Abstract

Gold punchwork and underdrawing in Renaissance panel paintings are analyzed using both three-dimensional swept source/Fourier domain optical coherence tomography (3D-OCT) and high resolution digital photography. 3D-OCT can generate en face images with micrometer-scale resolutions at arbitrary sectioning depths, rejecting out-of-plane light by coherence gating. Therefore 3D-OCT is well suited for analyzing artwork where a surface layer obscures details of interest. 3D-OCT also enables cross-sectional imaging and quantitative measurement of 3D features such as punch depth, which is beneficial for analyzing the tools and techniques used to create works of art. High volumetric imaging speeds are enabled by the use of a Fourier domain mode locked (FDML) laser as the 3D-OCT light source. High resolution infrared (IR) digital photography is shown to be particularly useful for the analysis of underdrawing, where the materials used for the underdrawing and paint layers have significantly different IR absorption properties. In general, 3D-OCT provides a more flexible and comprehensive analysis of artwork than high resolution photography, but also requires more complex instrumentation and data analysis.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. S. Amadesi, F. Gori, R. Grella, and G. Guattari, "Holographic methods for painting diagnostics," Appl. Opt. 13, 2009-2013 (1974).
    [CrossRef] [PubMed]
  2. S. Spagnolo, D. Ambrosini, and G. Guattari, "Electro-optic holography system and digital image processing for in situ analysis of microclimate variation on artworks," Journal of Optics-Nouvelle Revue D Optique 28, 99-106 (1997).
  3. D. Paoletti, G. S. Spagnolo, M. Facchini, and P. Zanetta, "Artwork diagnostics with fiberoptic digital speckle pattern interferometry," Appl. Opt. 32, 6236-6241 (1993).
    [CrossRef] [PubMed]
  4. P. Targowski, B. Rouba, M. Wojtkowski, and A. Kowalczyk, "The application of optical coherence tomography to non-destructive examination of museum objects," Stud. Conserv. 49, 107-114 (2004).
  5. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
    [CrossRef] [PubMed]
  6. R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, "Performance of Fourier domain vs. time domain optical coherence tomography," Opt. Express 11, 889-894 (2003).
    [CrossRef] [PubMed]
  7. J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, "Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography," Opt. Lett. 28, 2067-2069 (2003).
    [CrossRef] [PubMed]
  8. M. A. Choma, M. V. Sarunic, C. H. Yang, and J. A. Izatt, "Sensitivity advantage of swept source and Fourier domain optical coherence tomography," Opt. Express 11, 2183-2189 (2003).
    [CrossRef] [PubMed]
  9. Y. Zhang, B. Cense, J. Rha, R. S. Jonnal, W. Gao, R. J. Zawadzki, J. S. Werner, S. Jones, S. Olivier, and D. T. Miller, "High-speed volumetric imaging of cone photoreceptors with adaptive optics spectral-domain optical coherence tomography," Opt. Express 14, 4380-4394 (2006).
    [CrossRef] [PubMed]
  10. R. Huber, D. C. Adler, and J. G. Fujimoto, "Buffered Fourier domain mode locking (FDML): unidirectional swept laser sources for OCT imaging at 370,000 lines per second," Opt. Lett. 31, 2975-2977 (2006).
    [CrossRef] [PubMed]
  11. L. Chih-Wei, I. J. Hsu, W. Hsiang-Chen, T. Meng-Tsan, C. C. Yang, and Y. Mei-Li, "Application of optical coherence tomography to monitoring the subsurface morphology of archaic jades," (IEEE, Taipei, Taiwan, 2003), Vol. 301, p. 308.
