Abstract

We experimentally characterize a maximum likelihood sequence estimation (MSLE) based receiver’s tolerance to first- and all-order polarization mode dispersion (PMD). We show that the response of the MLSE receiver to first-order PMD can be characterized in two ways depending on the differential group delay (DGD). In addition we show that first-order PMD-induced system penalties dominate those from high-order PMD. High-order PMD induces a large system penalty only when the first-order penalty is small, or the DGD exceeds a bit period.

© 2007 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
PMD and PDL impairments in polarization division multiplexing signals with direct detection

Zinan Wang, Chongjin Xie, and Xiaomin Ren
Opt. Express 17(10) 7993-8004 (2009)

Chromatic dispersion and PMD mitigation at 10 Gb/s using Viterbi equalization for DPSK and DQPSK modulation formats

Wei Chen, Fred Buchali, Xingwen Yi, William Shieh, Jamie S. Evans, and Rodney S. Tucker
Opt. Express 15(9) 5271-5276 (2007)

References

  • View by:
  • |
  • |
  • |

  1. H.F. Haunsteinet al, “Principles for Electronic Equalization of Polarization-Mode Dispersion,” IEEE J. Lightwave Technol. 22, 1169 (2004).
    [Crossref]
  2. T. Nielsenet al, “OFC 2004 Workshop on Optical and Electronic Mitigation of Impariments,” IEEE J. Lightwave Technol. 23, 131 (2005).
    [Crossref]
  3. C. Fludgeret al, “ Core Optics: Enabling Open Tolerant Networks,” ECOC Workshop (2005).
  4. A. Färbertet al, “Performance of a 10.7 Gb/s Receiver with Digital Equaliser using Maximum Likelihood Sequence Estimation,” Proc. ECOC 04, Cannes, France, Paper PD-Th4.1.5 (2004)
  5. H.F. Haunsteinet al, “Performance Comparison of MLSE and Iterative Equalization in FEC Systems for PMD Channels With Respect to Implementation Complexity,” IEEE J. Lightwave Technol. 24, 4047 (2006).
    [Crossref]
  6. J.M Gene et al, “Joint PMD and Chromatic Dispersion Compensation Using an MLSE,” Proc. ECOC 06, Cannes, France, Paper We2.5.2 (2006).
  7. I. Lobato Poloet al, “Comparison of Maximum Likelihood Sequence Estimation equalizer with OOK and DPSK at 10.7 Gb/s,” Proc. ECOC 06, Cannes, France, Paper We2.5.3 (2006)
  8. J.M Geneet al, “Simultaneous Compensation of Polarization Mode Dispersion and Chromatic Dispersion Using Electronic Signal Processing,” IEEE J. Lightwave Techol, (to be published).
  9. H. Kogelniket al, “Polarization mode dispersion,” in Optical Fiber Communications, vol. IVb, I. Kaminow, Ed. 725 (San Diego: CA: Academic, 2002).
  10. R.M. Jopsonet al, “Measurement of Second-Order Polarization-Mode Dispersion Vectors in Optical Fibers,” IEEE Photon. Technol. Lett. 11, 1153 (1999).
    [Crossref]
  11. P.J. Winzeret al, “Precise Outage Specifications for First-Order PMD,” IEEE Photon. Technol. Lett. 16, 449 (2004).
    [Crossref]
  12. M.D. Feueret al, “Metastable States of MLSE Receiver Induced by Extreme PMD Conditions,” paper TuA1 3, LEOS Summer Topicals (2007).
  13. M. Boroditskyet al, “Comparison of system penalties from first- and multiorder polarization-mode dispersion,” IEEE Photon. Technol. Lett. 17, 1650 (2005).
    [Crossref]
  14. M. Shtaif and M. Boroditsky, “The effect of the frequency dependence of PMD on the performance of optical communications systems,” IEEE Photon. Technol. Lett. 15, 1369 (2003).
    [Crossref]

2007 (1)

M.D. Feueret al, “Metastable States of MLSE Receiver Induced by Extreme PMD Conditions,” paper TuA1 3, LEOS Summer Topicals (2007).

