Abstract

We report here the design, fabrication and characterization of optical hyperlens that can image sub-diffraction-limited objects in the far field. The hyperlens is based on an artificial anisotropic metamaterial with carefully designed hyperbolic dispersion. We successfully designed and fabricated such a metamaterial hyperlens composed of curved silver/alumina multilayers. Experimental results demonstrate far-field imaging with resolution down to 125nm at 365nm working wavelength which is below the diffraction limit.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Abbe, Arch. Mikroskop. Anat. 9, 413 (1873)
  2. E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, and R. L. Kostelak, “Breaking the diffraction barrier — optical microscopy on a nanometric scale,” Science 251, 1468–1470 (1991)
    [Crossref] [PubMed]
  3. S. W. Hell, “Toward Fluorescence nanoscopy,” Nat. Biotechnol.  21, 1347–1355 (2003)
    [Crossref] [PubMed]
  4. M. G. L. Gustafsson, “Nonlinear structured-illumination microscopy: Wide-field fluorescence imaging with theoretically unlimited resolution,” P. Natl. Acad. Sci. 102, 13081–13086 (2005)
    [Crossref]
  5. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966–3969 (2000)
    [Crossref] [PubMed]
  6. N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-Diffraction-Limited Optical Imaging with a Silver Superlens” Science 308, 534–537 (2005)
    [Crossref] [PubMed]
  7. H. Lee, Y. Xiong, N. Fang, W. Srituravanich, S. Durant, M. Ambati, C. Sun, and X. Zhang, “Realization of optical superlens imaging below the diffraction limit,” New J. Phys. 7, 255 (2005)
    [Crossref]
  8. D. Melville and R. Blaikie, “Super-resolution imaging through a planar silver layer,” Opt. Express.  13, 2127–2134 (2005)
    [Crossref] [PubMed]
  9. T. Taubner, D. Korobkin, Y. Urzhumov, G. Shvets, and R. Hillenbrand, “Near-Field microscopy Through a SiC Superlens,” Science 313,1595 (2006)
    [Crossref] [PubMed]
  10. V. Podolskiy and E. E. Narimanov, “Near-sighted superlens,” Opt. Lett. 30, 75–77 (2005)
    [Crossref] [PubMed]
  11. S. Durant, Z. Liu, J. Steele, and X. Zhang, “Theory of the transmission properties of an optical far-field superlens for imaging beyond the diffraction limit,” J. Opt. Soc. Am. B. 23, 2383–2392 (2006)
    [Crossref]
  12. Z. Liu, S. Durant, H. Lee, Y. Pikus, N. Fang, Y. Xiong, C. Sun, and X. Zhang, “Far-Field Optical Superlens,” Nano Lett. 7, 403–408 (2007)
    [Crossref] [PubMed]
  13. Z. Liu, S. Durant, H. Lee, Y. Pikus, Y. Xiong, C. Sun, and X. Zhang, “Experimental studies of far-field superlens for sub-diffractional optical imaging,” Opt. Express 15, 6947–6954 (2007)
    [Crossref] [PubMed]
  14. Y. Xiong, Z. Liu, C. Sun, and X. Zhang, “Two-dimensional imaging by far-field superlens at visible wavelengths,” Nano Lett. (Web Release Date: 05-Oct-2007)
    [Crossref] [PubMed]
  15. J. B. Pendry and S. A. Ramakrishna, “Near-field lenses in two dimensions,” J. Phys. Condens. Matter 14, 8463–8479 (2002)
    [Crossref]
  16. J. B. Pendry, “Perfect Cylindrical lenses,” Opt. Express 11, 755–760 (2003)
    [Crossref] [PubMed]
  17. Z. Jacob, L. V. Alekseyev, and E. Narimanov, “Optical hyperlens: Far-field imaging beyond the diffraction limit,” Opt. Express 14, 8247–8256 (2006)
    [Crossref] [PubMed]
  18. A. Salandrino and N. Engheta, “Far-field subdiffraction optical microscopy using metamaterial crystals: Theory and simulations,” Phy. Rev. B 74, 075103 (2006)
    [Crossref]
  19. Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-Field Optical Hyperlens Magnifying Sub-Diffraction-Limited Objects,” Science,  315, 1686 (2007)
    [Crossref] [PubMed]
  20. VA Podolskiy and EE Narimanov “Strongly anisotropic waveguide as a nonmagnetic left-handed system,” Phys. Rev. B 71, 201101 (2005)
    [Crossref]
  21. VA Podolskiy, L Alekseyev, and EE Narimanov, “Strongly anisotropic media: the THz perspectives of left-handed materials,” J. Mod. Opt. 52, 2343 (2005)
    [Crossref]
  22. R. Wangberg, J. Elser, E. E. Narimanov, and V. A. Podolskiy, “Non-magnetic nano-composites for optical and infrared negative refraction index media,” J. Opt. Soc. Am. B. 23, 498 (2006)
    [Crossref]
  23. P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6, 4370–4379 (1972)
    [Crossref]
  24. E. D. Palik, Handbook of Optical Constants of Solids (1995)