  12. M. Gora, M. Pircher, E. Goetzinger, T. Bajraszewski, M. Strlic, J. Kolar, C. K. Hitzenberger, and P. Targowski, "Optical coherence tomography for examination of parchment degradation," Laser Chem. 2006, Article ID 68679, 6 pages (2006).
  13. H. Liang, R. Cucu, G. M. Dobre, D. A. Jackson, J. Pedro, C. Pannell, D. Saunders, and A. G. Podoleanu, "Application of OCT to examination of easel paintings," SPIE-Santander, Spain 378-381 2004.
  14. T. Arecchi, M. Bellini, C. Corsi, R. Fontana, M. Materazzi, L. Pezzati, and A. Tortora, "Optical coherence tomography for painting diagnostics," in Optical Methods for Art and Archaeology SPIE, Munich, Germany, 278-282, (2005).
  15. T. Arecchi, M. Bellini, C. Corsi, R. Fontana, M. Materazzi, L. Pezzati, and A. Tortora, "A new tool for painting diagnostics: optical coherence tomography," Opt. Spectrosc. 101, 23-26 (2006).
    [CrossRef]
  16. H. Liang, M. G. Cid, R. G. Cucu, G. M. Dobre, A. G. Podoleanu, J. Pedro, and D. Saunders, "En-face optical coherence tomography - a novel application of non-invasive imaging to art conservation," Opt. Express 13, 6133-6144 (2005).
    [CrossRef] [PubMed]
  17. H. Liang, M. G. Cid, R. Cucu, G. Dobre, B. Kudimov, J. Pedro, D. Saunders, J. Cupitt, and A. Podoleanu, "Optical coherence tomography: a non-invasive technique applied to conservation of paintings," SPIE, Munich, Germany, 261-269, (2005).
  18. I. Gorczynska, M. Wojtkowski, M. Szkulmowski, T. Bajraszewski, B. Rouba, A. Kowalczyk, and P. Targowski, "Varnish thickness determination by spectral domain optical coherence tomography," in Lasers in the Conservation of Artworks, LACONA VI, J. Nimmricheter, W. Kautek, and M. Schreiner, eds., (Berlin-Heidelberg-New York: Springer Verlag, Vienna/Austria, 2005).
  19. M. Gora, A. Rycyk, J. Marczak, P. Targowski, and A. Kowalczyk, "From medical to art diagnostics OCT: a novel tool for varnish ablation control," in Coherence Domain Optical Methods and Optical Coherence Tomography in Biomedicine XI (SPIE, San Jose, CA, USA, 2007), pp. 64292V-64297.
  20. P. Targowski, M. Gora, and M. Wojtkowski, "Optical coherence tomography for artwork diagnostics," Laser Chem. 2006, Article ID 35373, 11 pages (2006).
  21. A. Szkulmowska, M. Gora, M. Targowska, B. Rouba, D. Stifter, E. Breuer, and P. Targowski, "The applicability of optical coherence tomography at 1.55 μm to the examination of oil paintings," in Lasers in the Conservation of Artworks, LACONA VI, J. Nimmricheter, W. Kautek, and M. Schreiner, eds. (Berlin-Heidelberg-New York: Springer Verlag, Vienna/Austria, 2005).
  22. P. Targowski, M. Gora, T. Bajraszewski, M. Szkulmowski, B. Rouba, T. Lekawa-Wyslouch, and L. Tyminska-Widmer, "Optical coherence tomography for tracking canvas deformation," Laser Chem. 2006, Article ID 93658, 8 pages (2006).
    [CrossRef]
  23. E. S. Skaug, Punch marks from Giotto to Fra Angelico: attribution, chronology, and workshop relationships in tuscan panel painting circa 1330 - 1430. (IIC - Nordic Group, Oslo, 1994).
    [PubMed]
  24. M. S. Frinta, "Observations on the Trecento and early Quattrocento workshop," in The artist's workshop. Studies in the history of art., P. M. Lukehart, ed. (National Gallery of Art, 1993), pp. 18-34.
  25. D. Bomford, ed. Art in the making: underdrawings in Renaissance paintings (National Gallery Company, London, 2002).
  26. M. Faries, and R. Spronk, eds. Recent development in the technical examination of early Netherlandish painting (Harvard University Art Museums, Cambridge, 2003).
  27. G. Mazzoni, ed., Falsi d'autore (Protagon Editori, Siena, 2004).
