Abstract

In this paper, we propose a novel method for measuring the coma aberrations of lithographic projection optics based on relative image displacements at multiple illumination settings. The measurement accuracy of coma can be improved because the phase-shifting gratings are more sensitive to the aberrations than the binary gratings used in the TAMIS technique, and the impact of distortion on displacements of aerial image can be eliminated when the relative image displacements are measured. The PROLITH simulation results show that, the measurement accuracy of coma increases by more than 25% under conventional illumination, and the measurement accuracy of primary coma increases by more than 20% under annular illumination, compared with the TAMIS technique.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. F. Wang, X. Wang and M. Ma, "Measurement technique for in situ characterizing aberrations of projection optics in lithographic tools," Appl. Opt. 45, 6086-6093 (2006).
    [PubMed]
  2. M. Ma, X. Wang and F. Wang, "Aberration measurement of projection optics in lithographic tools based on two-beam interference theory," Appl. Opt. 45, 8200-8208 (2006).
    [CrossRef] [PubMed]
  3. P. Graeupner, R. Garreis, A. Goehnermeiter, T. Heil, M. Lowisch and D. Flagello, "Impact of wavefront errors on low k1 processes at extreme high NA," Proc. SPIE 5040, 119-130 (2003).
    [CrossRef]
  4. D. G. Flagello, J. Mulkens and C. Wagner, "Optical lithography into the millennium: sensitivity to aberrations, vibration and polarization," Proc. SPIE 4000, 172-183 (2000).
    [CrossRef]
  5. J. J. Chen, C. M. Huang, F. J. Shiu, C. S. Kuo, S. C. Fu, C. T. Ho, C. Wang and J. H. Tsai, "The influence of coma effect on scanner overlay," Proc. SPIE 4689, 280-285 (2002).
    [CrossRef]
  6. J. Sung, M. Pitchumani, and E. G. Johnson, "Aberration measurement of photolithographic lenses by use of hybrid diffractive photomasks," Appl. Opt. 42, 1987-1995 (2003).
    [CrossRef] [PubMed]
  7. T. Saito, H. Watanabe and Y. Okuda, "Evaluation of coma aberration in projection lens by various measurements," Proc. SPIE 3334, 297-308 (1998).
    [CrossRef]
  8. F. Wang, X. Wang, M. Ma, D. Zhang, W. Shi and J. Hu, "Aberration measurement of projection optics in lithographic tools by use of an alternating phase-shifting mask," Appl. Opt. 45, 281-287 (2006).
    [CrossRef] [PubMed]
  9. H. Nomura and T. Sato, "Techniques for measuring aberrations in lenses used in photolithography with printed patterns," Appl. Opt. 38, 2800-2807 (1999).
    [CrossRef]
  10. H. Nomura, K. Tawarayama and T. Kohno, "Aberration measurement from specific photolithographic images: a different approach," Appl. Opt. 39, 1136-1147 (2000).
    [CrossRef]
  11. J. P. Krik, G. Kunkel and A. K. Wong, "Aberration measurement using in situ two-beam interferometry," Proc. SPIE 4346, 8-14 (2001).
    [CrossRef]
  12. C. M. Garza, W. Conley, B. Roman, M. Schippers, J. Foster, J. Baselmans, K. Cummings and D. Flagello, "Ring test aberration determination & device lithography correlation" Proc. SPIE 4346, 36-44 (2001).
    [CrossRef]
  13. N. R. Farrar, A. L. Smith, D. Busath and D. Taitano, "In-situ measurement of lens aberrations," Proc. SPIE 4000, 18-29 (2000).
    [CrossRef]
  14. H. van der Laan, M. Dierichs, H. van Greevenbroek, E. McCoo, F. Stoffels, R. Pongers and R. Willekers, "Aerial image measurement methods for fast aberration set-up and illumination pupil verification," Proc. SPIE 4346, 394-407 (2001).
    [CrossRef]
  15. H. van der Laan and M. H. Moers, "Method of measuring aberration in an optical imaging system," U.S. patent 6,646,729 (11 November 2003).
  16. F. Wang, X. Wang, M. Ma, D. Zhang, W. Shi and J. Hu, "Coma measurement using a PSM and transmission image sensor," Optik 117, 21-25 (2006).
    [CrossRef]
  17. M. Born and E. Wolf, Principles of Optics, 7th edition, (Pergamon, 1999), Chap. 9.

