B. W. Zeff, B. R. White, H. Dehghani, B. L. Schlaggar, and J. P. Culver, “Retinotopic mapping of adult human visual cortex with high-density diffuse optical tomography,” Proc. Natl. Acad. Sci. U. S.A. 104, 12169–12174 (2007).

[CrossRef]
[PubMed]

P. K. Yalavarthy, B. W. Pogue, H. Dehghani, and K. D. Paulsen, “Weight-matrix structured regularization provides optimal generalized least-squares estimate in diffuse optical tomography,” Med. Phys. 34, 2085–2098 (2007).

[CrossRef]
[PubMed]

M. Guven, B. Yazici, K. Kwon, E. Giladi, and X. Intes, “Effect of discretization error and adaptive mesh generation in diffuse optical absorption imaging,” Inverse Probl. 23, 1135–1160 (2007).

[CrossRef]

H. Dehghani and M Soleimani, “Numerical modelling errors in electrical impedance tomography,” Phys Meas 28, S45–S55 (2007).

[CrossRef]

P. K. Yalavarthy, B. W. Pogue, H. Dehghani, C. M. Carpenter, S. Jiang, and K. D. Paulsen, “Structural information within regularization matrices improves near infrared diffuse optical tomography,” Opt. Express, 15, 8043–8058 (2007).

[CrossRef]
[PubMed]

S. Srinivasan, B. W. Pogue, H. Dehghani, F. Leblond, and X. Intes, “A data subset algorithm for computationally efficient reconstruction of 3-D spectral imaging in diffuse optical tomography,” Opt. Express 14, 5394–5410 (2006).

[CrossRef]
[PubMed]

P. K. Yalavarthy, H. Dehghani, B. W. Pogue, and K. D. Paulsen, “Critical computational aspects of near infrared circular tomographic imaging: Analysis of measurement number, mesh resolution and reconstruction basis,” Opt. Express 14, 6113–6127 (2006).

[CrossRef]
[PubMed]

A. D. Klose and E. W. Larsen, “Light transport in biological tissue based on the simplified spherical harmonics equations,” J. Comput. Phys. 220, 441–470 (2006).

[CrossRef]

S. Srinivasan, B. W. Pogue, B. Brooksby, S. Jiang, H. Dehghani, C. Kogel, S. P. Poplack, and K. D. Paulsen, “Near-infrared characterization of breast tumors in vivo using spectrally-constrained reconstruction,” Technol. Cancer Res. Treat. 5, 513–526 (2005).

R. Choe, A. Corlu, K. Lee, T. Durduran, S. D. Konecky, M. Grosicka-Koptyra, S. R. Arridge, B. J. Czerniecki, D. L. Fraker, A. DeMichele, B. Chance, M. A. Rosen, and A. G. Yodh, “Diffuse optical tomography of breast cancer during neoadjuvant chemotherapy: A case study with comparison to MRI,” Med. Phys. 32, 1128–1139 (2005).

[CrossRef]
[PubMed]

A. Gibson, J. C. Hebden, and S. R. Arridge, “Recent advances in diffuse optical imaging,” Phys. Med. Biol. 50, R1–R43 (2005).

[CrossRef]
[PubMed]

S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, and K. D. Paulsen, “Spectrally constrained Chromophore and Scattering NIR Tomography provides quantitative and robust reconstruction,” Appl. Opt. 44, 1858–1869 (2005).

[CrossRef]
[PubMed]

A. Corlu, R. Choe, T. Durduran, K. Lee, M. Schweiger, S. R. Arridge, E. M. C. Hillman, and A. G. Yodh, “Diffuse optical tomography with spectral constraints and wavelength optimization,” Appl. Opt. 44, 2082–2093 (2005).

[CrossRef]
[PubMed]

H. Dehghani, B. W. Pogue, S. P. Poplack, and K. D. Paulsen, “Multiwavelength three-dimensional nearinfrared tomography of the breast: initial simulation, phantom, and clinical results,” Appl. Opt. 42, 135–145 (2003).

[CrossRef]
[PubMed]

H. Dehghani, B. W. Pogue, S. Jiang, B. Brooksby, and K. D. Paulsen, “Three dimensional optical tomography: resolution in small object imaging,” Appl. Opt. 42, 3117–3128 (2003).

[CrossRef]
[PubMed]

S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, J. J. Gibson, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “Interpreting hemoglobin and water concentration, oxygen saturation and scattering measured in Vivo by near-infrared breast tomography,” Proc. Natl. Acad. Sci. U. S.A. 100, 12349–12354 (2003).

[CrossRef]
[PubMed]

A. D. Klose and A. H. Hielscher, “Quasi Newton methods in optical tomographic image reconstruction,” Inverse Probl. 19, 387–409 (2003).

[CrossRef]

M. Molinari, B. H. Blott, S. J. Cox, and G. J. Daniell, “Optimal imaging with adaptive mesh refinement in electrical impedance tomography,” Physiol. Meas. 23, 121–128 (2002).

[CrossRef]
[PubMed]

S. R. Arridge, H. Dehghani, M. Schweiger, and E. Okada, “The finite element model of the propagation of light in scattering media: A direct method for domains with nonscattering regions,” Med. Phys. 27, 252–264 (2000).

A. H. Hielscher, A. D. Klose, and K. M. Hanson, “Gradient-based iterative image reconstruction scheme for time- resolved optical tomography,” IEEE Trans. Med. Imaging 18, 262–271 (1999).

[CrossRef]
[PubMed]

A. D. Klose and A. H. Hielscher, “Iterative reconstruction scheme for optical tomography based on the equation of radiative transfer,” Med. Phys. 26, 1698–1707 (1999).