2007 (3)

Z. Liu, S. Durant, H. Lee, Y. Pikus, N. Fang, Y. Xiong, C. Sun, and X. Zhang, “Far-Field Optical Superlens,” Nano Lett. 7, 403–408 (2007)
[Crossref] [PubMed]

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-Field Optical Hyperlens Magnifying Sub-Diffraction-Limited Objects,” Science,  315, 1686 (2007)
[Crossref] [PubMed]

Z. Liu, S. Durant, H. Lee, Y. Pikus, Y. Xiong, C. Sun, and X. Zhang, “Experimental studies of far-field superlens for sub-diffractional optical imaging,” Opt. Express 15, 6947–6954 (2007)
[Crossref] [PubMed]

2006 (5)

Z. Jacob, L. V. Alekseyev, and E. Narimanov, “Optical hyperlens: Far-field imaging beyond the diffraction limit,” Opt. Express 14, 8247–8256 (2006)
[Crossref] [PubMed]

A. Salandrino and N. Engheta, “Far-field subdiffraction optical microscopy using metamaterial crystals: Theory and simulations,” Phy. Rev. B 74, 075103 (2006)
[Crossref]

R. Wangberg, J. Elser, E. E. Narimanov, and V. A. Podolskiy, “Non-magnetic nano-composites for optical and infrared negative refraction index media,” J. Opt. Soc. Am. B. 23, 498 (2006)
[Crossref]

T. Taubner, D. Korobkin, Y. Urzhumov, G. Shvets, and R. Hillenbrand, “Near-Field microscopy Through a SiC Superlens,” Science 313,1595 (2006)
[Crossref] [PubMed]

S. Durant, Z. Liu, J. Steele, and X. Zhang, “Theory of the transmission properties of an optical far-field superlens for imaging beyond the diffraction limit,” J. Opt. Soc. Am. B. 23, 2383–2392 (2006)
[Crossref]

2005 (7)

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-Diffraction-Limited Optical Imaging with a Silver Superlens” Science 308, 534–537 (2005)
[Crossref] [PubMed]

H. Lee, Y. Xiong, N. Fang, W. Srituravanich, S. Durant, M. Ambati, C. Sun, and X. Zhang, “Realization of optical superlens imaging below the diffraction limit,” New J. Phys. 7, 255 (2005)
[Crossref]

M. G. L. Gustafsson, “Nonlinear structured-illumination microscopy: Wide-field fluorescence imaging with theoretically unlimited resolution,” P. Natl. Acad. Sci. 102, 13081–13086 (2005)
[Crossref]

VA Podolskiy and EE Narimanov “Strongly anisotropic waveguide as a nonmagnetic left-handed system,” Phys. Rev. B 71, 201101 (2005)
[Crossref]