2006

2003

J. Sung, M. Pitchumani, and E. G. Johnson, "Aberration measurement of photolithographic lenses by use of hybrid diffractive photomasks," Appl. Opt. 42, 1987-1995 (2003).
[CrossRef] [PubMed]

P. Graeupner, R. Garreis, A. Goehnermeiter, T. Heil, M. Lowisch and D. Flagello, "Impact of wavefront errors on low k1 processes at extreme high NA," Proc. SPIE 5040, 119-130 (2003).
[CrossRef]

2002

J. J. Chen, C. M. Huang, F. J. Shiu, C. S. Kuo, S. C. Fu, C. T. Ho, C. Wang and J. H. Tsai, "The influence of coma effect on scanner overlay," Proc. SPIE 4689, 280-285 (2002).
[CrossRef]

2001

J. P. Krik, G. Kunkel and A. K. Wong, "Aberration measurement using in situ two-beam interferometry," Proc. SPIE 4346, 8-14 (2001).
[CrossRef]

C. M. Garza, W. Conley, B. Roman, M. Schippers, J. Foster, J. Baselmans, K. Cummings and D. Flagello, "Ring test aberration determination & device lithography correlation" Proc. SPIE 4346, 36-44 (2001).
[CrossRef]

H. van der Laan, M. Dierichs, H. van Greevenbroek, E. McCoo, F. Stoffels, R. Pongers and R. Willekers, "Aerial image measurement methods for fast aberration set-up and illumination pupil verification," Proc. SPIE 4346, 394-407 (2001).
[CrossRef]

2000

H. Nomura, K. Tawarayama and T. Kohno, "Aberration measurement from specific photolithographic images: a different approach," Appl. Opt. 39, 1136-1147 (2000).
[CrossRef]

N. R. Farrar, A. L. Smith, D. Busath and D. Taitano, "In-situ measurement of lens aberrations," Proc. SPIE 4000, 18-29 (2000).
[CrossRef]

D. G. Flagello, J. Mulkens and C. Wagner, "Optical lithography into the millennium: sensitivity to aberrations, vibration and polarization," Proc. SPIE 4000, 172-183 (2000).
[CrossRef]

1999

1998

T. Saito, H. Watanabe and Y. Okuda, "Evaluation of coma aberration in projection lens by various measurements," Proc. SPIE 3334, 297-308 (1998).
[CrossRef]

Appl. Opt.

Optik

F. Wang, X. Wang, M. Ma, D. Zhang, W. Shi and J. Hu, "Coma measurement using a PSM and transmission image sensor," Optik 117, 21-25 (2006).
[CrossRef]

Proc. SPIE

P. Graeupner, R. Garreis, A. Goehnermeiter, T. Heil, M. Lowisch and D. Flagello, "Impact of wavefront errors on low k1 processes at extreme high NA," Proc. SPIE 5040, 119-130 (2003).
[CrossRef]

D. G. Flagello, J. Mulkens and C. Wagner, "Optical lithography into the millennium: sensitivity to aberrations, vibration and polarization," Proc. SPIE 4000, 172-183 (2000).
[CrossRef]

J. J. Chen, C. M. Huang, F. J. Shiu, C. S. Kuo, S. C. Fu, C. T. Ho, C. Wang and J. H. Tsai, "The influence of coma effect on scanner overlay," Proc. SPIE 4689, 280-285 (2002).
[CrossRef]

T. Saito, H. Watanabe and Y. Okuda, "Evaluation of coma aberration in projection lens by various measurements," Proc. SPIE 3334, 297-308 (1998).
[CrossRef]

J. P. Krik, G. Kunkel and A. K. Wong, "Aberration measurement using in situ two-beam interferometry," Proc. SPIE 4346, 8-14 (2001).
[CrossRef]

C. M. Garza, W. Conley, B. Roman, M. Schippers, J. Foster, J. Baselmans, K. Cummings and D. Flagello, "Ring test aberration determination & device lithography correlation" Proc. SPIE 4346, 36-44 (2001).
[CrossRef]

N. R. Farrar, A. L. Smith, D. Busath and D. Taitano, "In-situ measurement of lens aberrations," Proc. SPIE 4000, 18-29 (2000).
[CrossRef]

H. van der Laan, M. Dierichs, H. van Greevenbroek, E. McCoo, F. Stoffels, R. Pongers and R. Willekers, "Aerial image measurement methods for fast aberration set-up and illumination pupil verification," Proc. SPIE 4346, 394-407 (2001).
[CrossRef]

Other

H. van der Laan and M. H. Moers, "Method of measuring aberration in an optical imaging system," U.S. patent 6,646,729 (11 November 2003).