2006 (1)

H.F. Haunsteinet al, “Performance Comparison of MLSE and Iterative Equalization in FEC Systems for PMD Channels With Respect to Implementation Complexity,” IEEE J. Lightwave Technol. 24, 4047 (2006).
[Crossref]

2005 (2)

T. Nielsenet al, “OFC 2004 Workshop on Optical and Electronic Mitigation of Impariments,” IEEE J. Lightwave Technol. 23, 131 (2005).
[Crossref]

M. Boroditskyet al, “Comparison of system penalties from first- and multiorder polarization-mode dispersion,” IEEE Photon. Technol. Lett. 17, 1650 (2005).
[Crossref]

2004 (2)

P.J. Winzeret al, “Precise Outage Specifications for First-Order PMD,” IEEE Photon. Technol. Lett. 16, 449 (2004).
[Crossref]

H.F. Haunsteinet al, “Principles for Electronic Equalization of Polarization-Mode Dispersion,” IEEE J. Lightwave Technol. 22, 1169 (2004).
[Crossref]

2003 (1)

M. Shtaif and M. Boroditsky, “The effect of the frequency dependence of PMD on the performance of optical communications systems,” IEEE Photon. Technol. Lett. 15, 1369 (2003).
[Crossref]

1999 (1)

R.M. Jopsonet al, “Measurement of Second-Order Polarization-Mode Dispersion Vectors in Optical Fibers,” IEEE Photon. Technol. Lett. 11, 1153 (1999).
[Crossref]

Boroditsky, M.

M. Boroditskyet al, “Comparison of system penalties from first- and multiorder polarization-mode dispersion,” IEEE Photon. Technol. Lett. 17, 1650 (2005).
[Crossref]

M. Shtaif and M. Boroditsky, “The effect of the frequency dependence of PMD on the performance of optical communications systems,” IEEE Photon. Technol. Lett. 15, 1369 (2003).
[Crossref]

Färbert, A.

A. Färbertet al, “Performance of a 10.7 Gb/s Receiver with Digital Equaliser using Maximum Likelihood Sequence Estimation,” Proc. ECOC 04, Cannes, France, Paper PD-Th4.1.5 (2004)

Feuer, M.D.

M.D. Feueret al, “Metastable States of MLSE Receiver Induced by Extreme PMD Conditions,” paper TuA1 3, LEOS Summer Topicals (2007).

Fludger, C.

C. Fludgeret al, “ Core Optics: Enabling Open Tolerant Networks,” ECOC Workshop (2005).

Gene, J.M

J.M Gene et al, “Joint PMD and Chromatic Dispersion Compensation Using an MLSE,” Proc. ECOC 06, Cannes, France, Paper We2.5.2 (2006).

J.M Geneet al, “Simultaneous Compensation of Polarization Mode Dispersion and Chromatic Dispersion Using Electronic Signal Processing,” IEEE J. Lightwave Techol, (to be published).

Haunstein, H.F.

H.F. Haunsteinet al, “Performance Comparison of MLSE and Iterative Equalization in FEC Systems for PMD Channels With Respect to Implementation Complexity,” IEEE J. Lightwave Technol. 24, 4047 (2006).
[Crossref]

H.F. Haunsteinet al, “Principles for Electronic Equalization of Polarization-Mode Dispersion,” IEEE J. Lightwave Technol. 22, 1169 (2004).
[Crossref]

Jopson, R.M.

R.M. Jopsonet al, “Measurement of Second-Order Polarization-Mode Dispersion Vectors in Optical Fibers,” IEEE Photon. Technol. Lett. 11, 1153 (1999).
[Crossref]

Kogelnik, H.

H. Kogelniket al, “Polarization mode dispersion,” in Optical Fiber Communications, vol. IVb, I. Kaminow, Ed. 725 (San Diego: CA: Academic, 2002).

Lobato Polo, I.

I. Lobato Poloet al, “Comparison of Maximum Likelihood Sequence Estimation equalizer with OOK and DPSK at 10.7 Gb/s,” Proc. ECOC 06, Cannes, France, Paper We2.5.3 (2006)

Nielsen, T.

T. Nielsenet al, “OFC 2004 Workshop on Optical and Electronic Mitigation of Impariments,” IEEE J. Lightwave Technol. 23, 131 (2005).
[Crossref]

Shtaif, M.

M. Shtaif and M. Boroditsky, “The effect of the frequency dependence of PMD on the performance of optical communications systems,” IEEE Photon. Technol. Lett. 15, 1369 (2003).
[Crossref]

Winzer, P.J.