[CrossRef]
[PubMed]

S. R. Arridge, “Optical tomography in medical imaging,” Inverse Probl. 15, R41–R93 (1999).

[CrossRef]

S. R. Arridge and M. Schwieger, “Gradient-based optimisation scheme for optical tomography,” Opt. Express. 2, 212–226 (1998).

[CrossRef]

O. Dorn, “A transport-backtransport method for optical tomography,” Inverse Probl. 14, 1107–1130 (1998).

[CrossRef]

K. D. Paulsen and H. Jiang “Spatially varying optical property reconstruction using a finite element diffusion equation approximation,” Med. Phys. 22, 691–701 (1995).

[CrossRef]
[PubMed]

D. W. Marquardt, “An algorithm for least squares estimation of nonlinear parameters,” J. Soc. Ind. Appl. Math 11, 431–441 (1963).

[CrossRef]

A. Gibson, J. C. Hebden, and S. R. Arridge, “Recent advances in diffuse optical imaging,” Phys. Med. Biol. 50, R1–R43 (2005).

[CrossRef]
[PubMed]

R. Choe, A. Corlu, K. Lee, T. Durduran, S. D. Konecky, M. Grosicka-Koptyra, S. R. Arridge, B. J. Czerniecki, D. L. Fraker, A. DeMichele, B. Chance, M. A. Rosen, and A. G. Yodh, “Diffuse optical tomography of breast cancer during neoadjuvant chemotherapy: A case study with comparison to MRI,” Med. Phys. 32, 1128–1139 (2005).

[CrossRef]
[PubMed]

A. Corlu, R. Choe, T. Durduran, K. Lee, M. Schweiger, S. R. Arridge, E. M. C. Hillman, and A. G. Yodh, “Diffuse optical tomography with spectral constraints and wavelength optimization,” Appl. Opt. 44, 2082–2093 (2005).

[CrossRef]
[PubMed]

S. R. Arridge, H. Dehghani, M. Schweiger, and E. Okada, “The finite element model of the propagation of light in scattering media: A direct method for domains with nonscattering regions,” Med. Phys. 27, 252–264 (2000).

S. R. Arridge, “Optical tomography in medical imaging,” Inverse Probl. 15, R41–R93 (1999).

[CrossRef]

S. R. Arridge and M. Schwieger, “Gradient-based optimisation scheme for optical tomography,” Opt. Express. 2, 212–226 (1998).

[CrossRef]

M. Molinari, B. H. Blott, S. J. Cox, and G. J. Daniell, “Optimal imaging with adaptive mesh refinement in electrical impedance tomography,” Physiol. Meas. 23, 121–128 (2002).

[CrossRef]
[PubMed]

S. Srinivasan, B. W. Pogue, B. Brooksby, S. Jiang, H. Dehghani, C. Kogel, S. P. Poplack, and K. D. Paulsen, “Near-infrared characterization of breast tumors in vivo using spectrally-constrained reconstruction,” Technol. Cancer Res. Treat. 5, 513–526 (2005).

H. Dehghani, B. W. Pogue, S. Jiang, B. Brooksby, and K. D. Paulsen, “Three dimensional optical tomography: resolution in small object imaging,” Appl. Opt. 42, 3117–3128 (2003).

[CrossRef]
[PubMed]

R. Choe, A. Corlu, K. Lee, T. Durduran, S. D. Konecky, M. Grosicka-Koptyra, S. R. Arridge, B. J. Czerniecki, D. L. Fraker, A. DeMichele, B. Chance, M. A. Rosen, and A. G. Yodh, “Diffuse optical tomography of breast cancer during neoadjuvant chemotherapy: A case study with comparison to MRI,” Med. Phys. 32, 1128–1139 (2005).

[CrossRef]
[PubMed]

R. Choe, A. Corlu, K. Lee, T. Durduran, S. D. Konecky, M. Grosicka-Koptyra, S. R. Arridge, B. J. Czerniecki, D. L. Fraker, A. DeMichele, B. Chance, M. A. Rosen, and A. G. Yodh, “Diffuse optical tomography of breast cancer during neoadjuvant chemotherapy: A case study with comparison to MRI,” Med. Phys. 32, 1128–1139 (2005).

[CrossRef]
[PubMed]

A. Corlu, R. Choe, T. Durduran, K. Lee, M. Schweiger, S. R. Arridge, E. M. C. Hillman, and A. G. Yodh, “Diffuse optical tomography with spectral constraints and wavelength optimization,” Appl. Opt. 44, 2082–2093 (2005).

[CrossRef]
[PubMed]

A. Corlu, R. Choe, T. Durduran, K. Lee, M. Schweiger, S. R. Arridge, E. M. C. Hillman, and A. G. Yodh, “Diffuse optical tomography with spectral constraints and wavelength optimization,” Appl. Opt. 44, 2082–2093 (2005).

[CrossRef]
[PubMed]

R. Choe, A. Corlu, K. Lee, T. Durduran, S. D. Konecky, M. Grosicka-Koptyra, S. R. Arridge, B. J. Czerniecki, D. L. Fraker, A. DeMichele, B. Chance, M. A. Rosen, and A. G. Yodh, “Diffuse optical tomography of breast cancer during neoadjuvant chemotherapy: A case study with comparison to MRI,” Med. Phys. 32, 1128–1139 (2005).

[CrossRef]
[PubMed]

M. Molinari, B. H. Blott, S. J. Cox, and G. J. Daniell, “Optimal imaging with adaptive mesh refinement in electrical impedance tomography,” Physiol. Meas. 23, 121–128 (2002).

[CrossRef]
[PubMed]

B. W. Zeff, B. R. White, H. Dehghani, B. L. Schlaggar, and J. P. Culver, “Retinotopic mapping of adult human visual cortex with high-density diffuse optical tomography,” Proc. Natl. Acad. Sci. U. S.A. 104, 12169–12174 (2007).

