Abstract

Ultra fast non-linear processes are used to achieve an advance of 2 ps for a 600 fs pulse propagating through two SOAs in series. This corresponding 3.3-pulse advance is tuned continuously by changing the current applied to the devices. We propose an experimental scheme that uses a single SOA in a loop to emulate the propagation of pulse through multiple cascaded SOAs.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. C. J. Chang-Hasnain, P. C. Ku, J. Kim, and S. L. Chuang, "Variable optical buffer using slow light in semiconductor nanostructures," Proc. IEEE 91, 1884-1897 (2003).
    [CrossRef]
  2. R. W.  Boyd, D. J.  Gauthier, and A. L.  Gaeta, "Applications of slow-light in telecommunications," Opt. Photonics News 17, 18-23 (2006).
  3. Y. Okawachi, M. A. Foster, J. E. Sharping, and A. L. Gaeta, Q. Xu and M. Lipson, "All-optical slow light on a photonic chip," Opt. Express 14, 2317-2322 (2006).
    [CrossRef] [PubMed]
  4. Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, "Tunable all-optical delays via brillouin slow light an optical fiber," Phys. Rev. Lett. 94, 153902 (2005).
    [CrossRef] [PubMed]
  5. A. E. Willner, L. Zhang, T. Luo, C. Yu, W. Zhang and Y. Wang, "Data bit distortion induced by slow light in optical communication systems," Proc. SPIE 6130, 61300T-1 (2006).
  6. D. Dahan and G. Eisenstein, "Tunable all optical delay via slow and fast light propagation in a Raman assisted fiber optical parametric amplifier: a route to all optical buffering," Opt. Express 13, 6234-6249 (2005).
    [CrossRef] [PubMed]
  7. S. Sarkar, Y. Guo, and H. Wang, "Tunable optical delay via carrier induced exciton dephasing in semiconductor quantum wells," Opt. Express 14, 2845-2850 (2006).
    [CrossRef] [PubMed]
  8. X. Zhao, P. Palinginis, B. Pesala, C. J. Chang-Hasnain, and P. Hemmer, "Tunable ultraslow light in vertical-cavity surface-emitting laser amplifier," Opt. Express 13, 7899-7904 (2005).
    [CrossRef] [PubMed]
  9. H. Su and S. Chuang, "Room temperature slow and fast light in quantum-dot semiconductor optical amplifiers," Appl. Phys. Lett. 18, 061102 (2006).
  10. P. Palinginis, F. Sedgwick, S. Crankshaw, M. Moewe, C. J. Chang-Hasnain, "Room temperature slow light in a quantum-well waveguide via coherent population oscillation," Opt. Express 13, 9909 - 9915 (2005).
    [CrossRef] [PubMed]
  11. Bala Pesala, Zhangyuan Chen, Alexander V. Uskov and Connie Chang-Hasnain, "Experimental demonstration of slow and superluminal light in semiconductor optical amplifiers," Opt. Express 14, 12968-12975 (2006).
    [CrossRef] [PubMed]
  12. M. van der Poel, J. Mørk, and J. M. Hvam, "Controllable delay of ultrashort pulses in a quantum dot optical amplifier," Opt. Express 13, 8032-8037 (2005).
    [CrossRef] [PubMed]
  13. F. G. Sedgwick, B. Pesala, J.-Y. Lin, W. S. Ko, X. Zhao, and C. J. Chang-Hasnain, "THz-bandwidth tunable slow light in semiconductor optical amplifiers," Opt. Express 15, 747-753, (2007).
    [CrossRef] [PubMed]
  14. A. V. Uskov, F. G. Sedgwick, B. Pesala, and C. J. Chang-Hasnain, "Ultrafast Nonlinear Group Index and Fast Light in SOA," Submitted toOptics Letters.
  15. G. P. Agrawal and O. N. Anders, "Self -Phase modulation and Spectral broadening of Optical pulses in semiconductor laser amplifiers," IEEE J. Quantum Electron 25,2297-2306 (1989).
    [CrossRef]
  16. B. Pesala, F. G. Sedgwick, A. V. Uskov and C. J. Chang-Hasnain, "Polarization dependence of THz bandwidth fast light in semiconductor optical amplifiers," Nano-Optoelectronics Workshop, 2007, i-NOW 07, International, 114-115 (2007).

2007 (1)

2006 (6)

Bala Pesala, Zhangyuan Chen, Alexander V. Uskov and Connie Chang-Hasnain, "Experimental demonstration of slow and superluminal light in semiconductor optical amplifiers," Opt. Express 14, 12968-12975 (2006).
[CrossRef] [PubMed]

R. W.  Boyd, D. J.  Gauthier, and A. L.  Gaeta, "Applications of slow-light in telecommunications," Opt. Photonics News 17, 18-23 (2006).

Y. Okawachi, M. A. Foster, J. E. Sharping, and A. L. Gaeta, Q. Xu and M. Lipson, "All-optical slow light on a photonic chip," Opt. Express 14, 2317-2322 (2006).
[CrossRef] [PubMed]

A. E. Willner, L. Zhang, T. Luo, C. Yu, W. Zhang and Y. Wang, "Data bit distortion induced by slow light in optical communication systems," Proc. SPIE 6130, 61300T-1 (2006).

S. Sarkar, Y. Guo, and H. Wang, "Tunable optical delay via carrier induced exciton dephasing in semiconductor quantum wells," Opt. Express 14, 2845-2850 (2006).
[CrossRef] [PubMed]

H. Su and S. Chuang, "Room temperature slow and fast light in quantum-dot semiconductor optical amplifiers," Appl. Phys. Lett. 18, 061102 (2006).

