Abstract

We report a field trial of differential phase shift quantum key distribution (QKD) using polarization independent frequency up-conversion detectors. A frequency up-conversion detector is a promising device for achieving a high key generation rate when combined with a high clock rate QKD system. However, its polarization dependence prevents it from being applied to practical QKD systems. In this paper, we employ a modified polarization diversity configuration to eliminate the polarization dependence. Applying this method, we performed a long-term stability test using a 17.6-km installed fiber. We successfully demonstrated stable operation for 6 hours and achieved a sifted key generation rate of 120 kbps and an average quantum bit error rate of 3.14 %. The sifted key generation rate was not the estimated value but the effective value, which means that the sifted key was continuously generated at a rate of 120 kbps for 6 hours.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. C. H. Bennett, F. Bessette, G. Brassard, L. Salvail, and J. Smolin, "Experimental quantum cryptography," J. Cryptology 5, 3-28 (1992).
    [CrossRef]
  2. N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, "Quantum cryptography," Rev. Mod. Phys. 74, 145-195 (2002).
    [CrossRef]
  3. D. Stucki, N. Gisin, O. Guinnard, G. Ribordy, and H. Zbinden, "Quantum key distribution over 67 km with a plug&play system," New J. Phys. 4, 41 (2002).
    [CrossRef]
  4. C. Elliott, A. Colvin, D. Pearson, O. Pikalo, J. Schlafer, and H. Yeh, "Current status of the DARPA Quantum Network," quant-ph/0503058.
  5. T. Hasegawa, T. Nishioka, H. Ishizuka, J. Abe, K. Shimizu, and M. Matsui, "Field experiments of quantum cryptosystem in 96km installed fibers," CLEO/Europe-EQEC 2005, EG-10, Munich (2005).
  6. X. -F. Mo, B. Zhu, Z. -F. Han, Y. -Z. Gui, and G. -C. Guo, "Faraday-Michelson system for quantum cryptography," Opt. Lett. 30, 2632-2634 (2005).
    [CrossRef] [PubMed]
  7. A. Tanaka, W. Maeda, A. Tajima, and S. Takahashi, "Fortnight quantum key generation field trial using QBER monitoring," LEOS 2005, 557-558 (2005).
  8. M. A. Albota and F. N. C. Wong, "Efficient single-photon counting at 1.55 um by means of frequency upconversion," Opt. Lett. 29, 1449 (2004).
    [CrossRef] [PubMed]
  9. A. P. Vandevender and P. G. Kwiat, "High efficiency single photon detection via frequency up-conversion," J. Mod. Opt. 15, 1433-1445 (2004).
  10. C. Langrock, E. Diamanti, R. V. Roussev, Y. Yamamoto, M. M. Fejer, and H. Takesue, "Highly efficient single photon detection at communication wavelengths by use of upconversion in reverse-proton-exchanged periodically poled LiNbO3 waveguides," Opt. Lett. 30, 1725 (2005).
    [CrossRef] [PubMed]
  11. N. Namekata, S. Sasamori, and S. Inoue, "800 MHz single-photon detection at 1550-nm using an InGaAs/InP avalanche photodiode operated with a sine wave gating," Opt. Express 14, 10043-10049 (2006).
    [CrossRef] [PubMed]
  12. G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and Roman Sobolewski, " Picosecond superconducting single-photon optical detector," Appl. Phys. Lett. 79, 705-707 (2001).
    [CrossRef]