[CrossRef]
[PubMed]

R. Choe, A. Corlu, K. Lee, T. Durduran, S. D. Konecky, M. Grosicka-Koptyra, S. R. Arridge, B. J. Czerniecki, D. L. Fraker, A. DeMichele, B. Chance, M. A. Rosen, and A. G. Yodh, “Diffuse optical tomography of breast cancer during neoadjuvant chemotherapy: A case study with comparison to MRI,” Med. Phys. 32, 1128–1139 (2005).

[CrossRef]
[PubMed]

M. Molinari, B. H. Blott, S. J. Cox, and G. J. Daniell, “Optimal imaging with adaptive mesh refinement in electrical impedance tomography,” Physiol. Meas. 23, 121–128 (2002).

[CrossRef]
[PubMed]

B. W. Zeff, B. R. White, H. Dehghani, B. L. Schlaggar, and J. P. Culver, “Retinotopic mapping of adult human visual cortex with high-density diffuse optical tomography,” Proc. Natl. Acad. Sci. U. S.A. 104, 12169–12174 (2007).

[CrossRef]
[PubMed]

P. K. Yalavarthy, B. W. Pogue, H. Dehghani, C. M. Carpenter, S. Jiang, and K. D. Paulsen, “Structural information within regularization matrices improves near infrared diffuse optical tomography,” Opt. Express, 15, 8043–8058 (2007).

[CrossRef]
[PubMed]

H. Dehghani and M Soleimani, “Numerical modelling errors in electrical impedance tomography,” Phys Meas 28, S45–S55 (2007).

[CrossRef]

P. K. Yalavarthy, B. W. Pogue, H. Dehghani, and K. D. Paulsen, “Weight-matrix structured regularization provides optimal generalized least-squares estimate in diffuse optical tomography,” Med. Phys. 34, 2085–2098 (2007).

[CrossRef]
[PubMed]

S. Srinivasan, B. W. Pogue, H. Dehghani, F. Leblond, and X. Intes, “A data subset algorithm for computationally efficient reconstruction of 3-D spectral imaging in diffuse optical tomography,” Opt. Express 14, 5394–5410 (2006).

[CrossRef]
[PubMed]

P. K. Yalavarthy, H. Dehghani, B. W. Pogue, and K. D. Paulsen, “Critical computational aspects of near infrared circular tomographic imaging: Analysis of measurement number, mesh resolution and reconstruction basis,” Opt. Express 14, 6113–6127 (2006).

[CrossRef]
[PubMed]

S. Srinivasan, B. W. Pogue, B. Brooksby, S. Jiang, H. Dehghani, C. Kogel, S. P. Poplack, and K. D. Paulsen, “Near-infrared characterization of breast tumors in vivo using spectrally-constrained reconstruction,” Technol. Cancer Res. Treat. 5, 513–526 (2005).

S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, and K. D. Paulsen, “Spectrally constrained Chromophore and Scattering NIR Tomography provides quantitative and robust reconstruction,” Appl. Opt. 44, 1858–1869 (2005).

[CrossRef]
[PubMed]

H. Dehghani, B. W. Pogue, S. P. Poplack, and K. D. Paulsen, “Multiwavelength three-dimensional nearinfrared tomography of the breast: initial simulation, phantom, and clinical results,” Appl. Opt. 42, 135–145 (2003).

[CrossRef]
[PubMed]

H. Dehghani, B. W. Pogue, S. Jiang, B. Brooksby, and K. D. Paulsen, “Three dimensional optical tomography: resolution in small object imaging,” Appl. Opt. 42, 3117–3128 (2003).

[CrossRef]
[PubMed]

S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, J. J. Gibson, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “Interpreting hemoglobin and water concentration, oxygen saturation and scattering measured in Vivo by near-infrared breast tomography,” Proc. Natl. Acad. Sci. U. S.A. 100, 12349–12354 (2003).

[CrossRef]
[PubMed]

S. R. Arridge, H. Dehghani, M. Schweiger, and E. Okada, “The finite element model of the propagation of light in scattering media: A direct method for domains with nonscattering regions,” Med. Phys. 27, 252–264 (2000).

R. Choe, A. Corlu, K. Lee, T. Durduran, S. D. Konecky, M. Grosicka-Koptyra, S. R. Arridge, B. J. Czerniecki, D. L. Fraker, A. DeMichele, B. Chance, M. A. Rosen, and A. G. Yodh, “Diffuse optical tomography of breast cancer during neoadjuvant chemotherapy: A case study with comparison to MRI,” Med. Phys. 32, 1128–1139 (2005).

[CrossRef]
[PubMed]

O. Dorn, “A transport-backtransport method for optical tomography,” Inverse Probl. 14, 1107–1130 (1998).

[CrossRef]

A. Corlu, R. Choe, T. Durduran, K. Lee, M. Schweiger, S. R. Arridge, E. M. C. Hillman, and A. G. Yodh, “Diffuse optical tomography with spectral constraints and wavelength optimization,” Appl. Opt. 44, 2082–2093 (2005).

[CrossRef]
[PubMed]

R. Choe, A. Corlu, K. Lee, T. Durduran, S. D. Konecky, M. Grosicka-Koptyra, S. R. Arridge, B. J. Czerniecki, D. L. Fraker, A. DeMichele, B. Chance, M. A. Rosen, and A. G. Yodh, “Diffuse optical tomography of breast cancer during neoadjuvant chemotherapy: A case study with comparison to MRI,” Med. Phys. 32, 1128–1139 (2005).

