Abstract

Turbidity Suppression via Optical Phase Conjugation (TS-OPC) is an optical phenomenon that uses the back propagation nature of optical phase conjugate light field to undo the effect of tissue scattering. We use the computationally efficient and accurate pseudospectral time-domain (PSTD) simulation method to study this phenomenon; a key adaptation is the volumetric inversion of the optical wavefront E-field as a means for simulating a phase conjugate mirror. We simulate a number of scenarios and demonstrate that TS-OPC deteriorates with increased scattering in the medium, or increased mismatch between the random medium and the phase conjugate wave during reconstruction.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. W. F. Cheong, S. A. Prahl, and A. J. Welch, "A Review of the Optical-Properties of Biological Tissues," IEEE J. Quantum Electron. 26, 2166-2185 (1990).
    [CrossRef]
  2. A. Wax, C. H. Yang, R. R. Dasari, and M. S. Feld, "Measurement of angular distributions by use of low-coherence interferometry for light-scattering spectroscopy," Opt. Lett. 26, 322-324 (2001).
    [CrossRef]
  3. L. T. Perelman, V. Backman, M. Wallace, G. Zonios, R. Manoharan, A. Nusrat, S. Shields, M. Seiler, C. Lima, T. Hamano, I. Itzkan, J. Van Dam, J. M. Crawford, and M. S. Feld, "Observation of periodic fine structure in reflectance from biological tissue: A new technique for measuring nuclear size distribution," Phys. Rev. Lett. 80, 627-630 (1998).
    [CrossRef]
  4. J. M. Schmitt, "Optical coherence tomography (OCT): A review," IEEE J. Sel. Top. Quantum Electron. 5, 1205-1215 (1999).
    [CrossRef]
  5. G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, "In vivo endoscopic optical biopsy with optical coherence tomography," Science 276, 2037-2039 (1997).
    [CrossRef] [PubMed]
  6. W. Denk, J. H. Strickler, and W. W. Webb, "2-Photon Laser Scanning Fluorescence Microscopy," Science 248, 73-76 (1990).
    [CrossRef] [PubMed]
  7. H. F. Zhang, K. Maslov, G. Stoica, and L. H. V. Wang, "Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging," Nature Biotechnology 24, 848-851 (2006).
    [CrossRef] [PubMed]
  8. Z. Yaqoob, D. Psaltis, M. S. Feld, and C. Yang, "Optical phase conjugation for turbidity suppression in biological samples," (in review).
  9. M. Nieto-Vesperinas, and E. Wolf, "Phase conjugation and symmetries with wave fields in free space containing evanescent components," J. Opt. Soc. Am. A 2, 1429 (1985).
    [CrossRef]
  10. E. N. Leith, and J. Upatnieks, "Holographic imagery through diffusing media," J. Opt. Soc. Am. 56, 523 (1966).
    [CrossRef]
  11. D. Boas, J. Culver, J. Stott, and A. Dunn, "Three dimensional Monte Carlo code for photon migration through complex heterogeneous media including the adult human head," Opt. Express 10, 159-170 (2002).
    [PubMed]
  12. X. X. Guo, M. F. G. Wood, and A. Vitkin, "Monte Carlo study of pathlength distribution of polarized light in turbid media," Opt. Express 15, 1348-1360 (2007).
    [CrossRef] [PubMed]
  13. S. H. Tseng, and B. Huang, "Comparing Monte Carlo simulation and pseudospectral time-domain numerical solutions of Maxwell's equations of light scattering by a macroscopic random medium," Appl. Phys. Lett. 91 (2007).
    [CrossRef]
  14. Q. H. Liu, "Large-scale simulations of electromagnetic and acoustic measurements using the pseudospectral time-domain (PSTD) algorithm," IEEE Trans. Geosci. Remote Sens. 37, 917-926 (1999).
    [CrossRef]
  15. A. Taflove, and S. C. Hagness, Computational Electrodynamics: the finite-difference time-domain method (Artech House, 2000).
  16. S. D. Gedney, "An anisotropic perfectly matched layer absorbing media for the truncation of FDTD lattices," IEEE trans.Antennas Propag. 44, 1630-1639 (1996).
    [CrossRef]
  17. C. F. Bohren, and D. R. Huffman, Absorption and Scattering of Light by Small Particles (A Wiley-Interscience Publication, 1983).
  18. G. Mie, Ann. Phys. 25, 377 (1908).
    [CrossRef]
  19. I. M. Vellekoop, and A. P. Mosk, "Focusing coherent light through opaque strongly scattering media," Opt. Lett. 32, 2309-2311 (2007).
    [CrossRef] [PubMed]

