Abstract

The electric field distribution in electronic devices, particularly in the organic devices, was visualized by the optical second harmonic generation (SHG) imaging technique on the basis of electric field induced SHG (EFISHG). Two-dimensional SHG images from organic field effect transistor using pentacene were taken with a cooled CCD camera, and the SHG images showed the electric field was successfully visualized with a resolution of 1 µm. The SHG imaging method provides us a novel technique for visualizing the electric field distribution in actual devices under device operation.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. M. A. Lampert and P. Mark, Current Injection in Solid (Academic Press, New York, 1970).
  2. M. Nonnenmacher, M. P. O’Boyle and H. K. Wickramasinghe, "Kelvin probe force microscopy," Appl. Phys. Lett. 58, 2921-2923 (1991).
    [CrossRef]
  3. L. Burgi, H. Sirringhaus and R. H. Friend, "Noncontact potentiometry of polymer field-effect transistors," Appl. Phys. Lett. 80, 2913-2915 (2002).
    [CrossRef]
  4. K. P. Puntambekar, P. V. Pesavento and C. D. Frisbie, "Surface potential profiling and contact resistance measurements on operating pentacene thin-film transistors by Kelvin probe force microscopy," Appl. Phys. Lett. 83, 5539-5541 (2003).
    [CrossRef]
  5. B. F. Levine and C. G. Bethea, "Second and third order hyperpolarizabilities of organic molecules," J. Chem. Phys. 63, 2666-2682 (1975).
    [CrossRef]
  6. C. Bosshard, G. Knopfle, P. Pretre and P. Gunter, "Second-order polarizabilities of nitropyridine derivatives determined with electric-field-induced second-harmonic generation and a solvatochromic method: A comparative study," J. Appl. Phys. 71, 1594-1605 (1992).
    [CrossRef]
  7. G. Lupke, C. Meyer, C. Ohlhoff, H. Kurz, S. Lehmann and G. Marowsky, "Optical second-harmonic generation as a probe of electric-field-induced perturbation of centrosymmetric media," Opt. Lett. 20, 1997-1999 (1995).
    [CrossRef]
  8. T. Manaka, E. Lim, R. Tamura, D. Yamada and M. Iwamoto, "Probing of the electric field distribution in organic field effect transistor channel by microscopic second-harmonic generation," Appl. Phys. Lett. 89, 072113 (2006).
    [CrossRef]
  9. J. G. Laquindanum, R. E. Katz, A. J. Lovinger and A. Dodabalapur, "Morphological origin of high mobility in pentacene thin-film transistors," Chem. Mater. 8, 2542-2544 (1996).
    [CrossRef]
  10. Y.-Y. Lin, D. J. Gundlach, S. Nelson and T. N. Jackson, "Pentacene-based organic thin-film transistors," IEEE Trans. Electron Devices 44, 1325-1331 (1997).
    [CrossRef]
  11. J. Y. Lee, S. Roth and Y. W. Park, "Anisotropic field effect mobility in single crystal pentacene," Appl. Phys. Lett. 88, 252106 (2006).
    [CrossRef]
  12. T. Manaka, Y. Suzue and M. Iwamoto, "Investigation of the electrostatic phenomena at pentacene/Metal interface by second-harmonic generation," Jpn. J. Appl. Phys. 44, 2818-2822 (2005).
    [CrossRef]
  13. N. Karl, "Organic semiconductors," Festk¨oerperproblemes 14, 261-290 (1974).
  14. H. E. Katz, "Recent advances in semiconductor performance and printing processes for organic transistor-based electronics," Chem. Mater. 16, 4748-4756 (2004).
    [CrossRef]
  15. H. Sirringhaus, T. Kawase, R. H. Friend, T. Shimoda, M. Inbasekaran, W. Wu and E. P. Woo, "High-resolution inkjet printing of all-polymer transistor circuits," Science 290, 2123-2126 (2000).
    [CrossRef] [PubMed]

2006 (2)

T. Manaka, E. Lim, R. Tamura, D. Yamada and M. Iwamoto, "Probing of the electric field distribution in organic field effect transistor channel by microscopic second-harmonic generation," Appl. Phys. Lett. 89, 072113 (2006).
[CrossRef]

J. Y. Lee, S. Roth and Y. W. Park, "Anisotropic field effect mobility in single crystal pentacene," Appl. Phys. Lett. 88, 252106 (2006).
[CrossRef]

2005 (1)

T. Manaka, Y. Suzue and M. Iwamoto, "Investigation of the electrostatic phenomena at pentacene/Metal interface by second-harmonic generation," Jpn. J. Appl. Phys. 44, 2818-2822 (2005).
[CrossRef]

2004 (1)

H. E. Katz, "Recent advances in semiconductor performance and printing processes for organic transistor-based electronics," Chem. Mater. 16, 4748-4756 (2004).
[CrossRef]

2003 (1)

K. P. Puntambekar, P. V. Pesavento and C. D. Frisbie, "Surface potential profiling and contact resistance measurements on operating pentacene thin-film transistors by Kelvin probe force microscopy," Appl. Phys. Lett. 83, 5539-5541 (2003).
[CrossRef]

2002 (1)

L. Burgi, H. Sirringhaus and R. H. Friend, "Noncontact potentiometry of polymer field-effect transistors," Appl. Phys. Lett. 80, 2913-2915 (2002).
[CrossRef]

2000 (1)

H. Sirringhaus, T. Kawase, R. H. Friend, T. Shimoda, M. Inbasekaran, W. Wu and E. P. Woo, "High-resolution inkjet printing of all-polymer transistor circuits," Science 290, 2123-2126 (2000).
[CrossRef] [PubMed]

1997 (1)