  13. A. Verevkin, J. Zhang, Roman Sobolewski, A. Lipatov, O. Okunev, G. Chulkova, A. Korneev, K. Smirnov, G. N. Gol’tsman, and A. Semenov, "Detection efficiency of large-active area NbN single-photon superconducting detectors in the ultraviolet to near-infrared range," Appl. Phys. Lett. 80, 4687-4689 (2002).
    [CrossRef]
  14. E. Diamanti, H. Takesue, T. Honjo, K. Inoue, and Y. Yamamoto, "Performance of various quantum key distribution systems using 1.55 um up-conversion single-photon detectors," Phys. Rev. A,  72, 052311 (2005).
    [CrossRef]
  15. H. Takesue, E. Diamanti, T. Honjo, C. Langrock, M. M. Fejer, K. Inoue, and Y. Yamamoto, "Differential phase shift quantum key distribution experiment over 105 km fibre," New J. Phys. 7, 232 (2005).
    [CrossRef]
  16. E. Diamanti, H. Takesue, C. Langrock, M. M. Fejer, and Y. Yamamoto, "100 km differential phase shift quantum key distribution experiment with low jitter up-conversion detectors," Opt. Express 14, 13073-13082 (2006).
    [CrossRef] [PubMed]
  17. N. Namekata, G. Hujii, S. Inoue, T. Honjo, and H. Takesue, "Quantum key distribution using single-photon detectors based on a sinusoidally gated InGaAs/InP avalanche photodiode," Appl. Phys. Lett. 91, 011112 (2007).
    [CrossRef]
  18. D. Rosenberg, J. W. Harrington, P. R. Rice, P. A. Hiskett, C. G. Peterson, R. J. Hughes, A. E. Lita, S. W. Nam, and J. E. Nordholt, " Long-distance decoy-state quantum key distribution in optical fiber," Phys. Rev. Lett. 98, 010503 (2007).
    [CrossRef] [PubMed]
  19. H. Takesue, S. W. Nam, Q. Zhang, R. H. Hadfield, T. Honjo, K. Tamaki, and Y. Yamamoto, "Quantum key distribution over 40 dB channel loss using superconducting single-photon detectors," Nature Photonics 1, 343 (2007).
    [CrossRef]
  20. H. Takesue, E. Diamanti, C. Langrock, M. M. Fejer, and Y. Yamamoto, "1.5- m single photon counting using polarization-independent up-conversion detector," Opt. Express 14, 13067-13072 (2006)
    [CrossRef] [PubMed]
  21. K. Inoue, E. Waks, and Y. Yamamoto, "Differential-phase-shift quantum key distribution using coherent light," Phys. Rev. A 68, 022317 (2003).
    [CrossRef]
  22. T. Honjo, K. Inoue, and H. Takahashi, "Differential-phase-shift quantum key distribution experiment with a planar light-wave circuit Mach-Zehnder interferometer," Opt. Lett. 29, 2797 (2004).
    [CrossRef] [PubMed]
  23. R. T. Thew, S. Tanzilli, L. Krainer, S. C. Zeller, A. Rochas, I. Rech, S. Cova, H. Zbinden, and N. Gisin, "Low jitter up-conversion detectors for telecom wavelength GHz QKD," New J. Phys. 8, 32 (2006).
    [CrossRef]
  24. E. Waks, H. Takesue, and Y. Yamamoto, "Security of differential-phase-shift quantum key distribution against individual attacks," Phys. Rev. A 73, 012344 (2006).
    [CrossRef]
  25. M. Curty, L. L. X. Zhang, H. K. Lo, and N. Lutkenhaus, "Sequential attacks against differential-phase-shift quantum key distribution with weak coherent states," Quantum Information & Computation,  7 (7), 665-688 (2007).
  26. T. Tsurumaru, "Sequential attack with intensity modulation on the differential-phase-shift quantum-keydistribution protocol," Phys. Rev. A 75, 062319 (2007).
    [CrossRef]