M. Born and E. Wolf, Principles of Optics, 7th edition, (Pergamon, 1999), Chap. 9.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

Sketch map of the novel mark

Fig. 2.
Fig. 2.

Sensitivities of Z7 versus NA and partial coherence. (a) The present technique, conventional illumination. (b) The present technique, annular illumination. (c) The TAMIS technique, conventional illumination. (d) The TAMIS technique, annular illumination.

Fig. 3.
Fig. 3.

Sensitivities of Z14 versus NA and partial coherence. (a) The present technique, conventional illumination. (b) The present technique, annular illumination. (c) The TAMIS technique, conventional illumination. (d) The TAMIS technique, annular illumination.

Tables (2)

Tables Icon

Table 1. Simulation Results of the Sensitivities of Z7 and the measurement accuracy

Tables Icon

Table 2. Simulation Results of the Sensitivities of Z14 and the measurement accuracy

Equations (19)

Equations on this page are rendered with MathJax. Learn more.

t ( x ) = n = + δ ( x 2 n p ) * [ rect ( x + p 2 p 2 ) rect ( x p 2 p 2 ) ] , n Z ,
U ( f x ) = j 2 n = + δ ( f x n 2 p ) sin c ( p f x 2 ) sin ( π p f x ) , n Z ,
t ( x ) = n = + δ ( x n p ) * rect ( x p 2 ) , n Z .
U ( f x ) = 1 2 n = + δ ( f x n p ) sin c ( p f x 2 ) , n Z .
W ( ρ , θ ) = n = 1 Z n · R n ( ρ , θ ) , n Z
= Z 1 + Z 2 ρ cos θ + Z 3 ρ sin θ + Z 4 ( 2 ρ 2 1 ) + Z 5 ρ 2 cos 2 θ +
Z 6 ρ 2 sin 2 θ + Z 7 ( 3 ρ 2 2 ) + ρ cos θ + Z 8 ( 3 ρ 2 2 ) ρ sin θ + +
Z 14 ( 10 ρ 4 12 ρ 2 + 3 ) ρ cos θ + Z 15 ( 10 ρ 4 12 ρ 2 + 3 ) ρ sin θ +
W X ( ρ ) = Z 2 ρ + Z 7 ( 3 ρ 3 2 ρ ) + Z 14 ( 10 ρ 5 12 ρ 3 + 3 ρ ) ,
W Y ( ρ ) = Z 3 ρ + Z 8 ( 3 ρ 3 2 ρ ) + Z 15 ( 10 ρ 5 12 ρ 3 + 3 ρ ) .
Δ X = Δ X A Δ X B ,
Δ Y = Δ Y C Δ Y D ,
Δ X Z 7 3 ρ 3 + Z 14 ( 10 ρ 5 12 ρ 3 ) ,
Δ Y Z 8 3 ρ 3 + Z 15 ( 10 ρ 5 12 ρ 3 ) .
Δ X ( N A , σ ) = S 1 ( N A , σ ) Z 7 + S 2 ( N A , σ ) Z 14 ,
S 1 ( N A , σ ) = Δ X ( N A , σ ) Z 7 ,
S 2 ( N A , σ ) = Δ X ( N A , σ ) Z 14 .
[ Δ X ( N A 1 , σ 1 ) Δ X ( N A 2 , σ 2 ) ] = [ Δ X ( N A 1 , σ 1 ) Z 7 Δ X ( N A 1 , σ 1 ) Z 14 Δ X ( N A 2 , σ 2 ) Z 7 Δ X ( N A 2 , σ 2 ) Z 14 ] [ Z 7 Z 14 ] .
M A O A S max S min ,

Metrics