Abstract

We report here the design, fabrication and characterization of optical hyperlens that can image sub-diffraction-limited objects in the far field. The hyperlens is based on an artificial anisotropic metamaterial with carefully designed hyperbolic dispersion. We successfully designed and fabricated such a metamaterial hyperlens composed of curved silver/alumina multilayers. Experimental results demonstrate far-field imaging with resolution down to 125nm at 365nm working wavelength which is below the diffraction limit.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. E. Abbe, Beiträge zur Theorie des Mikroskops und der Mikroskop ischen Wahrnehmung, Arch. Mikroskop. Anat. 9, 413-418 (1873)
  2. E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner and R. L. Kostelak, "Breaking the diffraction barrier - optical microscopy on a nanometric scale," Science 251, 1468-1470 (1991)
    [CrossRef] [PubMed]
  3. S. W. Hell, "Toward Fluorescence nanoscopy," Nat. Biotechnol. 21, 1347-1355 (2003)
    [CrossRef] [PubMed]
  4. M. G. L. Gustafsson, "Nonlinear structured-illumination microscopy: Wide-field fluorescence imaging with theoretically unlimited resolution," Proc. Natl. Acad. Sci. 102, 13081-13086 (2005)
    [CrossRef]
  5. J. B. Pendry, "Negative refraction makes a perfect lens," Phys. Rev. Lett. 85, 3966-3969 (2000)
    [CrossRef] [PubMed]
  6. N. Fang, H. Lee, C. Sun and X. Zhang, "Sub-Diffraction-Limited Optical Imaging with a Silver Superlens" Science 308, 534-537 (2005)
    [CrossRef] [PubMed]
  7. H. Lee, Y. Xiong, N. Fang, W. Srituravanich, S. Durant, M. Ambati, C. Sun and X. Zhang, "Realization of optical superlens imaging below the diffraction limit," New J. Phys. 7, 255 (2005)
    [CrossRef]
  8. D. Melville, R. Blaikie, "Super-resolution imaging through a planar silver layer," Opt. Express. 13, 2127-2134 (2005)
    [CrossRef] [PubMed]
  9. T. Taubner, D. Korobkin, Y. Urzhumov, G. Shvets, R. Hillenbrand, "Near-Field microscopy Through a SiC Superlens," Science 313, 1595 (2006)
    [CrossRef] [PubMed]
  10. V. Podolskiy, E. E. Narimanov, "Near-sighted superlens," Opt. Lett. 30, 75-77 (2005)
    [CrossRef] [PubMed]
  11. S. Durant, Z. Liu, J. Steele, X. Zhang, "Theory of the transmission properties of an optical far-field superlens for imaging beyond the diffraction limit," J. Opt. Soc. Am. B. 23, 2383-2392 (2006)
    [CrossRef]
  12. Z. Liu, S. Durant, H. Lee, Y. Pikus, N. Fang, Y. Xiong, C. Sun and X. Zhang, "Far-Field Optical Superlens," Nano Lett. 7, 403-408 (2007)
    [CrossRef] [PubMed]
  13. Z. Liu, S. Durant, H. Lee, Y. Pikus, Y. Xiong, C. Sun and X. Zhang, "Experimental studies of far-field superlens for sub-diffractional optical imaging," Opt. Express 15, 6947-6954 (2007)
    [CrossRef] [PubMed]
  14. Y. Xiong, Z. Liu, C. Sun, and X. Zhang, "Two-dimensional imaging by far-field superlens at visible wavelengths," Nano Lett. (Web Release Date: 05-Oct-2007)
    [CrossRef] [PubMed]
  15. J. B. Pendry and S. A. Ramakrishna, "Near-field lenses in two dimensions," J. Phys. Condens. Matter 14, 8463-8479 (2002)
    [CrossRef]
  16. J. B. Pendry, "Perfect Cylindrical lenses," Opt. Express 11, 755-760 (2003)
    [CrossRef] [PubMed]
  17. Z. Jacob, L. V. Alekseyev and E. Narimanov, "Optical hyperlens: Far-field imaging beyond the diffraction limit," Opt. Express 14, 8247-8256 (2006)
    [CrossRef] [PubMed]
  18. A. Salandrino and N. Engheta, "Far-field subdiffraction optical microscopy using metamaterial crystals: Theory and simulations," Phy. Rev. B 74, 075103 (2006)
    [CrossRef]
  19. Z. Liu, H. Lee, Y. Xiong, C. Sun and X. Zhang, "Far-Field Optical Hyperlens Magnifying Sub-Diffraction-Limited Objects," Science  315, 1686 (2007)
    [CrossRef] [PubMed]
  20. VA Podolskiy and EE Narimanov "Strongly anisotropic waveguide as a nonmagnetic left-handed system," Phys. Rev. B 71, 201101 (2005)
    [CrossRef]
  21. VA Podolskiy, L Alekseyev and EE Narimanov, "Strongly anisotropic media: the THz perspectives of left-handed materials," J. Mod. Opt. 52, 2343 (2005)
    [CrossRef]
  22. R. Wangberg, J. Elser, E. E. Narimanov and V. A. Podolskiy, "Non-magnetic nano-composites for optical and infrared negative refraction index media," J. Opt. Soc. Am. B. 23, 498 (2006)
    [CrossRef]
  23. P. B. Johnson and R. W. Christy, "Optical Constants of the Noble Metals," Phys. Rev. B 6, 4370-4379 (1972)
    [CrossRef]
  24. E. D. Palik, Handbook of Optical Constants of Solids (1995)