2007 (3)

2006 (1)

H. F. Zhang, K. Maslov, G. Stoica, and L. H. V. Wang, "Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging," Nature Biotechnology 24, 848-851 (2006).
[CrossRef] [PubMed]

2002 (1)

2001 (1)

1999 (2)

J. M. Schmitt, "Optical coherence tomography (OCT): A review," IEEE J. Sel. Top. Quantum Electron. 5, 1205-1215 (1999).
[CrossRef]

Q. H. Liu, "Large-scale simulations of electromagnetic and acoustic measurements using the pseudospectral time-domain (PSTD) algorithm," IEEE Trans. Geosci. Remote Sens. 37, 917-926 (1999).
[CrossRef]

1998 (1)

L. T. Perelman, V. Backman, M. Wallace, G. Zonios, R. Manoharan, A. Nusrat, S. Shields, M. Seiler, C. Lima, T. Hamano, I. Itzkan, J. Van Dam, J. M. Crawford, and M. S. Feld, "Observation of periodic fine structure in reflectance from biological tissue: A new technique for measuring nuclear size distribution," Phys. Rev. Lett. 80, 627-630 (1998).
[CrossRef]

1997 (1)

G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, "In vivo endoscopic optical biopsy with optical coherence tomography," Science 276, 2037-2039 (1997).
[CrossRef] [PubMed]

1996 (1)

S. D. Gedney, "An anisotropic perfectly matched layer absorbing media for the truncation of FDTD lattices," IEEE trans.Antennas Propag. 44, 1630-1639 (1996).
[CrossRef]

1990 (2)

W. Denk, J. H. Strickler, and W. W. Webb, "2-Photon Laser Scanning Fluorescence Microscopy," Science 248, 73-76 (1990).
[CrossRef] [PubMed]

W. F. Cheong, S. A. Prahl, and A. J. Welch, "A Review of the Optical-Properties of Biological Tissues," IEEE J. Quantum Electron. 26, 2166-2185 (1990).
[CrossRef]

1985 (1)

1966 (1)

1908 (1)

G. Mie, Ann. Phys. 25, 377 (1908).
[CrossRef]

Ann. Phys. (1)

G. Mie, Ann. Phys. 25, 377 (1908).
[CrossRef]

Antennas Propag. (1)

S. D. Gedney, "An anisotropic perfectly matched layer absorbing media for the truncation of FDTD lattices," IEEE trans.Antennas Propag. 44, 1630-1639 (1996).
[CrossRef]

Appl. Phys. Lett. (1)

S. H. Tseng, and B. Huang, "Comparing Monte Carlo simulation and pseudospectral time-domain numerical solutions of Maxwell's equations of light scattering by a macroscopic random medium," Appl. Phys. Lett. 91 (2007).
[CrossRef]

IEEE J. Quantum Electron. (1)

W. F. Cheong, S. A. Prahl, and A. J. Welch, "A Review of the Optical-Properties of Biological Tissues," IEEE J. Quantum Electron. 26, 2166-2185 (1990).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

J. M. Schmitt, "Optical coherence tomography (OCT): A review," IEEE J. Sel. Top. Quantum Electron. 5, 1205-1215 (1999).
[CrossRef]

IEEE Trans. Geosci. Remote Sens. (1)

Q. H. Liu, "Large-scale simulations of electromagnetic and acoustic measurements using the pseudospectral time-domain (PSTD) algorithm," IEEE Trans. Geosci. Remote Sens. 37, 917-926 (1999).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (1)

Nature Biotechnology (1)

H. F. Zhang, K. Maslov, G. Stoica, and L. H. V. Wang, "Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging," Nature Biotechnology 24, 848-851 (2006).
[CrossRef] [PubMed]

Opt. Express (2)

Opt. Lett. (2)

Phys. Rev. Lett. (1)

L. T. Perelman, V. Backman, M. Wallace, G. Zonios, R. Manoharan, A. Nusrat, S. Shields, M. Seiler, C. Lima, T. Hamano, I. Itzkan, J. Van Dam, J. M. Crawford, and M. S. Feld, "Observation of periodic fine structure in reflectance from biological tissue: A new technique for measuring nuclear size distribution," Phys. Rev. Lett. 80, 627-630 (1998).
[CrossRef]