2007 (5)

N. Namekata, G. Hujii, S. Inoue, T. Honjo, and H. Takesue, "Quantum key distribution using single-photon detectors based on a sinusoidally gated InGaAs/InP avalanche photodiode," Appl. Phys. Lett. 91, 011112 (2007).
[CrossRef]

D. Rosenberg, J. W. Harrington, P. R. Rice, P. A. Hiskett, C. G. Peterson, R. J. Hughes, A. E. Lita, S. W. Nam, and J. E. Nordholt, " Long-distance decoy-state quantum key distribution in optical fiber," Phys. Rev. Lett. 98, 010503 (2007).
[CrossRef] [PubMed]

H. Takesue, S. W. Nam, Q. Zhang, R. H. Hadfield, T. Honjo, K. Tamaki, and Y. Yamamoto, "Quantum key distribution over 40 dB channel loss using superconducting single-photon detectors," Nature Photonics 1, 343 (2007).
[CrossRef]

M. Curty, L. L. X. Zhang, H. K. Lo, and N. Lutkenhaus, "Sequential attacks against differential-phase-shift quantum key distribution with weak coherent states," Quantum Information & Computation,  7 (7), 665-688 (2007).

T. Tsurumaru, "Sequential attack with intensity modulation on the differential-phase-shift quantum-keydistribution protocol," Phys. Rev. A 75, 062319 (2007).
[CrossRef]

2006 (5)

2005 (5)

C. Langrock, E. Diamanti, R. V. Roussev, Y. Yamamoto, M. M. Fejer, and H. Takesue, "Highly efficient single photon detection at communication wavelengths by use of upconversion in reverse-proton-exchanged periodically poled LiNbO3 waveguides," Opt. Lett. 30, 1725 (2005).
[CrossRef] [PubMed]

X. -F. Mo, B. Zhu, Z. -F. Han, Y. -Z. Gui, and G. -C. Guo, "Faraday-Michelson system for quantum cryptography," Opt. Lett. 30, 2632-2634 (2005).
[CrossRef] [PubMed]

A. Tanaka, W. Maeda, A. Tajima, and S. Takahashi, "Fortnight quantum key generation field trial using QBER monitoring," LEOS 2005, 557-558 (2005).

E. Diamanti, H. Takesue, T. Honjo, K. Inoue, and Y. Yamamoto, "Performance of various quantum key distribution systems using 1.55 um up-conversion single-photon detectors," Phys. Rev. A,  72, 052311 (2005).
[CrossRef]

H. Takesue, E. Diamanti, T. Honjo, C. Langrock, M. M. Fejer, K. Inoue, and Y. Yamamoto, "Differential phase shift quantum key distribution experiment over 105 km fibre," New J. Phys. 7, 232 (2005).
[CrossRef]

2004 (3)

2003 (1)

K. Inoue, E. Waks, and Y. Yamamoto, "Differential-phase-shift quantum key distribution using coherent light," Phys. Rev. A 68, 022317 (2003).
[CrossRef]

2002 (3)

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, "Quantum cryptography," Rev. Mod. Phys. 74, 145-195 (2002).
[CrossRef]

D. Stucki, N. Gisin, O. Guinnard, G. Ribordy, and H. Zbinden, "Quantum key distribution over 67 km with a plug&play system," New J. Phys. 4, 41 (2002).
[CrossRef]

A. Verevkin, J. Zhang, Roman Sobolewski, A. Lipatov, O. Okunev, G. Chulkova, A. Korneev, K. Smirnov, G. N. Gol’tsman, and A. Semenov, "Detection efficiency of large-active area NbN single-photon superconducting detectors in the ultraviolet to near-infrared range," Appl. Phys. Lett. 80, 4687-4689 (2002).
[CrossRef]

2001 (1)

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and Roman Sobolewski, " Picosecond superconducting single-photon optical detector," Appl. Phys. Lett. 79, 705-707 (2001).
[CrossRef]

1992 (1)

C. H. Bennett, F. Bessette, G. Brassard, L. Salvail, and J. Smolin, "Experimental quantum cryptography," J. Cryptology 5, 3-28 (1992).
[CrossRef]

Appl. Phys. Lett. (3)

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and Roman Sobolewski, " Picosecond superconducting single-photon optical detector," Appl. Phys. Lett. 79, 705-707 (2001).
[CrossRef]

A. Verevkin, J. Zhang, Roman Sobolewski, A. Lipatov, O. Okunev, G. Chulkova, A. Korneev, K. Smirnov, G. N. Gol’tsman, and A. Semenov, "Detection efficiency of large-active area NbN single-photon superconducting detectors in the ultraviolet to near-infrared range," Appl. Phys. Lett. 80, 4687-4689 (2002).
[CrossRef]

N. Namekata, G. Hujii, S. Inoue, T. Honjo, and H. Takesue, "Quantum key distribution using single-photon detectors based on a sinusoidally gated InGaAs/InP avalanche photodiode," Appl. Phys. Lett. 91, 011112 (2007).
[CrossRef]

J. Cryptology (1)

C. H. Bennett, F. Bessette, G. Brassard, L. Salvail, and J. Smolin, "Experimental quantum cryptography," J. Cryptology 5, 3-28 (1992).
[CrossRef]

J. Mod. Opt. (1)

A. P. Vandevender and P. G. Kwiat, "High efficiency single photon detection via frequency up-conversion," J. Mod. Opt. 15, 1433-1445 (2004).