2007

Z. Liu, S. Durant, H. Lee, Y. Pikus, N. Fang, Y. Xiong, C. Sun and X. Zhang, "Far-Field Optical Superlens," Nano Lett. 7, 403-408 (2007)
[CrossRef] [PubMed]

Z. Liu, S. Durant, H. Lee, Y. Pikus, Y. Xiong, C. Sun and X. Zhang, "Experimental studies of far-field superlens for sub-diffractional optical imaging," Opt. Express 15, 6947-6954 (2007)
[CrossRef] [PubMed]

Z. Liu, H. Lee, Y. Xiong, C. Sun and X. Zhang, "Far-Field Optical Hyperlens Magnifying Sub-Diffraction-Limited Objects," Science  315, 1686 (2007)
[CrossRef] [PubMed]

2006

Z. Jacob, L. V. Alekseyev and E. Narimanov, "Optical hyperlens: Far-field imaging beyond the diffraction limit," Opt. Express 14, 8247-8256 (2006)
[CrossRef] [PubMed]

A. Salandrino and N. Engheta, "Far-field subdiffraction optical microscopy using metamaterial crystals: Theory and simulations," Phy. Rev. B 74, 075103 (2006)
[CrossRef]

S. Durant, Z. Liu, J. Steele, X. Zhang, "Theory of the transmission properties of an optical far-field superlens for imaging beyond the diffraction limit," J. Opt. Soc. Am. B. 23, 2383-2392 (2006)
[CrossRef]

T. Taubner, D. Korobkin, Y. Urzhumov, G. Shvets, R. Hillenbrand, "Near-Field microscopy Through a SiC Superlens," Science 313, 1595 (2006)
[CrossRef] [PubMed]

R. Wangberg, J. Elser, E. E. Narimanov and V. A. Podolskiy, "Non-magnetic nano-composites for optical and infrared negative refraction index media," J. Opt. Soc. Am. B. 23, 498 (2006)
[CrossRef]

2005

V. Podolskiy, E. E. Narimanov, "Near-sighted superlens," Opt. Lett. 30, 75-77 (2005)
[CrossRef] [PubMed]

N. Fang, H. Lee, C. Sun and X. Zhang, "Sub-Diffraction-Limited Optical Imaging with a Silver Superlens" Science 308, 534-537 (2005)
[CrossRef] [PubMed]

H. Lee, Y. Xiong, N. Fang, W. Srituravanich, S. Durant, M. Ambati, C. Sun and X. Zhang, "Realization of optical superlens imaging below the diffraction limit," New J. Phys. 7, 255 (2005)
[CrossRef]

D. Melville, R. Blaikie, "Super-resolution imaging through a planar silver layer," Opt. Express. 13, 2127-2134 (2005)
[CrossRef] [PubMed]

M. G. L. Gustafsson, "Nonlinear structured-illumination microscopy: Wide-field fluorescence imaging with theoretically unlimited resolution," Proc. Natl. Acad. Sci. 102, 13081-13086 (2005)
[CrossRef]