[CrossRef]
[PubMed]

R. Choe, A. Corlu, K. Lee, T. Durduran, S. D. Konecky, M. Grosicka-Koptyra, S. R. Arridge, B. J. Czerniecki, D. L. Fraker, A. DeMichele, B. Chance, M. A. Rosen, and A. G. Yodh, “Diffuse optical tomography of breast cancer during neoadjuvant chemotherapy: A case study with comparison to MRI,” Med. Phys. 32, 1128–1139 (2005).

[CrossRef]
[PubMed]

A. Gibson, J. C. Hebden, and S. R. Arridge, “Recent advances in diffuse optical imaging,” Phys. Med. Biol. 50, R1–R43 (2005).

[CrossRef]
[PubMed]

S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, J. J. Gibson, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “Interpreting hemoglobin and water concentration, oxygen saturation and scattering measured in Vivo by near-infrared breast tomography,” Proc. Natl. Acad. Sci. U. S.A. 100, 12349–12354 (2003).

[CrossRef]
[PubMed]

M. Guven, B. Yazici, K. Kwon, E. Giladi, and X. Intes, “Effect of discretization error and adaptive mesh generation in diffuse optical absorption imaging,” Inverse Probl. 23, 1135–1160 (2007).

[CrossRef]

R. Choe, A. Corlu, K. Lee, T. Durduran, S. D. Konecky, M. Grosicka-Koptyra, S. R. Arridge, B. J. Czerniecki, D. L. Fraker, A. DeMichele, B. Chance, M. A. Rosen, and A. G. Yodh, “Diffuse optical tomography of breast cancer during neoadjuvant chemotherapy: A case study with comparison to MRI,” Med. Phys. 32, 1128–1139 (2005).

[CrossRef]
[PubMed]

M. Guven, B. Yazici, K. Kwon, E. Giladi, and X. Intes, “Effect of discretization error and adaptive mesh generation in diffuse optical absorption imaging,” Inverse Probl. 23, 1135–1160 (2007).

[CrossRef]

A. H. Hielscher, A. D. Klose, and K. M. Hanson, “Gradient-based iterative image reconstruction scheme for time- resolved optical tomography,” IEEE Trans. Med. Imaging 18, 262–271 (1999).

[CrossRef]
[PubMed]

A. Gibson, J. C. Hebden, and S. R. Arridge, “Recent advances in diffuse optical imaging,” Phys. Med. Biol. 50, R1–R43 (2005).

[CrossRef]
[PubMed]

A. D. Klose and A. H. Hielscher, “Quasi Newton methods in optical tomographic image reconstruction,” Inverse Probl. 19, 387–409 (2003).

[CrossRef]

A. H. Hielscher, A. D. Klose, and K. M. Hanson, “Gradient-based iterative image reconstruction scheme for time- resolved optical tomography,” IEEE Trans. Med. Imaging 18, 262–271 (1999).

[CrossRef]
[PubMed]

A. D. Klose and A. H. Hielscher, “Iterative reconstruction scheme for optical tomography based on the equation of radiative transfer,” Med. Phys. 26, 1698–1707 (1999).

[CrossRef]
[PubMed]

A. Corlu, R. Choe, T. Durduran, K. Lee, M. Schweiger, S. R. Arridge, E. M. C. Hillman, and A. G. Yodh, “Diffuse optical tomography with spectral constraints and wavelength optimization,” Appl. Opt. 44, 2082–2093 (2005).

[CrossRef]
[PubMed]

M. Guven, B. Yazici, K. Kwon, E. Giladi, and X. Intes, “Effect of discretization error and adaptive mesh generation in diffuse optical absorption imaging,” Inverse Probl. 23, 1135–1160 (2007).

[CrossRef]

S. Srinivasan, B. W. Pogue, H. Dehghani, F. Leblond, and X. Intes, “A data subset algorithm for computationally efficient reconstruction of 3-D spectral imaging in diffuse optical tomography,” Opt. Express 14, 5394–5410 (2006).

[CrossRef]
[PubMed]

P. K. Yalavarthy, B. W. Pogue, H. Dehghani, C. M. Carpenter, S. Jiang, and K. D. Paulsen, “Structural information within regularization matrices improves near infrared diffuse optical tomography,” Opt. Express, 15, 8043–8058 (2007).

[CrossRef]
[PubMed]

S. Srinivasan, B. W. Pogue, B. Brooksby, S. Jiang, H. Dehghani, C. Kogel, S. P. Poplack, and K. D. Paulsen, “Near-infrared characterization of breast tumors in vivo using spectrally-constrained reconstruction,” Technol. Cancer Res. Treat. 5, 513–526 (2005).

S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, and K. D. Paulsen, “Spectrally constrained Chromophore and Scattering NIR Tomography provides quantitative and robust reconstruction,” Appl. Opt. 44, 1858–1869 (2005).

[CrossRef]
[PubMed]

H. Dehghani, B. W. Pogue, S. Jiang, B. Brooksby, and K. D. Paulsen, “Three dimensional optical tomography: resolution in small object imaging,” Appl. Opt. 42, 3117–3128 (2003).

[CrossRef]
[PubMed]

S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, J. J. Gibson, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “Interpreting hemoglobin and water concentration, oxygen saturation and scattering measured in Vivo by near-infrared breast tomography,” Proc. Natl. Acad. Sci. U. S.A. 100, 12349–12354 (2003).

[CrossRef]
[PubMed]

A. D. Klose and E. W. Larsen, “Light transport in biological tissue based on the simplified spherical harmonics equations,” J. Comput. Phys. 220, 441–470 (2006).

[CrossRef]

A. D. Klose and A. H. Hielscher, “Quasi Newton methods in optical tomographic image reconstruction,” Inverse Probl. 19, 387–409 (2003).