P.J. Winzeret al, “Precise Outage Specifications for First-Order PMD,” IEEE Photon. Technol. Lett. 16, 449 (2004).
[Crossref]

IEEE J. Lightwave Technol. (3)

H.F. Haunsteinet al, “Principles for Electronic Equalization of Polarization-Mode Dispersion,” IEEE J. Lightwave Technol. 22, 1169 (2004).
[Crossref]

T. Nielsenet al, “OFC 2004 Workshop on Optical and Electronic Mitigation of Impariments,” IEEE J. Lightwave Technol. 23, 131 (2005).
[Crossref]

H.F. Haunsteinet al, “Performance Comparison of MLSE and Iterative Equalization in FEC Systems for PMD Channels With Respect to Implementation Complexity,” IEEE J. Lightwave Technol. 24, 4047 (2006).
[Crossref]

IEEE Photon. Technol. Lett. (4)

R.M. Jopsonet al, “Measurement of Second-Order Polarization-Mode Dispersion Vectors in Optical Fibers,” IEEE Photon. Technol. Lett. 11, 1153 (1999).
[Crossref]

P.J. Winzeret al, “Precise Outage Specifications for First-Order PMD,” IEEE Photon. Technol. Lett. 16, 449 (2004).
[Crossref]

M. Boroditskyet al, “Comparison of system penalties from first- and multiorder polarization-mode dispersion,” IEEE Photon. Technol. Lett. 17, 1650 (2005).
[Crossref]

M. Shtaif and M. Boroditsky, “The effect of the frequency dependence of PMD on the performance of optical communications systems,” IEEE Photon. Technol. Lett. 15, 1369 (2003).
[Crossref]

Other (7)

M.D. Feueret al, “Metastable States of MLSE Receiver Induced by Extreme PMD Conditions,” paper TuA1 3, LEOS Summer Topicals (2007).

J.M Gene et al, “Joint PMD and Chromatic Dispersion Compensation Using an MLSE,” Proc. ECOC 06, Cannes, France, Paper We2.5.2 (2006).

I. Lobato Poloet al, “Comparison of Maximum Likelihood Sequence Estimation equalizer with OOK and DPSK at 10.7 Gb/s,” Proc. ECOC 06, Cannes, France, Paper We2.5.3 (2006)

J.M Geneet al, “Simultaneous Compensation of Polarization Mode Dispersion and Chromatic Dispersion Using Electronic Signal Processing,” IEEE J. Lightwave Techol, (to be published).

H. Kogelniket al, “Polarization mode dispersion,” in Optical Fiber Communications, vol. IVb, I. Kaminow, Ed. 725 (San Diego: CA: Academic, 2002).

C. Fludgeret al, “ Core Optics: Enabling Open Tolerant Networks,” ECOC Workshop (2005).

A. Färbertet al, “Performance of a 10.7 Gb/s Receiver with Digital Equaliser using Maximum Likelihood Sequence Estimation,” Proc. ECOC 04, Cannes, France, Paper PD-Th4.1.5 (2004)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Experimental setup used to characterize the PMD tolerance of an MLSE receiver.

Fig. 2.
Fig. 2.

Characterization of the MLSE receiver tolerance to the first-order PMD: (a) Surface plot and (b) outage map — a set of iso-penalty contours on DGD, Gamma plane [11]. The penalty magnitude defined by the colorbar. The increments between the penalty contours is 0.25 dB.

Fig. 3.
Fig. 3.

Penalty plotted against the perpendicular component of the PMD vector, normalized to the bit period for (a) the full data set, and (b) DGD values less than a bit period (T).

Fig. 4.
Fig. 4.

Penalty plotted against the perpendicular component of the PMD vector, normalized to the bit period, obtained using the two all-order PMD sources described in Table 1.

Fig. 5.
Fig. 5.

(a) All-order PMD-induced penalty plotted against first-order PMD-induced penalty. (b) Penalty difference between the all-and first-order PMD-induced penalty data plotted against the power splitting ratio γ.

Tables (1)

Tables Icon

Table 1. Summary of First and Second Order PMD Components for the All-Order PMD Sources. PMD components are defined in [9].

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

ε ( Δ τ , γ ) = A ( Δ τ T ) 2 γ ( 1 γ )
ε = A 4 ( τ T ) 2

Metrics