "Four-wave-mixing-induced turbulent spectral broadening in a long Raman fiber laser," J. Opt. Soc. Am. B 24,1729-1738 (2007).
    [CrossRef]
  21. R. H. Stolen, C. Lee, and R. K. Jain, "Development of the stimulated Raman spectrum in single-mode silica fibers," J. Opt. Soc. Am. B 1,652-657 (1984).
    [CrossRef]
  22. A. Doutté, P. Suret, and S. Randoux, "Influence of light polarization on dynamics of continuous-wave-pumped Raman fiber lasers," Opt. Lett. 28,2464-2466 (2003).
    [CrossRef]
  23. S. A. Skubchenko, M. Y. Vyatkin, and D. V. Gaspontsev, "High-Power CW Linearly Polarized All-Fiber Raman Laser," IEEE Photon. Technol. Lett. 16,1014-1016 (2004).
    [CrossRef]
  24. L. Labonté, D. Pagnoux, P. Roy, F. Bahloul, and M. Zghal, "Numerical and experimental analysis of the birefringence of large air fraction slightly unsymmetrical holey fibres," Opt. Commun. 262,180-187 (2006).
    [CrossRef]

2007 (3)

2006 (5)

R. Vallée, E. Bélanger, B. Déry, M. Bernier, and D. Faucher, "Highly efficient and high-power Raman fiber laser based on broadband chirped fiber Bragg gratings," IEEE J. Lightwave Technol. 24,5039-5042 (2006).
[CrossRef]

S. Randoux, A. Doutté, and P. Suret, "Polarization-resolved analysis of the characteristics of a Raman laser made with a polarization maintaining fiber," Opt. Commun. 260,232-241 (2006).
[CrossRef]

L. Labonté, D. Pagnoux, P. Roy, F. Bahloul, and M. Zghal, "Numerical and experimental analysis of the birefringence of large air fraction slightly unsymmetrical holey fibres," Opt. Commun. 262,180-187 (2006).
[CrossRef]

C. A. Codemard, P. Dupriez, Y. Jeong, J. K. Sahu, M. Ibsen, and J. Nilsson, "High-power continuous-wave cladding-pumped Raman fiber laser," Opt. Lett. 31,2290-2292 (2006).
[CrossRef] [PubMed]

S. A. Babin, D. V. Churkin, A. E. Ismagulov, S. I. Kablukov, and E. V. Podivilov, "Spectral broadening in Raman fiber lasers," Opt. Lett. 31,3007-3009 (2006).
[CrossRef] [PubMed]

2005 (4)

Y. Zhao and S. D. Jackson, "Highly efficient free running cascaded Raman fiber laser that uses broadband pumping," Opt. Express 13,4731-4736 (2005).
[CrossRef] [PubMed]

D. A. Chestnut and J. R. Taylor, "Wavelength-versatile subpicosecond pulsed lasers using Raman gain in figure-of-eight fiber geometries," Opt. Lett. 30,2982-2984 (2005).
[CrossRef] [PubMed]

Y. Zhao and S. D. Jackson, "Highly efficient first order Raman fibre lasers using very short Ge-doped silica fibres," Opt. Commun. 253,172-176 (2005).
[CrossRef]

J.C. Travers, S. V. Popov, and J. R. Taylor, "Efficient continuous-wave holey fiber Raman laser," Appl. Phys. Lett. 87,031106 (2005).
[CrossRef]

2004 (3)

S. A. Skubchenko, M. Y. Vyatkin, and D. V. Gaspontsev, "High-Power CW Linearly Polarized All-Fiber Raman Laser," IEEE Photon. Technol. Lett. 16,1014-1016 (2004).
[CrossRef]

P. Suret and S. Randoux, "Influence of spectral broadening on steady characteristics of Raman fiber lasers: from experiments to questions about the validity of usual models," Opt. Commun. 237,201-212 (2004).
[CrossRef]

F. Vanholsbeeck, S. Coen, P. Emplit, C. Martinelli, and T. Sylvestre, "Cascaded Raman generation in optical fibers: influence of chromatic dispersion and Rayleigh backscattering," Opt. Lett. 29,998-1000 (2004).
[CrossRef] [PubMed]

2003 (5)

Z. Xiong, N. Moore, Z. G. Li, and G. C. Lim, "10-W Raman Fiber Lasers at 1248 nm Using Phosphosilicate Fibers," IEEE J. Lightwave Technol. 21,2377-2381 (2003).
[CrossRef]

S. A. Babin, D. V. Churkin, and E. V. Podivilov, "Intensity interactions in cascades of a two-stage Raman fiber laser," Opt. Commun. 226,329-335 (2003).
[CrossRef]

M. Krause, S. Cierullies, and H. Renner, "Stabilizing effect of line broadening in Raman fiber lasers" Opt. Commun. 227,355-361 (2003).
[CrossRef]

J. C. Bouteiller, "Spectral modeling of Raman fiber lasers," IEEE Photon. Technol. Lett. 15,1698-1700 (2003).
[CrossRef]

A. Doutté, P. Suret, and S. Randoux, "Influence of light polarization on dynamics of continuous-wave-pumped Raman fiber lasers," Opt. Lett. 28,2464-2466 (2003).
[CrossRef]

2001 (1)

M. D. Mermelstein, C. Headley, J.-C. Bouteiller, P. Steinvurzel, C. Horn, K. Feder, and B. J. Eggleton, "Configurable three-wavelength Raman fiber laser for Raman amplification and dynamic gain flattening," IEEE Photon. Technol. Lett. 13,1286-1288 (2001).
[CrossRef]