VA Podolskiy, L Alekseyev, and EE Narimanov, “Strongly anisotropic media: the THz perspectives of left-handed materials,” J. Mod. Opt. 52, 2343 (2005)
[Crossref]

V. Podolskiy and E. E. Narimanov, “Near-sighted superlens,” Opt. Lett. 30, 75–77 (2005)
[Crossref] [PubMed]

D. Melville and R. Blaikie, “Super-resolution imaging through a planar silver layer,” Opt. Express.  13, 2127–2134 (2005)
[Crossref] [PubMed]

2003 (2)

J. B. Pendry, “Perfect Cylindrical lenses,” Opt. Express 11, 755–760 (2003)
[Crossref] [PubMed]

S. W. Hell, “Toward Fluorescence nanoscopy,” Nat. Biotechnol.  21, 1347–1355 (2003)
[Crossref] [PubMed]

2002 (1)

J. B. Pendry and S. A. Ramakrishna, “Near-field lenses in two dimensions,” J. Phys. Condens. Matter 14, 8463–8479 (2002)
[Crossref]

2000 (1)

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966–3969 (2000)
[Crossref] [PubMed]

1991 (1)

E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, and R. L. Kostelak, “Breaking the diffraction barrier — optical microscopy on a nanometric scale,” Science 251, 1468–1470 (1991)
[Crossref] [PubMed]

1972 (1)

P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6, 4370–4379 (1972)
[Crossref]

Abbe, E.

E. Abbe, Arch. Mikroskop. Anat. 9, 413 (1873)

Alekseyev, L

VA Podolskiy, L Alekseyev, and EE Narimanov, “Strongly anisotropic media: the THz perspectives of left-handed materials,” J. Mod. Opt. 52, 2343 (2005)
[Crossref]

Alekseyev, L. V.

Ambati, M.

H. Lee, Y. Xiong, N. Fang, W. Srituravanich, S. Durant, M. Ambati, C. Sun, and X. Zhang, “Realization of optical superlens imaging below the diffraction limit,” New J. Phys. 7, 255 (2005)
[Crossref]

Betzig, E.

E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, and R. L. Kostelak, “Breaking the diffraction barrier — optical microscopy on a nanometric scale,” Science 251, 1468–1470 (1991)
[Crossref] [PubMed]

Blaikie, R.

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6, 4370–4379 (1972)
[Crossref]

Durant, S.

Z. Liu, S. Durant, H. Lee, Y. Pikus, N. Fang, Y. Xiong, C. Sun, and X. Zhang, “Far-Field Optical Superlens,” Nano Lett. 7, 403–408 (2007)
[Crossref] [PubMed]

Z. Liu, S. Durant, H. Lee, Y. Pikus, Y. Xiong, C. Sun, and X. Zhang, “Experimental studies of far-field superlens for sub-diffractional optical imaging,” Opt. Express 15, 6947–6954 (2007)
[Crossref] [PubMed]

S. Durant, Z. Liu, J. Steele, and X. Zhang, “Theory of the transmission properties of an optical far-field superlens for imaging beyond the diffraction limit,” J. Opt. Soc. Am. B. 23, 2383–2392 (2006)
[Crossref]

H. Lee, Y. Xiong, N. Fang, W. Srituravanich, S. Durant, M. Ambati, C. Sun, and X. Zhang, “Realization of optical superlens imaging below the diffraction limit,” New J. Phys. 7, 255 (2005)
[Crossref]

Elser, J.

R. Wangberg, J. Elser, E. E. Narimanov, and V. A. Podolskiy, “Non-magnetic nano-composites for optical and infrared negative refraction index media,” J. Opt. Soc. Am. B. 23, 498 (2006)
[Crossref]

Engheta, N.

A. Salandrino and N. Engheta, “Far-field subdiffraction optical microscopy using metamaterial crystals: Theory and simulations,” Phy. Rev. B 74, 075103 (2006)
[Crossref]

Fang, N.