VA Podolskiy and EE Narimanov "Strongly anisotropic waveguide as a nonmagnetic left-handed system," Phys. Rev. B 71, 201101 (2005)
[CrossRef]

VA Podolskiy, L Alekseyev and EE Narimanov, "Strongly anisotropic media: the THz perspectives of left-handed materials," J. Mod. Opt. 52, 2343 (2005)
[CrossRef]

2003

S. W. Hell, "Toward Fluorescence nanoscopy," Nat. Biotechnol. 21, 1347-1355 (2003)
[CrossRef] [PubMed]

J. B. Pendry, "Perfect Cylindrical lenses," Opt. Express 11, 755-760 (2003)
[CrossRef] [PubMed]

2002

J. B. Pendry and S. A. Ramakrishna, "Near-field lenses in two dimensions," J. Phys. Condens. Matter 14, 8463-8479 (2002)
[CrossRef]

2000

J. B. Pendry, "Negative refraction makes a perfect lens," Phys. Rev. Lett. 85, 3966-3969 (2000)
[CrossRef] [PubMed]

1991

E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner and R. L. Kostelak, "Breaking the diffraction barrier - optical microscopy on a nanometric scale," Science 251, 1468-1470 (1991)
[CrossRef] [PubMed]

1972

P. B. Johnson and R. W. Christy, "Optical Constants of the Noble Metals," Phys. Rev. B 6, 4370-4379 (1972)
[CrossRef]

1873

E. Abbe, Beiträge zur Theorie des Mikroskops und der Mikroskop ischen Wahrnehmung, Arch. Mikroskop. Anat. 9, 413-418 (1873)

Arch. Mikroskop. Anat.

E. Abbe, Beiträge zur Theorie des Mikroskops und der Mikroskop ischen Wahrnehmung, Arch. Mikroskop. Anat. 9, 413-418 (1873)

J. Mod. Opt.

VA Podolskiy, L Alekseyev and EE Narimanov, "Strongly anisotropic media: the THz perspectives of left-handed materials," J. Mod. Opt. 52, 2343 (2005)
[CrossRef]

J. Opt. Soc. Am. B.

R. Wangberg, J. Elser, E. E. Narimanov and V. A. Podolskiy, "Non-magnetic nano-composites for optical and infrared negative refraction index media," J. Opt. Soc. Am. B. 23, 498 (2006)
[CrossRef]

S. Durant, Z. Liu, J. Steele, X. Zhang, "Theory of the transmission properties of an optical far-field superlens for imaging beyond the diffraction limit," J. Opt. Soc. Am. B. 23, 2383-2392 (2006)
[CrossRef]

J. Phys. Condens. Matter

J. B. Pendry and S. A. Ramakrishna, "Near-field lenses in two dimensions," J. Phys. Condens. Matter 14, 8463-8479 (2002)
[CrossRef]

Nano Lett.

Z. Liu, S. Durant, H. Lee, Y. Pikus, N. Fang, Y. Xiong, C. Sun and X. Zhang, "Far-Field Optical Superlens," Nano Lett. 7, 403-408 (2007)
[CrossRef] [PubMed]

Nat. Biotechnol.

S. W. Hell, "Toward Fluorescence nanoscopy," Nat. Biotechnol. 21, 1347-1355 (2003)
[CrossRef] [PubMed]

New J. Phys.

H. Lee, Y. Xiong, N. Fang, W. Srituravanich, S. Durant, M. Ambati, C. Sun and X. Zhang, "Realization of optical superlens imaging below the diffraction limit," New J. Phys. 7, 255 (2005)
[CrossRef]

Opt. Express

Opt. Express.

D. Melville, R. Blaikie, "Super-resolution imaging through a planar silver layer," Opt. Express. 13, 2127-2134 (2005)
[CrossRef] [PubMed]

Opt. Lett.

Phy. Rev. B

A. Salandrino and N. Engheta, "Far-field subdiffraction optical microscopy using metamaterial crystals: Theory and simulations," Phy. Rev. B 74, 075103 (2006)
[CrossRef]

Phys. Rev. B

VA Podolskiy and EE Narimanov "Strongly anisotropic waveguide as a nonmagnetic left-handed system," Phys. Rev. B 71, 201101 (2005)
[CrossRef]

P. B. Johnson and R. W. Christy, "Optical Constants of the Noble Metals," Phys. Rev. B 6, 4370-4379 (1972)
[CrossRef]

Phys. Rev. Lett.