[CrossRef]

A. H. Hielscher, A. D. Klose, and K. M. Hanson, “Gradient-based iterative image reconstruction scheme for time- resolved optical tomography,” IEEE Trans. Med. Imaging 18, 262–271 (1999).

[CrossRef]
[PubMed]

A. D. Klose and A. H. Hielscher, “Iterative reconstruction scheme for optical tomography based on the equation of radiative transfer,” Med. Phys. 26, 1698–1707 (1999).

[CrossRef]
[PubMed]

S. Srinivasan, B. W. Pogue, B. Brooksby, S. Jiang, H. Dehghani, C. Kogel, S. P. Poplack, and K. D. Paulsen, “Near-infrared characterization of breast tumors in vivo using spectrally-constrained reconstruction,” Technol. Cancer Res. Treat. 5, 513–526 (2005).

S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, J. J. Gibson, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “Interpreting hemoglobin and water concentration, oxygen saturation and scattering measured in Vivo by near-infrared breast tomography,” Proc. Natl. Acad. Sci. U. S.A. 100, 12349–12354 (2003).

[CrossRef]
[PubMed]

R. Choe, A. Corlu, K. Lee, T. Durduran, S. D. Konecky, M. Grosicka-Koptyra, S. R. Arridge, B. J. Czerniecki, D. L. Fraker, A. DeMichele, B. Chance, M. A. Rosen, and A. G. Yodh, “Diffuse optical tomography of breast cancer during neoadjuvant chemotherapy: A case study with comparison to MRI,” Med. Phys. 32, 1128–1139 (2005).

[CrossRef]
[PubMed]

M. Guven, B. Yazici, K. Kwon, E. Giladi, and X. Intes, “Effect of discretization error and adaptive mesh generation in diffuse optical absorption imaging,” Inverse Probl. 23, 1135–1160 (2007).

[CrossRef]

A. D. Klose and E. W. Larsen, “Light transport in biological tissue based on the simplified spherical harmonics equations,” J. Comput. Phys. 220, 441–470 (2006).

[CrossRef]

A. Corlu, R. Choe, T. Durduran, K. Lee, M. Schweiger, S. R. Arridge, E. M. C. Hillman, and A. G. Yodh, “Diffuse optical tomography with spectral constraints and wavelength optimization,” Appl. Opt. 44, 2082–2093 (2005).

[CrossRef]
[PubMed]

R. Choe, A. Corlu, K. Lee, T. Durduran, S. D. Konecky, M. Grosicka-Koptyra, S. R. Arridge, B. J. Czerniecki, D. L. Fraker, A. DeMichele, B. Chance, M. A. Rosen, and A. G. Yodh, “Diffuse optical tomography of breast cancer during neoadjuvant chemotherapy: A case study with comparison to MRI,” Med. Phys. 32, 1128–1139 (2005).

[CrossRef]
[PubMed]

D. W. Marquardt, “An algorithm for least squares estimation of nonlinear parameters,” J. Soc. Ind. Appl. Math 11, 431–441 (1963).

[CrossRef]

M. Molinari, B. H. Blott, S. J. Cox, and G. J. Daniell, “Optimal imaging with adaptive mesh refinement in electrical impedance tomography,” Physiol. Meas. 23, 121–128 (2002).

[CrossRef]
[PubMed]

S. R. Arridge, H. Dehghani, M. Schweiger, and E. Okada, “The finite element model of the propagation of light in scattering media: A direct method for domains with nonscattering regions,” Med. Phys. 27, 252–264 (2000).

P. K. Yalavarthy, B. W. Pogue, H. Dehghani, C. M. Carpenter, S. Jiang, and K. D. Paulsen, “Structural information within regularization matrices improves near infrared diffuse optical tomography,” Opt. Express, 15, 8043–8058 (2007).

[CrossRef]
[PubMed]

P. K. Yalavarthy, B. W. Pogue, H. Dehghani, and K. D. Paulsen, “Weight-matrix structured regularization provides optimal generalized least-squares estimate in diffuse optical tomography,” Med. Phys. 34, 2085–2098 (2007).

[CrossRef]
[PubMed]

P. K. Yalavarthy, H. Dehghani, B. W. Pogue, and K. D. Paulsen, “Critical computational aspects of near infrared circular tomographic imaging: Analysis of measurement number, mesh resolution and reconstruction basis,” Opt. Express 14, 6113–6127 (2006).

[CrossRef]
[PubMed]

S. Srinivasan, B. W. Pogue, B. Brooksby, S. Jiang, H. Dehghani, C. Kogel, S. P. Poplack, and K. D. Paulsen, “Near-infrared characterization of breast tumors in vivo using spectrally-constrained reconstruction,” Technol. Cancer Res. Treat. 5, 513–526 (2005).

S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, and K. D. Paulsen, “Spectrally constrained Chromophore and Scattering NIR Tomography provides quantitative and robust reconstruction,” Appl. Opt. 44, 1858–1869 (2005).

[CrossRef]
[PubMed]

H. Dehghani, B. W. Pogue, S. P. Poplack, and K. D. Paulsen, “Multiwavelength three-dimensional nearinfrared tomography of the breast: initial simulation, phantom, and clinical results,” Appl. Opt. 42, 135–145 (2003).

[CrossRef]
[PubMed]

H. Dehghani, B. W. Pogue, S. Jiang, B. Brooksby, and K. D. Paulsen, “Three dimensional optical tomography: resolution in small object imaging,” Appl. Opt. 42, 3117–3128 (2003).

[CrossRef]
[PubMed]

S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, J. J. Gibson, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “Interpreting hemoglobin and water concentration, oxygen saturation and scattering measured in Vivo by near-infrared breast tomography,” Proc. Natl. Acad. Sci. U. S.A. 100, 12349–12354 (2003).