2005 (5)

2003 (1)

C. J. Chang-Hasnain, P. C. Ku, J. Kim, and S. L. Chuang, "Variable optical buffer using slow light in semiconductor nanostructures," Proc. IEEE 91, 1884-1897 (2003).
[CrossRef]

1989 (1)

G. P. Agrawal and O. N. Anders, "Self -Phase modulation and Spectral broadening of Optical pulses in semiconductor laser amplifiers," IEEE J. Quantum Electron 25,2297-2306 (1989).
[CrossRef]

Appl. Phys. Lett. (1)

H. Su and S. Chuang, "Room temperature slow and fast light in quantum-dot semiconductor optical amplifiers," Appl. Phys. Lett. 18, 061102 (2006).

IEEE J. Quantum Electron (1)

G. P. Agrawal and O. N. Anders, "Self -Phase modulation and Spectral broadening of Optical pulses in semiconductor laser amplifiers," IEEE J. Quantum Electron 25,2297-2306 (1989).
[CrossRef]

Opt. Express (8)

D. Dahan and G. Eisenstein, "Tunable all optical delay via slow and fast light propagation in a Raman assisted fiber optical parametric amplifier: a route to all optical buffering," Opt. Express 13, 6234-6249 (2005).
[CrossRef] [PubMed]

S. Sarkar, Y. Guo, and H. Wang, "Tunable optical delay via carrier induced exciton dephasing in semiconductor quantum wells," Opt. Express 14, 2845-2850 (2006).
[CrossRef] [PubMed]

X. Zhao, P. Palinginis, B. Pesala, C. J. Chang-Hasnain, and P. Hemmer, "Tunable ultraslow light in vertical-cavity surface-emitting laser amplifier," Opt. Express 13, 7899-7904 (2005).
[CrossRef] [PubMed]

P. Palinginis, F. Sedgwick, S. Crankshaw, M. Moewe, C. J. Chang-Hasnain, "Room temperature slow light in a quantum-well waveguide via coherent population oscillation," Opt. Express 13, 9909 - 9915 (2005).
[CrossRef] [PubMed]

Bala Pesala, Zhangyuan Chen, Alexander V. Uskov and Connie Chang-Hasnain, "Experimental demonstration of slow and superluminal light in semiconductor optical amplifiers," Opt. Express 14, 12968-12975 (2006).
[CrossRef] [PubMed]

M. van der Poel, J. Mørk, and J. M. Hvam, "Controllable delay of ultrashort pulses in a quantum dot optical amplifier," Opt. Express 13, 8032-8037 (2005).
[CrossRef] [PubMed]

F. G. Sedgwick, B. Pesala, J.-Y. Lin, W. S. Ko, X. Zhao, and C. J. Chang-Hasnain, "THz-bandwidth tunable slow light in semiconductor optical amplifiers," Opt. Express 15, 747-753, (2007).
[CrossRef] [PubMed]

Y. Okawachi, M. A. Foster, J. E. Sharping, and A. L. Gaeta, Q. Xu and M. Lipson, "All-optical slow light on a photonic chip," Opt. Express 14, 2317-2322 (2006).
[CrossRef] [PubMed]

Opt. Photonics News (1)

R. W.  Boyd, D. J.  Gauthier, and A. L.  Gaeta, "Applications of slow-light in telecommunications," Opt. Photonics News 17, 18-23 (2006).

Phys. Rev. Lett. (1)

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, "Tunable all-optical delays via brillouin slow light an optical fiber," Phys. Rev. Lett. 94, 153902 (2005).
[CrossRef] [PubMed]

Proc. IEEE (1)

C. J. Chang-Hasnain, P. C. Ku, J. Kim, and S. L. Chuang, "Variable optical buffer using slow light in semiconductor nanostructures," Proc. IEEE 91, 1884-1897 (2003).
[CrossRef]

Proc. SPIE (1)

A. E. Willner, L. Zhang, T. Luo, C. Yu, W. Zhang and Y. Wang, "Data bit distortion induced by slow light in optical communication systems," Proc. SPIE 6130, 61300T-1 (2006).

Ultrafast Nonlinear Group Index and Fast Light in SOA (1)

A. V. Uskov, F. G. Sedgwick, B. Pesala, and C. J. Chang-Hasnain, "Ultrafast Nonlinear Group Index and Fast Light in SOA," Submitted toOptics Letters.

Other (1)

B. Pesala, F. G. Sedgwick, A. V. Uskov and C. J. Chang-Hasnain, "Polarization dependence of THz bandwidth fast light in semiconductor optical amplifiers," Nano-Optoelectronics Workshop, 2007, i-NOW 07, International, 114-115 (2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Experimental set-up to realize fast light of 600 fs pulses in a SOA. The output of fiber laser is split into two branches. The signal branch goes through two concatenated SOAs and experiences fast light. The advance of the pulse is measured by performing cross correlation measurements using the reference.

Fig. 2.
Fig. 2.

(a) Auto correlation traces at the input and output of the amplifiers. The pulse broadening is mainly due to the dispersion in fibers.

Fig. 2.
Fig. 2.

(b) Normalized cross correlation traces showing the pulse advance after it propagates through two SOAs. The numbers indicated are the currents applied to each of the amplifiers. A time shift of 2 ps over the entire tuning range corresponds to an advance of 3.3 pulses.

Fig. 3.
Fig. 3.

Novel experimental scheme to study the effect of cascading multiple SOAs. By adjusting the time delay in the reference arm, we can selectively look at the pulses that have gone through the SOA multiple times.

Fig. 4.
Fig. 4.

(a) Electrical tuning of advance for a pulse propagating through the SOA once. A maximum advance of 0.64 ps is observed.

Fig. 4.
Fig. 4.

(b) Electrical tuning of advance for a pulse propagating through the SOA twice. Observed advance of 1.17 ps is roughly twice that of a single pass pulse.

Metrics