  28. S. W. Huang, A. D. Aguirre, R. A. Huber, D. C. Adler, and J. G. Fujimoto, "Swept source optical coherence microscopy using a Fourier domain mode locked laser," Opt. Express 10, 6210-6217 (2007).
    [CrossRef]
  29. P. M. Andrews, Y. Chen, S. Huang, D. C. Adler, R. Huber, J. Jiang, S. Barry, A. E. Cable, and J. G. Fujimoto, "High-speed three-dimensional optical coherence tomography imaging of kidney ischemia in vivo," Lab. Invest. In review (2007).
  30. R. Huber, M. Wojtkowski, and J. G. Fujimoto, "Fourier domain mode locking (FDML): A new laser operating regime and applications for optical coherence tomography," Opt. Express 14, 3225-3237 (2006).
    [CrossRef] [PubMed]
  31. D. C. Adler, R. Huber, and J. G. Fujimoto, "Phase-sensitive optical coherence tomography at up to 370,000 lines per second using buffered Fourier domain mode locked lasers," Opt. Lett. 32, 626-628 (2007).
    [CrossRef] [PubMed]
  32. R. Huber, D. C. Adler, V. J. Srinivasan, and J. G. Fujimoto, "Fourier domain mode locking at 1050 nm for ultra-high-speed optical coherence tomography of the human retina at 236,000 axial scans per second," Opt. Lett. 32, 2049-2051 (2007).
    [CrossRef] [PubMed]
  33. C. K. Hitzenberger, P. Trost, P. W. Lo, and Q. Y. Zhou, "Three-dimensional imaging of the human retina by high-speed optical coherence tomography," Opt. Express 11, 2753-2761 (2003).
    [CrossRef] [PubMed]
  34. R. Spronk, and C. Van Daalen, "Two scenes from the Passion at the Harvard Art Museums; a tale of two Antwerp workshops?" in Making and marketing: studies of the painting process in fifteenth- and sixteenth-century Netherlandish workshops, M. Faries, ed. (Brepols Publishers, 2006).
    [PubMed]
  35. D. Koozekanani, K. Boyer, and C. Roberts, "Retinal thickness measurements from optical coherence tomography using a Markov boundary model," IEEE T. Med. Imaging 20, 900-916 (2001).
    [CrossRef]
  36. J. A. Izatt, M. R. Hee, G. M. Owen, E. A. Swanson, and J. G. Fujimoto, "Optical coherence microscopy in scattering media," Opt. Lett. 19, 590-592 (1994).
    [CrossRef] [PubMed]
  37. E. Beaurepaire, A. C. Boccara, M. Lebec, L. Blanchot, and H. Saint-Jalmes, "Full-field optical coherence microscopy," Opt. Lett. 23, 244-246 (1998).
    [CrossRef]
  38. J. W. Hettinger, M. D. P. Mattozzi, W. R. Myers, M. E. Williams, A. Reeves, R. L. Parsons, R. C. Haskell, D. C. Petersen, R. Y. Wang, and J. I. Medford, "Optical coherence microscopy. A technology for rapid, in vivo, non-destructive visualization of plants and plant cells," Plant Physiol. 123, 3-15 (2000).
    [CrossRef] [PubMed]
  39. A. D. Aguirre, P. Hsiung, T. H. Ko, I. Hartl, and J. G. Fujimoto, "High-resolution optical coherence microscopy for high-speed, in vivo cellular imaging," Opt. Lett. 28, 2064-2066 (2003).
    [CrossRef] [PubMed]
  40. R. A. Leitgeb, M. Villiger, A. H. Bachmann, L. Steinmann, and T. Lasser, "Extended focus depth for Fourier domain optical coherence microscopy," Opt. Lett. 31, 2450-2452 (2006).
    [CrossRef] [PubMed]
  41. W. Y. Oh, B. E. Bouma, N. Iftimia, S. H. Yun, R. Yelin, and G. J. Tearney, "Ultrahigh-resolution full-field optical coherence microscopy using InGaAs camera," Opt. Express 14, 726-735 (2006).
    [CrossRef] [PubMed]
  42. S. Huang, A. D. Aguirre, R. A. Huber, D. C. Adler, and J. G. Fujimoto, "Swept source optical coherence microscopy using a Fourier domain mode-locked laser," Opt. Express 15, 6210-6217 (2007).
    [CrossRef] [PubMed]
  43. J. Dunkerton, and N. Penny, "The infra-red examination of Raphael's "Garvagh Madonna"," in National Gallery Technical Bulletin (NGPL, London, 1993), pp. 6-21.