[CrossRef]
[PubMed]

K. D. Paulsen and H. Jiang, “Enhanced frequency-domain optical image reconstruction in tissues through total-variation minimization,” Appl. Opt. 35, 3447–3458 (1996).

[CrossRef]
[PubMed]

K. D. Paulsen and H. Jiang “Spatially varying optical property reconstruction using a finite element diffusion equation approximation,” Med. Phys. 22, 691–701 (1995).

[CrossRef]
[PubMed]

P. K. Yalavarthy, B. W. Pogue, H. Dehghani, and K. D. Paulsen, “Weight-matrix structured regularization provides optimal generalized least-squares estimate in diffuse optical tomography,” Med. Phys. 34, 2085–2098 (2007).

[CrossRef]
[PubMed]

P. K. Yalavarthy, B. W. Pogue, H. Dehghani, C. M. Carpenter, S. Jiang, and K. D. Paulsen, “Structural information within regularization matrices improves near infrared diffuse optical tomography,” Opt. Express, 15, 8043–8058 (2007).

[CrossRef]
[PubMed]

P. K. Yalavarthy, H. Dehghani, B. W. Pogue, and K. D. Paulsen, “Critical computational aspects of near infrared circular tomographic imaging: Analysis of measurement number, mesh resolution and reconstruction basis,” Opt. Express 14, 6113–6127 (2006).

[CrossRef]
[PubMed]

S. Srinivasan, B. W. Pogue, H. Dehghani, F. Leblond, and X. Intes, “A data subset algorithm for computationally efficient reconstruction of 3-D spectral imaging in diffuse optical tomography,” Opt. Express 14, 5394–5410 (2006).

[CrossRef]
[PubMed]

S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, and K. D. Paulsen, “Spectrally constrained Chromophore and Scattering NIR Tomography provides quantitative and robust reconstruction,” Appl. Opt. 44, 1858–1869 (2005).

[CrossRef]
[PubMed]

S. Srinivasan, B. W. Pogue, B. Brooksby, S. Jiang, H. Dehghani, C. Kogel, S. P. Poplack, and K. D. Paulsen, “Near-infrared characterization of breast tumors in vivo using spectrally-constrained reconstruction,” Technol. Cancer Res. Treat. 5, 513–526 (2005).

H. Dehghani, B. W. Pogue, S. P. Poplack, and K. D. Paulsen, “Multiwavelength three-dimensional nearinfrared tomography of the breast: initial simulation, phantom, and clinical results,” Appl. Opt. 42, 135–145 (2003).

[CrossRef]
[PubMed]

H. Dehghani, B. W. Pogue, S. Jiang, B. Brooksby, and K. D. Paulsen, “Three dimensional optical tomography: resolution in small object imaging,” Appl. Opt. 42, 3117–3128 (2003).

[CrossRef]
[PubMed]

S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, J. J. Gibson, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “Interpreting hemoglobin and water concentration, oxygen saturation and scattering measured in Vivo by near-infrared breast tomography,” Proc. Natl. Acad. Sci. U. S.A. 100, 12349–12354 (2003).

[CrossRef]
[PubMed]

S. Srinivasan, B. W. Pogue, B. Brooksby, S. Jiang, H. Dehghani, C. Kogel, S. P. Poplack, and K. D. Paulsen, “Near-infrared characterization of breast tumors in vivo using spectrally-constrained reconstruction,” Technol. Cancer Res. Treat. 5, 513–526 (2005).

S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, J. J. Gibson, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “Interpreting hemoglobin and water concentration, oxygen saturation and scattering measured in Vivo by near-infrared breast tomography,” Proc. Natl. Acad. Sci. U. S.A. 100, 12349–12354 (2003).

[CrossRef]
[PubMed]

H. Dehghani, B. W. Pogue, S. P. Poplack, and K. D. Paulsen, “Multiwavelength three-dimensional nearinfrared tomography of the breast: initial simulation, phantom, and clinical results,” Appl. Opt. 42, 135–145 (2003).

[CrossRef]
[PubMed]

R. Choe, A. Corlu, K. Lee, T. Durduran, S. D. Konecky, M. Grosicka-Koptyra, S. R. Arridge, B. J. Czerniecki, D. L. Fraker, A. DeMichele, B. Chance, M. A. Rosen, and A. G. Yodh, “Diffuse optical tomography of breast cancer during neoadjuvant chemotherapy: A case study with comparison to MRI,” Med. Phys. 32, 1128–1139 (2005).

[CrossRef]
[PubMed]

B. W. Zeff, B. R. White, H. Dehghani, B. L. Schlaggar, and J. P. Culver, “Retinotopic mapping of adult human visual cortex with high-density diffuse optical tomography,” Proc. Natl. Acad. Sci. U. S.A. 104, 12169–12174 (2007).

[CrossRef]
[PubMed]

A. Corlu, R. Choe, T. Durduran, K. Lee, M. Schweiger, S. R. Arridge, E. M. C. Hillman, and A. G. Yodh, “Diffuse optical tomography with spectral constraints and wavelength optimization,” Appl. Opt. 44, 2082–2093 (2005).

[CrossRef]
[PubMed]

S. R. Arridge, H. Dehghani, M. Schweiger, and E. Okada, “The finite element model of the propagation of light in scattering media: A direct method for domains with nonscattering regions,” Med. Phys. 27, 252–264 (2000).

S. R. Arridge and M. Schwieger, “Gradient-based optimisation scheme for optical tomography,” Opt. Express. 2, 212–226 (1998).

[CrossRef]

S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, J. J. Gibson, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “Interpreting hemoglobin and water concentration, oxygen saturation and scattering measured in Vivo by near-infrared breast tomography,” Proc. Natl. Acad. Sci. U. S.A. 100, 12349–12354 (2003).

