Abstract

The highest average power that has been achieved with a frequency-shifted feedback modelocked fiber laser is reported. Subpicosecond pulses with 40 kW peak power are obtained by this technique for the first time by using external pulse compression. The pulsing is self starting and environmentally stable. The measured pulse energy in modelocked operation is 120 nJ. The pulses could be compressed to 855 fs. The pulse energy was increased to 1µJ with controlled Q-switched modelocking.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. O. G. Okhotnikov, L. Gomes, N. Xiang, and T. Jouhti, "Mode-locked ytterbium fiber laser tuneable in the 980-1070-nm spectral range," Opt. Lett. 28, 1522-1524 (2003).
    [CrossRef] [PubMed]
  2. H. Lim, F. O. Ilday, and F. W. Wise, "Generation of 2-nJ pulses from a femtosecond ytterbium fiber laser," Opt. Lett. 28, 660-662 (2003).
    [CrossRef] [PubMed]
  3. Y. Jeong, J. K. Sahu, D. N. Payne, and J. Nilsson, "Ytterbium-doped large core fiber laser with 1.36 kW coutinuous-wave output power," Opt. Express 12, 6088-6092 (2004).
    [CrossRef] [PubMed]
  4. A. Liem, J. Limpert, H. Zellmer, A. Tunnermann, K. Reichel, K. Morl, S. Jetschke, H-R. Muller, J. Kirchhof, T. Sandrock, and A. Harschak, "1.3 kW Yb-doped fiber laser with excellent beam quality," in Conference on Lasers and Electro-Optics/Quantum Electronics Conference and Photonic Applications Systems Technologies, Technical Digest (CD) (Optical Society of America, 2004), paper CPDD2.
    [PubMed]
  5. F. Röser, D. Schimpf, O. Schmidt, B. Ortaç, K. Rademaker, J. Limpert, and A. Tünnermann, "90 W average power 100 μJ energy femtosecond fiber chirped-pulse amplification system," Opt. Lett. 32, 2230-2232 (2007).
    [CrossRef] [PubMed]
  6. T. Schreiber, C. K. Nielsen, B. Ortac, J. Limpert, and A. Tünnermann, "Microjoule-level all-polarization-maintaining femtosecond fiber source," Opt. Lett. 31, 574-576 (2006).
    [CrossRef] [PubMed]
  7. F. He, J. H. V. Price, A. Malinowski, A. Piper, M. Ibsen, D. J. Richardson, J. W. Dawson, C. W. Siders, J. A. Britten, and C. P. J. Barty, " High Average Power, High Energy, Femto-second Fiber Chirped Pulse Amplification System," in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest Series (CD) (Optical Society of America, 2007), paper CMEE5.
    [PubMed]
  8. H. Sabert and E. Brinkmeyer, "Stable fundamental and higher order pulses in a fibre laser with frequency shifted feedback," Electron. Lett. 29, 2122-2124 (1993).
    [CrossRef]
  9. H. Sabert and E. Brinkmeyer, "Pulse generation in fiber lasers with frequency shifted feedback," J. Lightwave Technol. 12, 1360-1368 (1994).
    [CrossRef]
  10. F. V. Kowalski, S. J. Shattil, and P. D. Hale, "Optical pulse generation with a frequency shifted feedback laser," Appl. Phys. Lett. 53, 734-736 (1988).
    [CrossRef]
  11. B. Y. Kim, J. N. Blake, H. E. Engan, and H. J. Shaw, "All-fiber acousto-optics frequency shifter," Opt. Lett. 11, 389-391 (1986).
    [CrossRef] [PubMed]
  12. D. O. Culverhouse, T.A Birks, S. G. Farwell, J. Ward, and P. S. Russell, "40-MHz all fiber acoustooptics frequency shifter," IEEE Photon. Technol. Lett. 8, 1636-1637 (1996).
    [CrossRef]
  13. J. Porta, A. B. Grudinin, Z. J. Chen, J. D. Minelly, and N. J. Traynor, "Environmentally stable picosecond ytterbium fiber laser with a broad tuning range," Opt. Lett. 23, 615-617 (1998).
    [CrossRef]
  14. J. M. Sousa and O. G. Okhotnikov, "Short pulse generation and control in Er-doped frequency-shifted-feedback fiber lasers," Opt. Commun. 183, 227-241 (2000).
    [CrossRef]
  15. S. U. Alam and A. B. Grudinin, "Tunable picosecond frequency-shifted feedback fiber laser at 1550 nm," IEEE Photon. Technol. Lett. 16, 2012-2014 (2004).
    [CrossRef]
  16. L. Lefort, A. Albert, V. Couderc, and A. Barthelemy, "Highly stable 68 fs pulse generation from a stretched-pulse Yb-doped fiber laser with frequency shifted feeback," IEEE Photon. Technol. Lett. 14, 1674-1676 (2002).
    [CrossRef]
  17. A. Albert, V. Couderc, L. Lefort, and A. Barthelemy, "High-energy femtosecond pulses from an Ytterbium-doped fiber laser with a new cavity design," IEEE Photon. Technol. Lett. 16, 416-418 (2004).
    [CrossRef]
  18. C. C. Cuttler, "Why does linear phase-shift cause mode-locking?," IEEE J. Quantum Electron. 28, 282-288 (1992).
    [CrossRef]
  19. P. D. Hale and F. V. Kowalski, "Output characterization of a frequency-shifted feedback laser - theory and experiment," IEEE J. Quantum Electron. 26, 1845-1851 (1990).
    [CrossRef]
  20. C. M. De Sterke and M. J. Steel, "Simple model for pulse formation in lasers with a frequency-shifting element and nonlinearity," Opt. Commun. 117, 469-474 (1995).
    [CrossRef]
  21. A. M. Heidt, J. P. Burger, J-N. Maran, H. M. von Bergmann, and N. Traynor, "High power subpicosecond pulse generation from a Yb3+-doped fiber laser using only frequency-shifted feedback," in Frontiers in Optics 2007/Laser Science XXIII/Organic Materials and Devices for Displays and Energy Conversion (Optical Society of America, Washington, DC, 2007), paper FMF 4
    [PubMed]
  22. A. M. Heidt, J. P. Burger, J.-N. Maran, H. M. von Bergmann, and N. Traynor, "Microjoule, subpicosecond pulse generation from a Yb3+-doped fiber laser using frequency-shifted feedback", in The 7th Conference on Lasers and Electro-Optics / Pacific Rim 2007, Seoul, South Korea (IEEE Lasers and Electro-Optics Society, Piscataway, USA, 2007), paper TuA4-1