Z. Liu, S. Durant, H. Lee, Y. Pikus, N. Fang, Y. Xiong, C. Sun, and X. Zhang, “Far-Field Optical Superlens,” Nano Lett. 7, 403–408 (2007)
[Crossref] [PubMed]

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-Diffraction-Limited Optical Imaging with a Silver Superlens” Science 308, 534–537 (2005)
[Crossref] [PubMed]

H. Lee, Y. Xiong, N. Fang, W. Srituravanich, S. Durant, M. Ambati, C. Sun, and X. Zhang, “Realization of optical superlens imaging below the diffraction limit,” New J. Phys. 7, 255 (2005)
[Crossref]

Gustafsson, M. G. L.

M. G. L. Gustafsson, “Nonlinear structured-illumination microscopy: Wide-field fluorescence imaging with theoretically unlimited resolution,” P. Natl. Acad. Sci. 102, 13081–13086 (2005)
[Crossref]

Harris, T. D.

E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, and R. L. Kostelak, “Breaking the diffraction barrier — optical microscopy on a nanometric scale,” Science 251, 1468–1470 (1991)
[Crossref] [PubMed]

Hell, S. W.

S. W. Hell, “Toward Fluorescence nanoscopy,” Nat. Biotechnol.  21, 1347–1355 (2003)
[Crossref] [PubMed]

Hillenbrand, R.

T. Taubner, D. Korobkin, Y. Urzhumov, G. Shvets, and R. Hillenbrand, “Near-Field microscopy Through a SiC Superlens,” Science 313,1595 (2006)
[Crossref] [PubMed]

Jacob, Z.

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6, 4370–4379 (1972)
[Crossref]

Korobkin, D.

T. Taubner, D. Korobkin, Y. Urzhumov, G. Shvets, and R. Hillenbrand, “Near-Field microscopy Through a SiC Superlens,” Science 313,1595 (2006)
[Crossref] [PubMed]

Kostelak, R. L.

E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, and R. L. Kostelak, “Breaking the diffraction barrier — optical microscopy on a nanometric scale,” Science 251, 1468–1470 (1991)
[Crossref] [PubMed]

Lee, H.

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-Field Optical Hyperlens Magnifying Sub-Diffraction-Limited Objects,” Science,  315, 1686 (2007)
[Crossref] [PubMed]

Z. Liu, S. Durant, H. Lee, Y. Pikus, N. Fang, Y. Xiong, C. Sun, and X. Zhang, “Far-Field Optical Superlens,” Nano Lett. 7, 403–408 (2007)
[Crossref] [PubMed]

Z. Liu, S. Durant, H. Lee, Y. Pikus, Y. Xiong, C. Sun, and X. Zhang, “Experimental studies of far-field superlens for sub-diffractional optical imaging,” Opt. Express 15, 6947–6954 (2007)
[Crossref] [PubMed]

H. Lee, Y. Xiong, N. Fang, W. Srituravanich, S. Durant, M. Ambati, C. Sun, and X. Zhang, “Realization of optical superlens imaging below the diffraction limit,” New J. Phys. 7, 255 (2005)
[Crossref]

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-Diffraction-Limited Optical Imaging with a Silver Superlens” Science 308, 534–537 (2005)
[Crossref] [PubMed]

Liu, Z.

Z. Liu, S. Durant, H. Lee, Y. Pikus, N. Fang, Y. Xiong, C. Sun, and X. Zhang, “Far-Field Optical Superlens,” Nano Lett. 7, 403–408 (2007)
[Crossref] [PubMed]

Z. Liu, S. Durant, H. Lee, Y. Pikus, Y. Xiong, C. Sun, and X. Zhang, “Experimental studies of far-field superlens for sub-diffractional optical imaging,” Opt. Express 15, 6947–6954 (2007)
[Crossref] [PubMed]