[CrossRef]
[PubMed]

H. Dehghani and M Soleimani, “Numerical modelling errors in electrical impedance tomography,” Phys Meas 28, S45–S55 (2007).

[CrossRef]

S. Srinivasan, B. W. Pogue, H. Dehghani, F. Leblond, and X. Intes, “A data subset algorithm for computationally efficient reconstruction of 3-D spectral imaging in diffuse optical tomography,” Opt. Express 14, 5394–5410 (2006).

[CrossRef]
[PubMed]

S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, and K. D. Paulsen, “Spectrally constrained Chromophore and Scattering NIR Tomography provides quantitative and robust reconstruction,” Appl. Opt. 44, 1858–1869 (2005).

[CrossRef]
[PubMed]

S. Srinivasan, B. W. Pogue, B. Brooksby, S. Jiang, H. Dehghani, C. Kogel, S. P. Poplack, and K. D. Paulsen, “Near-infrared characterization of breast tumors in vivo using spectrally-constrained reconstruction,” Technol. Cancer Res. Treat. 5, 513–526 (2005).

S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, J. J. Gibson, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “Interpreting hemoglobin and water concentration, oxygen saturation and scattering measured in Vivo by near-infrared breast tomography,” Proc. Natl. Acad. Sci. U. S.A. 100, 12349–12354 (2003).

[CrossRef]
[PubMed]

S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, J. J. Gibson, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “Interpreting hemoglobin and water concentration, oxygen saturation and scattering measured in Vivo by near-infrared breast tomography,” Proc. Natl. Acad. Sci. U. S.A. 100, 12349–12354 (2003).

[CrossRef]
[PubMed]

J. R. Westlake, A handbook of numerical matrix inversion and solution of linear equations (John Wiley & Sons Inc, New York, 1968).

B. W. Zeff, B. R. White, H. Dehghani, B. L. Schlaggar, and J. P. Culver, “Retinotopic mapping of adult human visual cortex with high-density diffuse optical tomography,” Proc. Natl. Acad. Sci. U. S.A. 104, 12169–12174 (2007).

[CrossRef]
[PubMed]

P. K. Yalavarthy, B. W. Pogue, H. Dehghani, C. M. Carpenter, S. Jiang, and K. D. Paulsen, “Structural information within regularization matrices improves near infrared diffuse optical tomography,” Opt. Express, 15, 8043–8058 (2007).

[CrossRef]
[PubMed]

P. K. Yalavarthy, B. W. Pogue, H. Dehghani, and K. D. Paulsen, “Weight-matrix structured regularization provides optimal generalized least-squares estimate in diffuse optical tomography,” Med. Phys. 34, 2085–2098 (2007).

[CrossRef]
[PubMed]

P. K. Yalavarthy, H. Dehghani, B. W. Pogue, and K. D. Paulsen, “Critical computational aspects of near infrared circular tomographic imaging: Analysis of measurement number, mesh resolution and reconstruction basis,” Opt. Express 14, 6113–6127 (2006).

[CrossRef]
[PubMed]

M. Guven, B. Yazici, K. Kwon, E. Giladi, and X. Intes, “Effect of discretization error and adaptive mesh generation in diffuse optical absorption imaging,” Inverse Probl. 23, 1135–1160 (2007).

[CrossRef]

A. Corlu, R. Choe, T. Durduran, K. Lee, M. Schweiger, S. R. Arridge, E. M. C. Hillman, and A. G. Yodh, “Diffuse optical tomography with spectral constraints and wavelength optimization,” Appl. Opt. 44, 2082–2093 (2005).

[CrossRef]
[PubMed]

R. Choe, A. Corlu, K. Lee, T. Durduran, S. D. Konecky, M. Grosicka-Koptyra, S. R. Arridge, B. J. Czerniecki, D. L. Fraker, A. DeMichele, B. Chance, M. A. Rosen, and A. G. Yodh, “Diffuse optical tomography of breast cancer during neoadjuvant chemotherapy: A case study with comparison to MRI,” Med. Phys. 32, 1128–1139 (2005).

[CrossRef]
[PubMed]

B. W. Zeff, B. R. White, H. Dehghani, B. L. Schlaggar, and J. P. Culver, “Retinotopic mapping of adult human visual cortex with high-density diffuse optical tomography,” Proc. Natl. Acad. Sci. U. S.A. 104, 12169–12174 (2007).

[CrossRef]
[PubMed]

K. D. Paulsen and H. Jiang, “Enhanced frequency-domain optical image reconstruction in tissues through total-variation minimization,” Appl. Opt. 35, 3447–3458 (1996).

[CrossRef]
[PubMed]

H. Dehghani, B. W. Pogue, S. P. Poplack, and K. D. Paulsen, “Multiwavelength three-dimensional nearinfrared tomography of the breast: initial simulation, phantom, and clinical results,” Appl. Opt. 42, 135–145 (2003).

[CrossRef]
[PubMed]

H. Dehghani, B. W. Pogue, S. Jiang, B. Brooksby, and K. D. Paulsen, “Three dimensional optical tomography: resolution in small object imaging,” Appl. Opt. 42, 3117–3128 (2003).

[CrossRef]
[PubMed]

S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, and K. D. Paulsen, “Spectrally constrained Chromophore and Scattering NIR Tomography provides quantitative and robust reconstruction,” Appl. Opt. 44, 1858–1869 (2005).

[CrossRef]
[PubMed]

A. Corlu, R. Choe, T. Durduran, K. Lee, M. Schweiger, S. R. Arridge, E. M. C. Hillman, and A. G. Yodh, “Diffuse optical tomography with spectral constraints and wavelength optimization,” Appl. Opt. 44, 2082–2093 (2005).