2007

2006

2004

Y. Jeong, J. K. Sahu, D. N. Payne, and J. Nilsson, "Ytterbium-doped large core fiber laser with 1.36 kW coutinuous-wave output power," Opt. Express 12, 6088-6092 (2004).
[CrossRef] [PubMed]

S. U. Alam and A. B. Grudinin, "Tunable picosecond frequency-shifted feedback fiber laser at 1550 nm," IEEE Photon. Technol. Lett. 16, 2012-2014 (2004).
[CrossRef]

A. Albert, V. Couderc, L. Lefort, and A. Barthelemy, "High-energy femtosecond pulses from an Ytterbium-doped fiber laser with a new cavity design," IEEE Photon. Technol. Lett. 16, 416-418 (2004).
[CrossRef]

2003

2002

L. Lefort, A. Albert, V. Couderc, and A. Barthelemy, "Highly stable 68 fs pulse generation from a stretched-pulse Yb-doped fiber laser with frequency shifted feeback," IEEE Photon. Technol. Lett. 14, 1674-1676 (2002).
[CrossRef]

2000

J. M. Sousa and O. G. Okhotnikov, "Short pulse generation and control in Er-doped frequency-shifted-feedback fiber lasers," Opt. Commun. 183, 227-241 (2000).
[CrossRef]

1998

1996

D. O. Culverhouse, T.A Birks, S. G. Farwell, J. Ward, and P. S. Russell, "40-MHz all fiber acoustooptics frequency shifter," IEEE Photon. Technol. Lett. 8, 1636-1637 (1996).
[CrossRef]

1995

C. M. De Sterke and M. J. Steel, "Simple model for pulse formation in lasers with a frequency-shifting element and nonlinearity," Opt. Commun. 117, 469-474 (1995).
[CrossRef]

1994

H. Sabert and E. Brinkmeyer, "Pulse generation in fiber lasers with frequency shifted feedback," J. Lightwave Technol. 12, 1360-1368 (1994).
[CrossRef]

1993

H. Sabert and E. Brinkmeyer, "Stable fundamental and higher order pulses in a fibre laser with frequency shifted feedback," Electron. Lett. 29, 2122-2124 (1993).
[CrossRef]

1992

C. C. Cuttler, "Why does linear phase-shift cause mode-locking?," IEEE J. Quantum Electron. 28, 282-288 (1992).
[CrossRef]

1990

P. D. Hale and F. V. Kowalski, "Output characterization of a frequency-shifted feedback laser - theory and experiment," IEEE J. Quantum Electron. 26, 1845-1851 (1990).
[CrossRef]

1988

F. V. Kowalski, S. J. Shattil, and P. D. Hale, "Optical pulse generation with a frequency shifted feedback laser," Appl. Phys. Lett. 53, 734-736 (1988).
[CrossRef]

1986

Appl. Phys. Lett.

F. V. Kowalski, S. J. Shattil, and P. D. Hale, "Optical pulse generation with a frequency shifted feedback laser," Appl. Phys. Lett. 53, 734-736 (1988).
[CrossRef]

Electron. Lett.

H. Sabert and E. Brinkmeyer, "Stable fundamental and higher order pulses in a fibre laser with frequency shifted feedback," Electron. Lett. 29, 2122-2124 (1993).
[CrossRef]

IEEE J. Quantum Electron.