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-Field Optical Hyperlens Magnifying Sub-Diffraction-Limited Objects,” Science,  315, 1686 (2007)
[Crossref] [PubMed]

S. Durant, Z. Liu, J. Steele, and X. Zhang, “Theory of the transmission properties of an optical far-field superlens for imaging beyond the diffraction limit,” J. Opt. Soc. Am. B. 23, 2383–2392 (2006)
[Crossref]

Y. Xiong, Z. Liu, C. Sun, and X. Zhang, “Two-dimensional imaging by far-field superlens at visible wavelengths,” Nano Lett. (Web Release Date: 05-Oct-2007)
[Crossref] [PubMed]

Melville, D.

Narimanov, E.

Narimanov, E. E.

R. Wangberg, J. Elser, E. E. Narimanov, and V. A. Podolskiy, “Non-magnetic nano-composites for optical and infrared negative refraction index media,” J. Opt. Soc. Am. B. 23, 498 (2006)
[Crossref]

V. Podolskiy and E. E. Narimanov, “Near-sighted superlens,” Opt. Lett. 30, 75–77 (2005)
[Crossref] [PubMed]

Narimanov, EE

VA Podolskiy and EE Narimanov “Strongly anisotropic waveguide as a nonmagnetic left-handed system,” Phys. Rev. B 71, 201101 (2005)
[Crossref]

VA Podolskiy, L Alekseyev, and EE Narimanov, “Strongly anisotropic media: the THz perspectives of left-handed materials,” J. Mod. Opt. 52, 2343 (2005)
[Crossref]

Palik, E. D.

E. D. Palik, Handbook of Optical Constants of Solids (1995)

Pendry, J. B.

J. B. Pendry, “Perfect Cylindrical lenses,” Opt. Express 11, 755–760 (2003)
[Crossref] [PubMed]

J. B. Pendry and S. A. Ramakrishna, “Near-field lenses in two dimensions,” J. Phys. Condens. Matter 14, 8463–8479 (2002)
[Crossref]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966–3969 (2000)
[Crossref] [PubMed]

Pikus, Y.

Podolskiy, V.

Podolskiy, V. A.

R. Wangberg, J. Elser, E. E. Narimanov, and V. A. Podolskiy, “Non-magnetic nano-composites for optical and infrared negative refraction index media,” J. Opt. Soc. Am. B. 23, 498 (2006)
[Crossref]

Podolskiy, VA

VA Podolskiy, L Alekseyev, and EE Narimanov, “Strongly anisotropic media: the THz perspectives of left-handed materials,” J. Mod. Opt. 52, 2343 (2005)
[Crossref]

VA Podolskiy and EE Narimanov “Strongly anisotropic waveguide as a nonmagnetic left-handed system,” Phys. Rev. B 71, 201101 (2005)
[Crossref]

Ramakrishna, S. A.

J. B. Pendry and S. A. Ramakrishna, “Near-field lenses in two dimensions,” J. Phys. Condens. Matter 14, 8463–8479 (2002)
[Crossref]

Salandrino, A.

A. Salandrino and N. Engheta, “Far-field subdiffraction optical microscopy using metamaterial crystals: Theory and simulations,” Phy. Rev. B 74, 075103 (2006)
[Crossref]

Shvets, G.

T. Taubner, D. Korobkin, Y. Urzhumov, G. Shvets, and R. Hillenbrand, “Near-Field microscopy Through a SiC Superlens,” Science 313,1595 (2006)
[Crossref] [PubMed]

Srituravanich, W.

H. Lee, Y. Xiong, N. Fang, W. Srituravanich, S. Durant, M. Ambati, C. Sun, and X. Zhang, “Realization of optical superlens imaging below the diffraction limit,” New J. Phys. 7, 255 (2005)
[Crossref]

Steele, J.

S. Durant, Z. Liu, J. Steele, and X. Zhang, “Theory of the transmission properties of an optical far-field superlens for imaging beyond the diffraction limit,” J. Opt. Soc. Am. B. 23, 2383–2392 (2006)
[Crossref]

Sun, C.