2007 (4)

2006 (6)

2005 (1)

2004 (1)

P. Targowski, B. Rouba, M. Wojtkowski, and A. Kowalczyk, "The application of optical coherence tomography to non-destructive examination of museum objects," Stud. Conserv. 49, 107-114 (2004).

2003 (5)

2001 (1)

D. Koozekanani, K. Boyer, and C. Roberts, "Retinal thickness measurements from optical coherence tomography using a Markov boundary model," IEEE T. Med. Imaging 20, 900-916 (2001).
[CrossRef]

2000 (1)

J. W. Hettinger, M. D. P. Mattozzi, W. R. Myers, M. E. Williams, A. Reeves, R. L. Parsons, R. C. Haskell, D. C. Petersen, R. Y. Wang, and J. I. Medford, "Optical coherence microscopy. A technology for rapid, in vivo, non-destructive visualization of plants and plant cells," Plant Physiol. 123, 3-15 (2000).
[CrossRef] [PubMed]

1998 (1)

1994 (1)

1993 (1)

1991 (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

1974 (1)

Appl. Opt. (2)

IEEE T. Med. Imaging (1)

D. Koozekanani, K. Boyer, and C. Roberts, "Retinal thickness measurements from optical coherence tomography using a Markov boundary model," IEEE T. Med. Imaging 20, 900-916 (2001).
[CrossRef]

Opt. Express (9)

C. K. Hitzenberger, P. Trost, P. W. Lo, and Q. Y. Zhou, "Three-dimensional imaging of the human retina by high-speed optical coherence tomography," Opt. Express 11, 2753-2761 (2003).
[CrossRef] [PubMed]

R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, "Performance of Fourier domain vs. time domain optical coherence tomography," Opt. Express 11, 889-894 (2003).
[CrossRef] [PubMed]

S. W. Huang, A. D. Aguirre, R. A. Huber, D. C. Adler, and J. G. Fujimoto, "Swept source optical coherence microscopy using a Fourier domain mode locked laser," Opt. Express 10, 6210-6217 (2007).
[CrossRef]

R. Huber, M. Wojtkowski, and J. G. Fujimoto, "Fourier domain mode locking (FDML): A new laser operating regime and applications for optical coherence tomography," Opt. Express 14, 3225-3237 (2006).
[CrossRef] [PubMed]

M. A. Choma, M. V. Sarunic, C. H. Yang, and J. A. Izatt, "Sensitivity advantage of swept source and Fourier domain optical coherence tomography," Opt. Express 11, 2183-2189 (2003).
[CrossRef] [PubMed]

Y. Zhang, B. Cense, J. Rha, R. S. Jonnal, W. Gao, R. J. Zawadzki, J. S. Werner, S. Jones, S. Olivier, and D. T. Miller, "High-speed volumetric imaging of cone photoreceptors with adaptive optics spectral-domain optical coherence tomography," Opt. Express 14, 4380-4394 (2006).
[CrossRef] [PubMed]

H. Liang, M. G. Cid, R. G. Cucu, G. M. Dobre, A. G. Podoleanu, J. Pedro, and D. Saunders, "En-face optical coherence tomography - a novel application of non-invasive imaging to art conservation," Opt. Express 13, 6133-6144 (2005).
[CrossRef] [PubMed]

W. Y. Oh, B. E. Bouma, N. Iftimia, S. H. Yun, R. Yelin, and G. J. Tearney, "Ultrahigh-resolution full-field optical coherence microscopy using InGaAs camera," Opt. Express 14, 726-735 (2006).
[CrossRef] [PubMed]

S. Huang, A. D. Aguirre, R. A. Huber, D. C. Adler, and J. G. Fujimoto, "Swept source optical coherence microscopy using a Fourier domain mode-locked laser," Opt. Express 15, 6210-6217 (2007).
[CrossRef] [PubMed]

Opt. Lett. (8)