LEOS (1)

A. Tanaka, W. Maeda, A. Tajima, and S. Takahashi, "Fortnight quantum key generation field trial using QBER monitoring," LEOS 2005, 557-558 (2005).

Nature Photonics (1)

H. Takesue, S. W. Nam, Q. Zhang, R. H. Hadfield, T. Honjo, K. Tamaki, and Y. Yamamoto, "Quantum key distribution over 40 dB channel loss using superconducting single-photon detectors," Nature Photonics 1, 343 (2007).
[CrossRef]

New J. Phys. (3)

R. T. Thew, S. Tanzilli, L. Krainer, S. C. Zeller, A. Rochas, I. Rech, S. Cova, H. Zbinden, and N. Gisin, "Low jitter up-conversion detectors for telecom wavelength GHz QKD," New J. Phys. 8, 32 (2006).
[CrossRef]

D. Stucki, N. Gisin, O. Guinnard, G. Ribordy, and H. Zbinden, "Quantum key distribution over 67 km with a plug&play system," New J. Phys. 4, 41 (2002).
[CrossRef]

H. Takesue, E. Diamanti, T. Honjo, C. Langrock, M. M. Fejer, K. Inoue, and Y. Yamamoto, "Differential phase shift quantum key distribution experiment over 105 km fibre," New J. Phys. 7, 232 (2005).
[CrossRef]

Opt. Express (3)

Opt. Lett. (4)

Phys. Rev. A (4)

E. Diamanti, H. Takesue, T. Honjo, K. Inoue, and Y. Yamamoto, "Performance of various quantum key distribution systems using 1.55 um up-conversion single-photon detectors," Phys. Rev. A,  72, 052311 (2005).
[CrossRef]

E. Waks, H. Takesue, and Y. Yamamoto, "Security of differential-phase-shift quantum key distribution against individual attacks," Phys. Rev. A 73, 012344 (2006).
[CrossRef]

T. Tsurumaru, "Sequential attack with intensity modulation on the differential-phase-shift quantum-keydistribution protocol," Phys. Rev. A 75, 062319 (2007).
[CrossRef]

K. Inoue, E. Waks, and Y. Yamamoto, "Differential-phase-shift quantum key distribution using coherent light," Phys. Rev. A 68, 022317 (2003).
[CrossRef]

Phys. Rev. Lett. (1)

D. Rosenberg, J. W. Harrington, P. R. Rice, P. A. Hiskett, C. G. Peterson, R. J. Hughes, A. E. Lita, S. W. Nam, and J. E. Nordholt, " Long-distance decoy-state quantum key distribution in optical fiber," Phys. Rev. Lett. 98, 010503 (2007).
[CrossRef] [PubMed]

Quantum Information & Computation (1)

M. Curty, L. L. X. Zhang, H. K. Lo, and N. Lutkenhaus, "Sequential attacks against differential-phase-shift quantum key distribution with weak coherent states," Quantum Information & Computation,  7 (7), 665-688 (2007).

Rev. Mod. Phys. (1)

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, "Quantum cryptography," Rev. Mod. Phys. 74, 145-195 (2002).
[CrossRef]

Other (2)

C. Elliott, A. Colvin, D. Pearson, O. Pikalo, J. Schlafer, and H. Yeh, "Current status of the DARPA Quantum Network," quant-ph/0503058.

T. Hasegawa, T. Nishioka, H. Ishizuka, J. Abe, K. Shimizu, and M. Matsui, "Field experiments of quantum cryptosystem in 96km installed fibers," CLEO/Europe-EQEC 2005, EG-10, Munich (2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Schematic diagram of differential-phase-shift QKD.

Fig. 2.
Fig. 2.

Setup of polarization independent frequency up-conversion detector.

Fig. 3.
Fig. 3.

Count rate as a function of HWP rotation angle.

Fig. 4.
Fig. 4.

Experimental setup: LD, laser diode; IM, intensity modulator; PG, pulse generator; PPG, pulse pattern generator; PM, phase modulator; ATT, attenuator; PD, photo diode; PC, personal computer.

Fig. 5.
Fig. 5.

Experimental results.

Metrics