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-Field Optical Hyperlens Magnifying Sub-Diffraction-Limited Objects,” Science,  315, 1686 (2007)
[Crossref] [PubMed]

Z. Liu, S. Durant, H. Lee, Y. Pikus, N. Fang, Y. Xiong, C. Sun, and X. Zhang, “Far-Field Optical Superlens,” Nano Lett. 7, 403–408 (2007)
[Crossref] [PubMed]

Z. Liu, S. Durant, H. Lee, Y. Pikus, Y. Xiong, C. Sun, and X. Zhang, “Experimental studies of far-field superlens for sub-diffractional optical imaging,” Opt. Express 15, 6947–6954 (2007)
[Crossref] [PubMed]

H. Lee, Y. Xiong, N. Fang, W. Srituravanich, S. Durant, M. Ambati, C. Sun, and X. Zhang, “Realization of optical superlens imaging below the diffraction limit,” New J. Phys. 7, 255 (2005)
[Crossref]

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-Diffraction-Limited Optical Imaging with a Silver Superlens” Science 308, 534–537 (2005)
[Crossref] [PubMed]

Y. Xiong, Z. Liu, C. Sun, and X. Zhang, “Two-dimensional imaging by far-field superlens at visible wavelengths,” Nano Lett. (Web Release Date: 05-Oct-2007)
[Crossref] [PubMed]

Taubner, T.

T. Taubner, D. Korobkin, Y. Urzhumov, G. Shvets, and R. Hillenbrand, “Near-Field microscopy Through a SiC Superlens,” Science 313,1595 (2006)
[Crossref] [PubMed]

Trautman, J. K.

E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, and R. L. Kostelak, “Breaking the diffraction barrier — optical microscopy on a nanometric scale,” Science 251, 1468–1470 (1991)
[Crossref] [PubMed]

Urzhumov, Y.

T. Taubner, D. Korobkin, Y. Urzhumov, G. Shvets, and R. Hillenbrand, “Near-Field microscopy Through a SiC Superlens,” Science 313,1595 (2006)
[Crossref] [PubMed]

Wangberg, R.

R. Wangberg, J. Elser, E. E. Narimanov, and V. A. Podolskiy, “Non-magnetic nano-composites for optical and infrared negative refraction index media,” J. Opt. Soc. Am. B. 23, 498 (2006)
[Crossref]

Weiner, J. S.

E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, and R. L. Kostelak, “Breaking the diffraction barrier — optical microscopy on a nanometric scale,” Science 251, 1468–1470 (1991)
[Crossref] [PubMed]

Xiong, Y.

Z. Liu, S. Durant, H. Lee, Y. Pikus, Y. Xiong, C. Sun, and X. Zhang, “Experimental studies of far-field superlens for sub-diffractional optical imaging,” Opt. Express 15, 6947–6954 (2007)
[Crossref] [PubMed]

Z. Liu, S. Durant, H. Lee, Y. Pikus, N. Fang, Y. Xiong, C. Sun, and X. Zhang, “Far-Field Optical Superlens,” Nano Lett. 7, 403–408 (2007)
[Crossref] [PubMed]

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-Field Optical Hyperlens Magnifying Sub-Diffraction-Limited Objects,” Science,  315, 1686 (2007)
[Crossref] [PubMed]

H. Lee, Y. Xiong, N. Fang, W. Srituravanich, S. Durant, M. Ambati, C. Sun, and X. Zhang, “Realization of optical superlens imaging below the diffraction limit,” New J. Phys. 7, 255 (2005)
[Crossref]

Y. Xiong, Z. Liu, C. Sun, and X. Zhang, “Two-dimensional imaging by far-field superlens at visible wavelengths,” Nano Lett. (Web Release Date: 05-Oct-2007)
[Crossref] [PubMed]

Zhang, X.