R. Huber, D. C. Adler, and J. G. Fujimoto, "Buffered Fourier domain mode locking (FDML): unidirectional swept laser sources for OCT imaging at 370,000 lines per second," Opt. Lett. 31, 2975-2977 (2006).
[CrossRef] [PubMed]

D. C. Adler, R. Huber, and J. G. Fujimoto, "Phase-sensitive optical coherence tomography at up to 370,000 lines per second using buffered Fourier domain mode locked lasers," Opt. Lett. 32, 626-628 (2007).
[CrossRef] [PubMed]

R. Huber, D. C. Adler, V. J. Srinivasan, and J. G. Fujimoto, "Fourier domain mode locking at 1050 nm for ultra-high-speed optical coherence tomography of the human retina at 236,000 axial scans per second," Opt. Lett. 32, 2049-2051 (2007).
[CrossRef] [PubMed]

J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, "Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography," Opt. Lett. 28, 2067-2069 (2003).
[CrossRef] [PubMed]

A. D. Aguirre, P. Hsiung, T. H. Ko, I. Hartl, and J. G. Fujimoto, "High-resolution optical coherence microscopy for high-speed, in vivo cellular imaging," Opt. Lett. 28, 2064-2066 (2003).
[CrossRef] [PubMed]

R. A. Leitgeb, M. Villiger, A. H. Bachmann, L. Steinmann, and T. Lasser, "Extended focus depth for Fourier domain optical coherence microscopy," Opt. Lett. 31, 2450-2452 (2006).
[CrossRef] [PubMed]

J. A. Izatt, M. R. Hee, G. M. Owen, E. A. Swanson, and J. G. Fujimoto, "Optical coherence microscopy in scattering media," Opt. Lett. 19, 590-592 (1994).
[CrossRef] [PubMed]

E. Beaurepaire, A. C. Boccara, M. Lebec, L. Blanchot, and H. Saint-Jalmes, "Full-field optical coherence microscopy," Opt. Lett. 23, 244-246 (1998).
[CrossRef]

Opt. Spectrosc. (1)

T. Arecchi, M. Bellini, C. Corsi, R. Fontana, M. Materazzi, L. Pezzati, and A. Tortora, "A new tool for painting diagnostics: optical coherence tomography," Opt. Spectrosc. 101, 23-26 (2006).
[CrossRef]

Plant Physiol. (1)

J. W. Hettinger, M. D. P. Mattozzi, W. R. Myers, M. E. Williams, A. Reeves, R. L. Parsons, R. C. Haskell, D. C. Petersen, R. Y. Wang, and J. I. Medford, "Optical coherence microscopy. A technology for rapid, in vivo, non-destructive visualization of plants and plant cells," Plant Physiol. 123, 3-15 (2000).
[CrossRef] [PubMed]

Science (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Stud. Conserv. (1)

P. Targowski, B. Rouba, M. Wojtkowski, and A. Kowalczyk, "The application of optical coherence tomography to non-destructive examination of museum objects," Stud. Conserv. 49, 107-114 (2004).

Other (19)

S. Spagnolo, D. Ambrosini, and G. Guattari, "Electro-optic holography system and digital image processing for in situ analysis of microclimate variation on artworks," Journal of Optics-Nouvelle Revue D Optique 28, 99-106 (1997).

L. Chih-Wei, I. J. Hsu, W. Hsiang-Chen, T. Meng-Tsan, C. C. Yang, and Y. Mei-Li, "Application of optical coherence tomography to monitoring the subsurface morphology of archaic jades," (IEEE, Taipei, Taiwan, 2003), Vol. 301, p. 308.

M. Gora, M. Pircher, E. Goetzinger, T. Bajraszewski, M. Strlic, J. Kolar, C. K. Hitzenberger, and P. Targowski, "Optical coherence tomography for examination of parchment degradation," Laser Chem. 2006, Article ID 68679, 6 pages (2006).

H. Liang, R. Cucu, G. M. Dobre, D. A. Jackson, J. Pedro, C. Pannell, D. Saunders, and A. G. Podoleanu, "Application of OCT to examination of easel paintings," SPIE-Santander, Spain 378-381 2004.