[CrossRef]
[PubMed]

A. H. Hielscher, A. D. Klose, and K. M. Hanson, “Gradient-based iterative image reconstruction scheme for time- resolved optical tomography,” IEEE Trans. Med. Imaging 18, 262–271 (1999).

[CrossRef]
[PubMed]

O. Dorn, “A transport-backtransport method for optical tomography,” Inverse Probl. 14, 1107–1130 (1998).

[CrossRef]

M. Guven, B. Yazici, K. Kwon, E. Giladi, and X. Intes, “Effect of discretization error and adaptive mesh generation in diffuse optical absorption imaging,” Inverse Probl. 23, 1135–1160 (2007).

[CrossRef]

S. R. Arridge, “Optical tomography in medical imaging,” Inverse Probl. 15, R41–R93 (1999).

[CrossRef]

A. D. Klose and A. H. Hielscher, “Quasi Newton methods in optical tomographic image reconstruction,” Inverse Probl. 19, 387–409 (2003).

[CrossRef]

A. D. Klose and E. W. Larsen, “Light transport in biological tissue based on the simplified spherical harmonics equations,” J. Comput. Phys. 220, 441–470 (2006).

[CrossRef]

D. W. Marquardt, “An algorithm for least squares estimation of nonlinear parameters,” J. Soc. Ind. Appl. Math 11, 431–441 (1963).

[CrossRef]

K. D. Paulsen and H. Jiang “Spatially varying optical property reconstruction using a finite element diffusion equation approximation,” Med. Phys. 22, 691–701 (1995).

[CrossRef]
[PubMed]

R. Choe, A. Corlu, K. Lee, T. Durduran, S. D. Konecky, M. Grosicka-Koptyra, S. R. Arridge, B. J. Czerniecki, D. L. Fraker, A. DeMichele, B. Chance, M. A. Rosen, and A. G. Yodh, “Diffuse optical tomography of breast cancer during neoadjuvant chemotherapy: A case study with comparison to MRI,” Med. Phys. 32, 1128–1139 (2005).

[CrossRef]
[PubMed]

P. K. Yalavarthy, B. W. Pogue, H. Dehghani, and K. D. Paulsen, “Weight-matrix structured regularization provides optimal generalized least-squares estimate in diffuse optical tomography,” Med. Phys. 34, 2085–2098 (2007).

[CrossRef]
[PubMed]

A. D. Klose and A. H. Hielscher, “Iterative reconstruction scheme for optical tomography based on the equation of radiative transfer,” Med. Phys. 26, 1698–1707 (1999).

[CrossRef]
[PubMed]

S. Srinivasan, B. W. Pogue, H. Dehghani, F. Leblond, and X. Intes, “A data subset algorithm for computationally efficient reconstruction of 3-D spectral imaging in diffuse optical tomography,” Opt. Express 14, 5394–5410 (2006).

[CrossRef]
[PubMed]

P. K. Yalavarthy, H. Dehghani, B. W. Pogue, and K. D. Paulsen, “Critical computational aspects of near infrared circular tomographic imaging: Analysis of measurement number, mesh resolution and reconstruction basis,” Opt. Express 14, 6113–6127 (2006).

[CrossRef]
[PubMed]

P. K. Yalavarthy, B. W. Pogue, H. Dehghani, C. M. Carpenter, S. Jiang, and K. D. Paulsen, “Structural information within regularization matrices improves near infrared diffuse optical tomography,” Opt. Express, 15, 8043–8058 (2007).

[CrossRef]
[PubMed]

A. Joshi, W. Bangerth, and E. M. Sevick-Muraca, “Adaptive finite element based tomography for fluorescence optical imaging in tissue,” Opt. Express 12, 5402–5417 (2004).

[CrossRef]
[PubMed]

S. R. Arridge and M. Schwieger, “Gradient-based optimisation scheme for optical tomography,” Opt. Express. 2, 212–226 (1998).

[CrossRef]

H. Dehghani and M Soleimani, “Numerical modelling errors in electrical impedance tomography,” Phys Meas 28, S45–S55 (2007).

[CrossRef]

A. Gibson, J. C. Hebden, and S. R. Arridge, “Recent advances in diffuse optical imaging,” Phys. Med. Biol. 50, R1–R43 (2005).

[CrossRef]
[PubMed]

M. Molinari, B. H. Blott, S. J. Cox, and G. J. Daniell, “Optimal imaging with adaptive mesh refinement in electrical impedance tomography,” Physiol. Meas. 23, 121–128 (2002).

[CrossRef]
[PubMed]

B. W. Zeff, B. R. White, H. Dehghani, B. L. Schlaggar, and J. P. Culver, “Retinotopic mapping of adult human visual cortex with high-density diffuse optical tomography,” Proc. Natl. Acad. Sci. U. S.A. 104, 12169–12174 (2007).

[CrossRef]
[PubMed]

S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, J. J. Gibson, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “Interpreting hemoglobin and water concentration, oxygen saturation and scattering measured in Vivo by near-infrared breast tomography,” Proc. Natl. Acad. Sci. U. S.A. 100, 12349–12354 (2003).

[CrossRef]
[PubMed]

S. Srinivasan, B. W. Pogue, B. Brooksby, S. Jiang, H. Dehghani, C. Kogel, S. P. Poplack, and K. D. Paulsen, “Near-infrared characterization of breast tumors in vivo using spectrally-constrained reconstruction,” Technol. Cancer Res. Treat. 5, 513–526 (2005).

S. R. Arridge, H. Dehghani, M. Schweiger, and E. Okada, “The finite element model of the propagation of light in scattering media: A direct method for domains with nonscattering regions,” Med. Phys. 27, 252–264 (2000).

J. R. Westlake, A handbook of numerical matrix inversion and solution of linear equations (John Wiley & Sons Inc, New York, 1968).