Y.-Y. Lin, D. J. Gundlach, S. Nelson and T. N. Jackson, "Pentacene-based organic thin-film transistors," IEEE Trans. Electron Devices 44, 1325-1331 (1997).
[CrossRef]

1996 (1)

J. G. Laquindanum, R. E. Katz, A. J. Lovinger and A. Dodabalapur, "Morphological origin of high mobility in pentacene thin-film transistors," Chem. Mater. 8, 2542-2544 (1996).
[CrossRef]

1995 (1)

1992 (1)

C. Bosshard, G. Knopfle, P. Pretre and P. Gunter, "Second-order polarizabilities of nitropyridine derivatives determined with electric-field-induced second-harmonic generation and a solvatochromic method: A comparative study," J. Appl. Phys. 71, 1594-1605 (1992).
[CrossRef]

1991 (1)

M. Nonnenmacher, M. P. O’Boyle and H. K. Wickramasinghe, "Kelvin probe force microscopy," Appl. Phys. Lett. 58, 2921-2923 (1991).
[CrossRef]

1975 (1)

B. F. Levine and C. G. Bethea, "Second and third order hyperpolarizabilities of organic molecules," J. Chem. Phys. 63, 2666-2682 (1975).
[CrossRef]

Appl. Phys. Lett. (5)

M. Nonnenmacher, M. P. O’Boyle and H. K. Wickramasinghe, "Kelvin probe force microscopy," Appl. Phys. Lett. 58, 2921-2923 (1991).
[CrossRef]

L. Burgi, H. Sirringhaus and R. H. Friend, "Noncontact potentiometry of polymer field-effect transistors," Appl. Phys. Lett. 80, 2913-2915 (2002).
[CrossRef]

K. P. Puntambekar, P. V. Pesavento and C. D. Frisbie, "Surface potential profiling and contact resistance measurements on operating pentacene thin-film transistors by Kelvin probe force microscopy," Appl. Phys. Lett. 83, 5539-5541 (2003).
[CrossRef]

T. Manaka, E. Lim, R. Tamura, D. Yamada and M. Iwamoto, "Probing of the electric field distribution in organic field effect transistor channel by microscopic second-harmonic generation," Appl. Phys. Lett. 89, 072113 (2006).
[CrossRef]

J. Y. Lee, S. Roth and Y. W. Park, "Anisotropic field effect mobility in single crystal pentacene," Appl. Phys. Lett. 88, 252106 (2006).
[CrossRef]

Chem. Mater. (2)

H. E. Katz, "Recent advances in semiconductor performance and printing processes for organic transistor-based electronics," Chem. Mater. 16, 4748-4756 (2004).
[CrossRef]

J. G. Laquindanum, R. E. Katz, A. J. Lovinger and A. Dodabalapur, "Morphological origin of high mobility in pentacene thin-film transistors," Chem. Mater. 8, 2542-2544 (1996).
[CrossRef]

IEEE Trans. Electron Devices (1)

Y.-Y. Lin, D. J. Gundlach, S. Nelson and T. N. Jackson, "Pentacene-based organic thin-film transistors," IEEE Trans. Electron Devices 44, 1325-1331 (1997).
[CrossRef]

J. Appl. Phys. (1)

C. Bosshard, G. Knopfle, P. Pretre and P. Gunter, "Second-order polarizabilities of nitropyridine derivatives determined with electric-field-induced second-harmonic generation and a solvatochromic method: A comparative study," J. Appl. Phys. 71, 1594-1605 (1992).
[CrossRef]

J. Chem. Phys. (1)

B. F. Levine and C. G. Bethea, "Second and third order hyperpolarizabilities of organic molecules," J. Chem. Phys. 63, 2666-2682 (1975).
[CrossRef]

Jpn. J. Appl. Phys. (1)

T. Manaka, Y. Suzue and M. Iwamoto, "Investigation of the electrostatic phenomena at pentacene/Metal interface by second-harmonic generation," Jpn. J. Appl. Phys. 44, 2818-2822 (2005).
[CrossRef]

Opt. Lett. (1)

Science (1)

H. Sirringhaus, T. Kawase, R. H. Friend, T. Shimoda, M. Inbasekaran, W. Wu and E. P. Woo, "High-resolution inkjet printing of all-polymer transistor circuits," Science 290, 2123-2126 (2000).
[CrossRef] [PubMed]

Other (2)

N. Karl, "Organic semiconductors," Festk¨oerperproblemes 14, 261-290 (1974).

M. A. Lampert and P. Mark, Current Injection in Solid (Academic Press, New York, 1970).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

(a) Schematic images of the sample strucrure and electrical connection. (b) Optical setup for the SHG imaging.

Fig. 2.
Fig. 2.

SHG profiles along the pentacene FET channel obtained using (a) 20× and (b) 50× objective lens. Two-dimensional intensity distrubution of fundamental light at a focal point using (c) 20× and (d) 50× objectives.

Fig. 3.
Fig. 3.

(a) SHG image from the channel of pentacene FET under the application of negative pulse. Channel region lies between two gold electrodes, and edges of the electrode are indicated by dashed lines. SHG emission was observed at the edge of the drain electrode. (b) Microscopic image of the channel between two electrodes. This picture was taken under the illumination of visible light.

Fig. 4.
Fig. 4.

Top figure represents the in-plane component of the in-plane electric field distribution in pentacene layer. Bottom one shows the line scan of the SHG intensity profile across the channel. Open squares and filled diamonds, respectively, represent SHG intensity profile at line scan A and B as shown in Fig. 3.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

I ( 2 ω ) χ ( 3 ) ( 2 ω ; 0 , ω , ω ) E ( 0 ) E ( ω ) E ( ω ) 2
I 2 ω ( x ) E ( ξ ) I ω ( x ξ ) d ξ 2

Metrics