T. Arecchi, M. Bellini, C. Corsi, R. Fontana, M. Materazzi, L. Pezzati, and A. Tortora, "Optical coherence tomography for painting diagnostics," in Optical Methods for Art and Archaeology SPIE, Munich, Germany, 278-282, (2005).

H. Liang, M. G. Cid, R. Cucu, G. Dobre, B. Kudimov, J. Pedro, D. Saunders, J. Cupitt, and A. Podoleanu, "Optical coherence tomography: a non-invasive technique applied to conservation of paintings," SPIE, Munich, Germany, 261-269, (2005).

I. Gorczynska, M. Wojtkowski, M. Szkulmowski, T. Bajraszewski, B. Rouba, A. Kowalczyk, and P. Targowski, "Varnish thickness determination by spectral domain optical coherence tomography," in Lasers in the Conservation of Artworks, LACONA VI, J. Nimmricheter, W. Kautek, and M. Schreiner, eds., (Berlin-Heidelberg-New York: Springer Verlag, Vienna/Austria, 2005).

M. Gora, A. Rycyk, J. Marczak, P. Targowski, and A. Kowalczyk, "From medical to art diagnostics OCT: a novel tool for varnish ablation control," in Coherence Domain Optical Methods and Optical Coherence Tomography in Biomedicine XI (SPIE, San Jose, CA, USA, 2007), pp. 64292V-64297.

P. Targowski, M. Gora, and M. Wojtkowski, "Optical coherence tomography for artwork diagnostics," Laser Chem. 2006, Article ID 35373, 11 pages (2006).

A. Szkulmowska, M. Gora, M. Targowska, B. Rouba, D. Stifter, E. Breuer, and P. Targowski, "The applicability of optical coherence tomography at 1.55 μm to the examination of oil paintings," in Lasers in the Conservation of Artworks, LACONA VI, J. Nimmricheter, W. Kautek, and M. Schreiner, eds. (Berlin-Heidelberg-New York: Springer Verlag, Vienna/Austria, 2005).

P. Targowski, M. Gora, T. Bajraszewski, M. Szkulmowski, B. Rouba, T. Lekawa-Wyslouch, and L. Tyminska-Widmer, "Optical coherence tomography for tracking canvas deformation," Laser Chem. 2006, Article ID 93658, 8 pages (2006).
[CrossRef]

E. S. Skaug, Punch marks from Giotto to Fra Angelico: attribution, chronology, and workshop relationships in tuscan panel painting circa 1330 - 1430. (IIC - Nordic Group, Oslo, 1994).
[PubMed]

M. S. Frinta, "Observations on the Trecento and early Quattrocento workshop," in The artist's workshop. Studies in the history of art., P. M. Lukehart, ed. (National Gallery of Art, 1993), pp. 18-34.

D. Bomford, ed. Art in the making: underdrawings in Renaissance paintings (National Gallery Company, London, 2002).

M. Faries, and R. Spronk, eds. Recent development in the technical examination of early Netherlandish painting (Harvard University Art Museums, Cambridge, 2003).

G. Mazzoni, ed., Falsi d'autore (Protagon Editori, Siena, 2004).

P. M. Andrews, Y. Chen, S. Huang, D. C. Adler, R. Huber, J. Jiang, S. Barry, A. E. Cable, and J. G. Fujimoto, "High-speed three-dimensional optical coherence tomography imaging of kidney ischemia in vivo," Lab. Invest. In review (2007).

R. Spronk, and C. Van Daalen, "Two scenes from the Passion at the Harvard Art Museums; a tale of two Antwerp workshops?" in Making and marketing: studies of the painting process in fifteenth- and sixteenth-century Netherlandish workshops, M. Faries, ed. (Brepols Publishers, 2006).
[PubMed]

J. Dunkerton, and N. Penny, "The infra-red examination of Raphael's "Garvagh Madonna"," in National Gallery Technical Bulletin (NGPL, London, 1993), pp. 6-21.