1984 (1)

1979 (2)

J. AuYeung and A. Yariv, "Theory of cw Raman oscillation in optical fibers," J. Opt. Soc. Am. 69,803-807 (1979).
[CrossRef]

R. H. Stolen, "Polarization effects in fiber Raman and Brillouin lasers," IEEE J. Quantum Electron. QE-15,1157-1160 (1979).
[CrossRef]

Appl. Phys. Lett. (1)

J.C. Travers, S. V. Popov, and J. R. Taylor, "Efficient continuous-wave holey fiber Raman laser," Appl. Phys. Lett. 87,031106 (2005).
[CrossRef]

IEEE J. Lightwave Technol. (2)

Z. Xiong, N. Moore, Z. G. Li, and G. C. Lim, "10-W Raman Fiber Lasers at 1248 nm Using Phosphosilicate Fibers," IEEE J. Lightwave Technol. 21,2377-2381 (2003).
[CrossRef]

R. Vallée, E. Bélanger, B. Déry, M. Bernier, and D. Faucher, "Highly efficient and high-power Raman fiber laser based on broadband chirped fiber Bragg gratings," IEEE J. Lightwave Technol. 24,5039-5042 (2006).
[CrossRef]

IEEE J. Quantum Electron. (1)

R. H. Stolen, "Polarization effects in fiber Raman and Brillouin lasers," IEEE J. Quantum Electron. QE-15,1157-1160 (1979).
[CrossRef]

IEEE Photon. Technol. Lett. (3)

S. A. Skubchenko, M. Y. Vyatkin, and D. V. Gaspontsev, "High-Power CW Linearly Polarized All-Fiber Raman Laser," IEEE Photon. Technol. Lett. 16,1014-1016 (2004).
[CrossRef]

J. C. Bouteiller, "Spectral modeling of Raman fiber lasers," IEEE Photon. Technol. Lett. 15,1698-1700 (2003).
[CrossRef]

M. D. Mermelstein, C. Headley, J.-C. Bouteiller, P. Steinvurzel, C. Horn, K. Feder, and B. J. Eggleton, "Configurable three-wavelength Raman fiber laser for Raman amplification and dynamic gain flattening," IEEE Photon. Technol. Lett. 13,1286-1288 (2001).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. B (2)

Microwave Opt. Technol. Lett. (1)

P. Yan, S. Ruan, C. Guo, Y. Yu, and L. Li, "Efficient, tunable photonic crystal fiber Raman laser," Microwave Opt. Technol. Lett. 49,395-397 (2007).
[CrossRef]

Opt. Commun. (6)

Y. Zhao and S. D. Jackson, "Highly efficient first order Raman fibre lasers using very short Ge-doped silica fibres," Opt. Commun. 253,172-176 (2005).
[CrossRef]

P. Suret and S. Randoux, "Influence of spectral broadening on steady characteristics of Raman fiber lasers: from experiments to questions about the validity of usual models," Opt. Commun. 237,201-212 (2004).
[CrossRef]

S. A. Babin, D. V. Churkin, and E. V. Podivilov, "Intensity interactions in cascades of a two-stage Raman fiber laser," Opt. Commun. 226,329-335 (2003).
[CrossRef]

M. Krause, S. Cierullies, and H. Renner, "Stabilizing effect of line broadening in Raman fiber lasers" Opt. Commun. 227,355-361 (2003).
[CrossRef]

L. Labonté, D. Pagnoux, P. Roy, F. Bahloul, and M. Zghal, "Numerical and experimental analysis of the birefringence of large air fraction slightly unsymmetrical holey fibres," Opt. Commun. 262,180-187 (2006).
[CrossRef]

S. Randoux, A. Doutté, and P. Suret, "Polarization-resolved analysis of the characteristics of a Raman laser made with a polarization maintaining fiber," Opt. Commun. 260,232-241 (2006).
[CrossRef]

Opt. Express (1)

Opt. Lett. (6)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Schematic representation of the experimental setup

Fig. 2.
Fig. 2.

Characteristics of the linearly-polarized PCF Raman laser (θp =0°). The theoretical characterics are plotted in dashed lines with the following parameters: αp =2.21 km-1, α s =2.12 km-1, GR =41.9 km-1W-1, R=0.031, L=220 m, λp =1064 nm, λs =1118 nm. They nearly perfectly coincide with experimental characteristics except above ~1.3 Watt.

Fig. 3.
Fig. 3.

(a) Normalized Stokes optical power spectra. Increasing the incident pump power (Pinc =1 W, Pinc =1.35 W, Pinc =1.5 W), the shape of the Stokes spectrum remains Gaussian but its central wavelength exhibits a red shift while its width increases. The filled squares plotted on the spectrum centered around 1119.5 nm represent a Gaussian fit of the Stokes optical spectrum. (b): Wavelength drift and broadening of Stokes optical power spectrum with incident pump power. Open squares: Stokes central wavelength. Filled circles: full width at 1/e of Stokes power spectrum

Fig. 4.
Fig. 4.

Influence of polarization direction of the incident pump field on laser characteristics. The angle θp between the incident pump field and the birefringence axes is of ~45° which induces doubling of the laser threshold power (see Fig. 2 for comparison).

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

dP dz = α p P G R λ s λ p ( F + B ) P ,
dF dz = α s F + G R P F ,
dB dz = α s B G R PB .
P ( z = 0 ) = P inc
F ( z = 0 ) = R B ( z = 0 )
B ( z = L ) = R F ( z = L )
P th = α p [ α s L ln ( R ) ] G R [ 1 e α p L ] .

Metrics