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-Field Optical Hyperlens Magnifying Sub-Diffraction-Limited Objects,” Science,  315, 1686 (2007)
[Crossref] [PubMed]

Z. Liu, S. Durant, H. Lee, Y. Pikus, N. Fang, Y. Xiong, C. Sun, and X. Zhang, “Far-Field Optical Superlens,” Nano Lett. 7, 403–408 (2007)
[Crossref] [PubMed]

Z. Liu, S. Durant, H. Lee, Y. Pikus, Y. Xiong, C. Sun, and X. Zhang, “Experimental studies of far-field superlens for sub-diffractional optical imaging,” Opt. Express 15, 6947–6954 (2007)
[Crossref] [PubMed]

S. Durant, Z. Liu, J. Steele, and X. Zhang, “Theory of the transmission properties of an optical far-field superlens for imaging beyond the diffraction limit,” J. Opt. Soc. Am. B. 23, 2383–2392 (2006)
[Crossref]

H. Lee, Y. Xiong, N. Fang, W. Srituravanich, S. Durant, M. Ambati, C. Sun, and X. Zhang, “Realization of optical superlens imaging below the diffraction limit,” New J. Phys. 7, 255 (2005)
[Crossref]

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-Diffraction-Limited Optical Imaging with a Silver Superlens” Science 308, 534–537 (2005)
[Crossref] [PubMed]

Y. Xiong, Z. Liu, C. Sun, and X. Zhang, “Two-dimensional imaging by far-field superlens at visible wavelengths,” Nano Lett. (Web Release Date: 05-Oct-2007)
[Crossref] [PubMed]

J. Mod. Opt. (1)

VA Podolskiy, L Alekseyev, and EE Narimanov, “Strongly anisotropic media: the THz perspectives of left-handed materials,” J. Mod. Opt. 52, 2343 (2005)
[Crossref]

J. Opt. Soc. Am. B. (2)

R. Wangberg, J. Elser, E. E. Narimanov, and V. A. Podolskiy, “Non-magnetic nano-composites for optical and infrared negative refraction index media,” J. Opt. Soc. Am. B. 23, 498 (2006)
[Crossref]

S. Durant, Z. Liu, J. Steele, and X. Zhang, “Theory of the transmission properties of an optical far-field superlens for imaging beyond the diffraction limit,” J. Opt. Soc. Am. B. 23, 2383–2392 (2006)
[Crossref]

J. Phys. Condens. Matter (1)

J. B. Pendry and S. A. Ramakrishna, “Near-field lenses in two dimensions,” J. Phys. Condens. Matter 14, 8463–8479 (2002)
[Crossref]

Nano Lett. (1)

Z. Liu, S. Durant, H. Lee, Y. Pikus, N. Fang, Y. Xiong, C. Sun, and X. Zhang, “Far-Field Optical Superlens,” Nano Lett. 7, 403–408 (2007)
[Crossref] [PubMed]

Nat. Biotechnol (1)

S. W. Hell, “Toward Fluorescence nanoscopy,” Nat. Biotechnol.  21, 1347–1355 (2003)
[Crossref] [PubMed]

New J. Phys. (1)

H. Lee, Y. Xiong, N. Fang, W. Srituravanich, S. Durant, M. Ambati, C. Sun, and X. Zhang, “Realization of optical superlens imaging below the diffraction limit,” New J. Phys. 7, 255 (2005)
[Crossref]

Opt. Express (4)

Opt. Lett. (1)

P. Natl. Acad. Sci. (1)

M. G. L. Gustafsson, “Nonlinear structured-illumination microscopy: Wide-field fluorescence imaging with theoretically unlimited resolution,” P. Natl. Acad. Sci. 102, 13081–13086 (2005)
[Crossref]

Phy. Rev. B (1)

A. Salandrino and N. Engheta, “Far-field subdiffraction optical microscopy using metamaterial crystals: Theory and simulations,” Phy. Rev. B 74, 075103 (2006)
[Crossref]