C. C. Cuttler, "Why does linear phase-shift cause mode-locking?," IEEE J. Quantum Electron. 28, 282-288 (1992).
[CrossRef]

P. D. Hale and F. V. Kowalski, "Output characterization of a frequency-shifted feedback laser - theory and experiment," IEEE J. Quantum Electron. 26, 1845-1851 (1990).
[CrossRef]

IEEE Photon. Technol. Lett.

D. O. Culverhouse, T.A Birks, S. G. Farwell, J. Ward, and P. S. Russell, "40-MHz all fiber acoustooptics frequency shifter," IEEE Photon. Technol. Lett. 8, 1636-1637 (1996).
[CrossRef]

S. U. Alam and A. B. Grudinin, "Tunable picosecond frequency-shifted feedback fiber laser at 1550 nm," IEEE Photon. Technol. Lett. 16, 2012-2014 (2004).
[CrossRef]

L. Lefort, A. Albert, V. Couderc, and A. Barthelemy, "Highly stable 68 fs pulse generation from a stretched-pulse Yb-doped fiber laser with frequency shifted feeback," IEEE Photon. Technol. Lett. 14, 1674-1676 (2002).
[CrossRef]

A. Albert, V. Couderc, L. Lefort, and A. Barthelemy, "High-energy femtosecond pulses from an Ytterbium-doped fiber laser with a new cavity design," IEEE Photon. Technol. Lett. 16, 416-418 (2004).
[CrossRef]

J. Lightwave Technol.

H. Sabert and E. Brinkmeyer, "Pulse generation in fiber lasers with frequency shifted feedback," J. Lightwave Technol. 12, 1360-1368 (1994).
[CrossRef]

Opt. Commun.

C. M. De Sterke and M. J. Steel, "Simple model for pulse formation in lasers with a frequency-shifting element and nonlinearity," Opt. Commun. 117, 469-474 (1995).
[CrossRef]

J. M. Sousa and O. G. Okhotnikov, "Short pulse generation and control in Er-doped frequency-shifted-feedback fiber lasers," Opt. Commun. 183, 227-241 (2000).
[CrossRef]

Opt. Express

Opt. Lett.

Other

A. M. Heidt, J. P. Burger, J-N. Maran, H. M. von Bergmann, and N. Traynor, "High power subpicosecond pulse generation from a Yb3+-doped fiber laser using only frequency-shifted feedback," in Frontiers in Optics 2007/Laser Science XXIII/Organic Materials and Devices for Displays and Energy Conversion (Optical Society of America, Washington, DC, 2007), paper FMF 4
[PubMed]

A. M. Heidt, J. P. Burger, J.-N. Maran, H. M. von Bergmann, and N. Traynor, "Microjoule, subpicosecond pulse generation from a Yb3+-doped fiber laser using frequency-shifted feedback", in The 7th Conference on Lasers and Electro-Optics / Pacific Rim 2007, Seoul, South Korea (IEEE Lasers and Electro-Optics Society, Piscataway, USA, 2007), paper TuA4-1

F. He, J. H. V. Price, A. Malinowski, A. Piper, M. Ibsen, D. J. Richardson, J. W. Dawson, C. W. Siders, J. A. Britten, and C. P. J. Barty, " High Average Power, High Energy, Femto-second Fiber Chirped Pulse Amplification System," in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest Series (CD) (Optical Society of America, 2007), paper CMEE5.
[PubMed]

A. Liem, J. Limpert, H. Zellmer, A. Tunnermann, K. Reichel, K. Morl, S. Jetschke, H-R. Muller, J. Kirchhof, T. Sandrock, and A. Harschak, "1.3 kW Yb-doped fiber laser with excellent beam quality," in Conference on Lasers and Electro-Optics/Quantum Electronics Conference and Photonic Applications Systems Technologies, Technical Digest (CD) (Optical Society of America, 2004), paper CPDD2.
[PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Experimental setup; DM: dichroic mirror, HR @ 1060 nm, HT @ 915 nm; DCF: double-clad fiber ; AOM: acoustic-optic modulator

Fig. 2.
Fig. 2.

Output spectra in modelocked operation available on port 2. The laser is continuously tunable from 1074–1094 nm (a). The spectrum assumes its maximum width of 2.4 nm at a center wavelength of 1078.5 nm (b).

Fig. 3.
Fig. 3.

Interferometric autocorrelation traces. (a): The pulses available directly from the oscillator show a large linear chirp which results in a pedestal in the autocorrelation trace. Fitting with the theoretical envelope function for a Gaussian pulse gives a pulse width of ~8 ps. (b): With a double pass on an external grating the pulses could be compressed to 855 fs (FWHM).

Fig. 4.
Fig. 4.

Temporal evolution of the pulse train (black) and the modulation voltage (red) applied to the AOM in the simultaneously modelocked and Q-switched operation mode. For comparison a part of the corresponding pulse train in the unmodulated modelocked regime (with maximum and constant RF power applied to the AOM) is depicted as a green trace on the same scale (with an offset to enhance clarity). The Q-switched modelocking clearly greatly enhances the maximum peak power. The highest pulse amplitude in the simultaneously Q-switched/modelocked regime corresponds to a pulse energy of ~1µJ.

Metrics