J. B. Pendry, "Negative refraction makes a perfect lens," Phys. Rev. Lett. 85, 3966-3969 (2000)
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci.

M. G. L. Gustafsson, "Nonlinear structured-illumination microscopy: Wide-field fluorescence imaging with theoretically unlimited resolution," Proc. Natl. Acad. Sci. 102, 13081-13086 (2005)
[CrossRef]

Science

E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner and R. L. Kostelak, "Breaking the diffraction barrier - optical microscopy on a nanometric scale," Science 251, 1468-1470 (1991)
[CrossRef] [PubMed]

N. Fang, H. Lee, C. Sun and X. Zhang, "Sub-Diffraction-Limited Optical Imaging with a Silver Superlens" Science 308, 534-537 (2005)
[CrossRef] [PubMed]

T. Taubner, D. Korobkin, Y. Urzhumov, G. Shvets, R. Hillenbrand, "Near-Field microscopy Through a SiC Superlens," Science 313, 1595 (2006)
[CrossRef] [PubMed]

Z. Liu, H. Lee, Y. Xiong, C. Sun and X. Zhang, "Far-Field Optical Hyperlens Magnifying Sub-Diffraction-Limited Objects," Science  315, 1686 (2007)
[CrossRef] [PubMed]

Other

Y. Xiong, Z. Liu, C. Sun, and X. Zhang, "Two-dimensional imaging by far-field superlens at visible wavelengths," Nano Lett. (Web Release Date: 05-Oct-2007)
[CrossRef] [PubMed]

E. D. Palik, Handbook of Optical Constants of Solids (1995)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Working principle of hyperlens. (a) Red circle: dispersion isofrequency curve of light in isotropic medium in cylindrical coordinate. Blue curve: hyperbolic dispersion in an anisotropic medium when εr <0 and εθ >0 (b) One suggested cylindrical hyperlens structure. Multi-concentric layers of alternating metal and dielectric layers make anisotropic metamaterial.

Fig. 2.
Fig. 2.

Hyperlens designed for experiment. (a) Isofrequency contour of the designed metamaterial structure. kr and kθ are normalized to k 0=2π/365nm (b) Simulated magnetic field distribution. The hyperlens consists of 8 pairs of Ag (35nm)/Al2O3 (35nm) layers on a curved quartz mold. The two line objects (150nm separation through 50nm Cr film) are gradually magnified along the radial direction under p-polarized 365nm light illumination.

Fig. 3.
Fig. 3.

(a) Hyperlens sample fabrication process flow. Through the etch hole on a Cr film (1), isotropic wet etching makes cylindrical groove in quartz (2). After Cr film is removed (3), multilayer hyperlens structure is fabricated using alternate deposition of Ag and Al2O3 (4). A Cr film caps the hyperlens structure for object fabrication (5). (b) Imaging setup. Completed hyperlens/object sample is placed under objective with incident light at 365nm, conventional far field microscope with 100X oil immersion objective and UV sensitive CCD detector was used for direct far field imaging.

Fig. 4.
Fig. 4.

A SEM picture of the cross section of a hyperlens structure. A hyperlens without any fabricated object was cut using FIB. (a) 16 Ag/Al2O3 layers are clearly shown, bright and dark layers are Ag and Al2O3 respectively. The top thick and bright layer is Chromium. Even with directional E-beam evaporation deposition method, side wall coverage is close to conformal due to low deposition rate. (b) Zoom-in picture of white square in (a).

Fig. 5.
Fig. 5.

Hyeperlens imaging results. (a) SEM image of 130nm line pair object on Cr film. Dark region is the hyperlens and the bright region is the flat surface. (b) Image captured by optical microscope through hyperlensing shows 130nm gap is clearly resolved. (c) Left: SEM image of tilted line pair object with indicated gap sizes. Middle: Image captured by optical microscope through hyperlensing. Right: Intensity profiles of the three indicated cross sections showing resolved 125nm gap (top).

Metrics