Science (2)

G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, "In vivo endoscopic optical biopsy with optical coherence tomography," Science 276, 2037-2039 (1997).
[CrossRef] [PubMed]

W. Denk, J. H. Strickler, and W. W. Webb, "2-Photon Laser Scanning Fluorescence Microscopy," Science 248, 73-76 (1990).
[CrossRef] [PubMed]

Other (3)

Z. Yaqoob, D. Psaltis, M. S. Feld, and C. Yang, "Optical phase conjugation for turbidity suppression in biological samples," (in review).

A. Taflove, and S. C. Hagness, Computational Electrodynamics: the finite-difference time-domain method (Artech House, 2000).

C. F. Bohren, and D. R. Huffman, Absorption and Scattering of Light by Small Particles (A Wiley-Interscience Publication, 1983).

Supplementary Material (1)

» Media 1: AVI (2405 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Simulation of a PCM using the PSTD technique. A 260µm-by-560µm cluster of N=2500 randomly-positioned, dielectric cylinders is illuminated on the left by a light pulse. Light is multiply scattered as it propagates through the cluster, and impinges the PCM. The phase and propagation direction of the light that impinges the PCM is inverted, causing light to propagate in the reverse direction and back-trace to where it originated.

Fig. 2.
Fig. 2.

PSTD simulation of the OPC effect of a PCM in vacuum. The physical dimensions of the simulation region are 320 µm by 600 µm. An initial light pulse with a cross-sectional width of 42.4 µm and temporal duration of 0.141 fs propagates through vacuum is shown in (a)–(c): (a) t=0 fs, (b) t=200 fs, and (c) t=600 fs. At t=1200 fs, the phase of the E-field is inverted, simulating the effect of a PCM. Then the light pulse propagates backward and refocuses to the original location where it first emerged, as shown in (d)–(f): (d) t=1200 fs, (e) t=1400 fs, and (f) t=1800 fs. Notice that the initial light pulse (a) and the refocused light pulse (f) both bear an amplitude of 1.

Fig. 3.
Fig. 3.

(2.34MB movie) three still images of the PSTD simulation of light scattering through a macroscopic cluster of dielectric cylinders and reflected back by a PCM. The physical dimensions of the simulation region are 320 µm by 600 µm. The initial light pulse is a Gaussian pulse with a cross-sectional width of 13.4 µm and temporal duration of 4.472 fs. The electric fields at various time-steps throughout the evolution are shown: (a) 200 fs, (b) 1000 fs, and (c) 2400 fs. As light scatters through the cluster of dielectric cylinders, the wavefront gradually spreads out due to diffraction. After the OPC effect of the PCM, light back-traces and refocuses back to the original location where it first emerged. Some light is lost as it scatters into other directions, resulting in a wider and reverberant wavefront profile. [Media 1]

Fig. 4.
Fig. 4.

Effect of the number of cylinders (N) on the phase-conjugate refocusing of light. N is varied from 0 to 2500, whereas for λ=1µm, N=500 corresponds to a scattering coefficient µs =0.0258 µm-1 and N=2500 corresponds to µs =0.1291 µm-1. Light refocused by the PCM back-traces its optical path and refocuses at the original position where it first emerged. The refocused light pulse profile for various N is shown in (a)–(f), each is of dimensions: 13.3 µm by 180 µm. With a larger N, more scattering occurs, resulting in a blurred pulse profile. The ratio of the total refocused energy to the initial total energy is shown on a semi-log scale in (g).

Fig. 5.
Fig. 5.

Effect of displacement (Δy) of the random media on the OPC refocusing of light. The cluster of 2500 5-µm-diameter dielectric cylinders is displaced by Δy in the y-direction immediately after the phase inversion of the E-field due to the PCM. The refocused light pulse profile for various Δy is shown in (a)–(f), each is of dimensions: 13.3 µm by 180 µm. The ratio of the total refocused energy to the initial total energy for various Δy is shown on a semi-log scale in (g). Notice that as Δy increases, the refocused light energy drops rapidly.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

{ E x i } = F 1 ( i k ˜ x F { E i } )
E E , D D
refocused energy = area of original light pulse [ ε E 2 2 + H 2 2 μ ] dx dy

Metrics