Supplementary Material (1)

» Media 1: AVI (3134 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

“Marriage of the Virgin”, 1375–1400. A. Photograph of the painting with regions of interest indicated by red boxes. Painting dimensions are 37.4×23.0 cm. B. Enlarged view of the first region of interest, showing the location of the first gold punch. C. Enlarged view of the second region of interest, showing the locations of the second and third gold punches.

Fig. 2.
Fig. 2.

OCT images of the first gold punch in “Marriage of the Virgin.” A. En face image formed by summed voxel projection, where every line in the 3D dataset is axially summed over the entire depth range. Red and blue lines indicate the locations of the cross sectional images. B. XZ cross sectional image. C. YZ cross sectional image. A surface layer of varnish (arrows) is present on top of the gold layer, which obscures the fine details of the punch.

Fig. 3.
Fig. 3.

A. YZ cross-sectional image of the first gold punch. Dashed line shows the orientation of an image plane parallel to the surface of the painting. The plane can be translated perpendicularly to the surface. B. Single-slice en face image obtained by positioning the plane in the varnish layer. C. Single-slice en face image obtained by positioning the plane deeper in the sample, such that the plane intersects the gold layer. More detail is apparent when the gold layer is analyzed separately from the varnish layer. Multimedia file is 3.2 megabytes. [Media 1]

Fig. 4.
Fig. 4.

A-C. En face OCT images of the first, second, and third gold punches in “Marriage of the Virgin”, obtained by synthesizing images from a plane intersecting the gold layer. Red arrows indicate unique identifying features, suggesting that the same tool was used to create all three punches. D-F. High resolution color photographs of the same three punches. Identifying features are not visible with photography due to the lack of depth selectivity and the presence of the surface varnish layer.

Fig. 5.
Fig. 5.

“San Marco,” circa 1920 A. Photograph of the painting with regions of interest indicated by red boxes. Painting dimensions are 20.8×35.8 cm. B. Enlarged view of the first region of interest, showing the location of the first (circular) gold punch. C. Enlarged view of the second region of interest, showing the locations of the second and third (waffle iron) gold punches.

Fig. 6.
Fig. 6.

OCT images of the first gold punch in “San Marco.” A. Single-slice en face image formed by placing the image plane parallel to the painting surface and at a depth that intersects the gold layer. Red and blue lines indicate the locations of the cross sectional images. B. XZ cross sectional image. C. YZ cross sectional image. No varnish layer is present, and the punch depth is larger than in “Marriage of the Virgin”.

Fig. 7.
Fig. 7.

A-C. Single-slice en face OCT images of the first, second, and third gold punches in “San Marco”, obtained by synthesizing images from a plane intersecting the gold layer. Red arrows indicate unique identifying features, suggesting that the same tool was used to create both waffle iron punches. D-F. High resolution color photographs of the same three punches. Identifying features are not visible with photography due to the lack of depth selectivity.

Fig. 8.
Fig. 8.

“Arrest of Christ,” circa 1520 A. Photograph. Painting dimensions are 33.8×13.5 cm. B. Infrared photograph showing macroscopic features of the underdrawing, with regions of interest indicated by red boxes. C. Enlarged view of first region of interest, showing the location of the first underdrawing feature. D. Enlarged view of the second region of interest, showing the locations of the second and third underdrawing features.

Fig. 9.
Fig. 9.

OCT images of the first underdrawing feature in “Arrest of Christ.” A. Single cross sectional image taken through the underdrawing. Colored arrows indicate the locations of the varnish (red), paint (blue), and underdrawing (green) layers that were axially summed to form the summed voxel projection en face images in B-D. B. Summed voxel projection en face image of the varnish layer. C. Summed voxel projection en face image of the paint layer. D. Summed voxel projection en face image of the underdrawing layer. Orange dashed line indicates the location of the cross-sectional image in A.

Fig. 10.
Fig. 10.

A-C. Summed voxel projection en face OCT images of the first, second, and third underdrawing features in “Arrest of Christ”, obtained by axially summing only the underdrawing layer. D-F. High resolution infrared (IR) photographs of the same three underdrawing features. IR photography provides good contrast, but 3D-OCT provides depth sectioning, higher resolution, and more detailed imaging.

Metrics