Phys. Rev. B (2)

VA Podolskiy and EE Narimanov “Strongly anisotropic waveguide as a nonmagnetic left-handed system,” Phys. Rev. B 71, 201101 (2005)
[Crossref]

P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6, 4370–4379 (1972)
[Crossref]

Phys. Rev. Lett. (1)

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966–3969 (2000)
[Crossref] [PubMed]

Science (4)

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-Diffraction-Limited Optical Imaging with a Silver Superlens” Science 308, 534–537 (2005)
[Crossref] [PubMed]

T. Taubner, D. Korobkin, Y. Urzhumov, G. Shvets, and R. Hillenbrand, “Near-Field microscopy Through a SiC Superlens,” Science 313,1595 (2006)
[Crossref] [PubMed]

E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, and R. L. Kostelak, “Breaking the diffraction barrier — optical microscopy on a nanometric scale,” Science 251, 1468–1470 (1991)
[Crossref] [PubMed]

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-Field Optical Hyperlens Magnifying Sub-Diffraction-Limited Objects,” Science,  315, 1686 (2007)
[Crossref] [PubMed]

Other (3)

Y. Xiong, Z. Liu, C. Sun, and X. Zhang, “Two-dimensional imaging by far-field superlens at visible wavelengths,” Nano Lett. (Web Release Date: 05-Oct-2007)
[Crossref] [PubMed]

E. Abbe, Arch. Mikroskop. Anat. 9, 413 (1873)

E. D. Palik, Handbook of Optical Constants of Solids (1995)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Working principle of hyperlens. (a) Red circle: dispersion isofrequency curve of light in isotropic medium in cylindrical coordinate. Blue curve: hyperbolic dispersion in an anisotropic medium when εr <0 and εθ >0 (b) One suggested cylindrical hyperlens structure. Multi-concentric layers of alternating metal and dielectric layers make anisotropic metamaterial.

Fig. 2.
Fig. 2.

Hyperlens designed for experiment. (a) Isofrequency contour of the designed metamaterial structure. kr and kθ are normalized to k 0=2π/365nm (b) Simulated magnetic field distribution. The hyperlens consists of 8 pairs of Ag (35nm)/Al2O3 (35nm) layers on a curved quartz mold. The two line objects (150nm separation through 50nm Cr film) are gradually magnified along the radial direction under p-polarized 365nm light illumination.

Fig. 3.
Fig. 3.

(a) Hyperlens sample fabrication process flow. Through the etch hole on a Cr film (1), isotropic wet etching makes cylindrical groove in quartz (2). After Cr film is removed (3), multilayer hyperlens structure is fabricated using alternate deposition of Ag and Al2O3 (4). A Cr film caps the hyperlens structure for object fabrication (5). (b) Imaging setup. Completed hyperlens/object sample is placed under objective with incident light at 365nm, conventional far field microscope with 100X oil immersion objective and UV sensitive CCD detector was used for direct far field imaging.

Fig. 4.
Fig. 4.

A SEM picture of the cross section of a hyperlens structure. A hyperlens without any fabricated object was cut using FIB. (a) 16 Ag/Al2O3 layers are clearly shown, bright and dark layers are Ag and Al2O3 respectively. The top thick and bright layer is Chromium. Even with directional E-beam evaporation deposition method, side wall coverage is close to conformal due to low deposition rate. (b) Zoom-in picture of white square in (a).

Fig. 5.
Fig. 5.

Hyeperlens imaging results. (a) SEM image of 130nm line pair object on Cr film. Dark region is the hyperlens and the bright region is the flat surface. (b) Image captured by optical microscope through hyperlensing shows 130nm gap is clearly resolved. (c) Left: SEM image of tilted line pair object with indicated gap sizes. Middle: Image captured by optical microscope through hyperlensing. Right: Intensity profiles of the three indicated cross sections showing resolved 125nm gap (top).

Metrics