Abstract

Ultra fast non-linear processes are used to achieve an advance of 2 ps for a 600 fs pulse propagating through two SOAs in series. This corresponding 3.3-pulse advance is tuned continuously by changing the current applied to the devices. We propose an experimental scheme that uses a single SOA in a loop to emulate the propagation of pulse through multiple cascaded SOAs.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. J. Chang-Hasnain, P. C. Ku, J. Kim, and S. L. Chuang, “Variable optical buffer using slow light in semiconductor nanostructures,” Proc. of IEEE 91, 1884–1897 (2003).
    [CrossRef]
  2. R. W. Boyd, D. J. Gauthier, and A. L. Gaeta, “Applications of slow-light in telecommunications,” Opt. Photon. News, 19–23 (2006).
  3. Y. Okawachi, M. A. Foster, J. E. Sharping, A. L. Gaeta, Q. Xu, and M. Lipson, “All-optical slow light on a photonic chip,” Opt. Express 14, 2317–2322 (2006).
    [CrossRef] [PubMed]
  4. Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via brillouin slow light an optical fiber,” Phys. Rev. Lett. 94, 153902 (2005).
    [CrossRef] [PubMed]
  5. A. E. Willner, L. Zhang, T. Luo, C. Yu, W. Zhang, and Y. Wang, “Data bit distortion induced by slow light in optical communication systems,” Proc. of SPIE,  6130, 61300T-1 (2006).
  6. D. Dahan and G. Eisenstein, “Tunable all optical delay via slow and fast light propagation in a Raman assisted fiber optical parametric amplifier: a route to all optical buffering,” Opt. Express 13, 6234–6249 (2005).
    [CrossRef] [PubMed]
  7. Susanta Sarkar, Yan Guo, and Hailin Wang, “Tunable optical delay via carrier induced exciton dephasing in semiconductor quantum wells,” Opt. Express 14, 2845–2850 (2006).
    [CrossRef] [PubMed]
  8. X. Zhao, P. Palinginis, B. Pesala, C. J. Chang-Hasnain, and P. Hemmer, “Tunable ultraslow light in vertical-cavity surface-emitting laser amplifier,” Opt. Express 13, 7899–7904 (2005).
    [CrossRef] [PubMed]
  9. H. Su and S. . Chuang, “Room temperature slow and fast light in quantum-dot semiconductor optical amplifiers,” APL 18, 061102 (2006).
  10. P. Palinginis, F. Sedgwick, S. Crankshaw, M. Moewe, and C. J. Chang-Hasnain, “Room temperature slow light in a quantum-well waveguide via coherent population oscillation,” Opt. Express 13, 9909–9915 (2005).
    [CrossRef] [PubMed]
  11. Bala Pesala, Zhangyuan Chen, Alexander V. Uskov, and Connie Chang-Hasnain, “Experimental demonstration of slow and superluminal light in semiconductor optical amplifiers”, Opt. Express 14, 12968–12975 (2006).
    [CrossRef] [PubMed]
  12. M. van der Poel, J. Mørk, and J. M. Hvam, “Controllable delay of ultrashort pulses in a quantum dot optical amplifier,” Opt. Express 13, 8032–8037 (2005).
    [CrossRef] [PubMed]
  13. F. G. Sedgwick, B. Pesala, J.-Y. Lin, W. S. Ko, X. Zhao, and C. J. Chang-Hasnain, “THz-bandwidth tunable slow light in semiconductor optical amplifiers,” Opt. Express 15, 747–753, (2007).
    [CrossRef] [PubMed]
  14. A. V. Uskov, F. G. Sedgwick, B. Pesala, and C. J. Chang-Hasnain, “Ultrafast Nonlinear Group Index and Fast Light in SOA,” Submitted to Optics Letters.
  15. G. P. Agrawal and O. N. Anders, “Self-Phase modulation and Spectral broadening of Optical pulses in semiconductor laser amplifiers,” IEEE Jour. of Quan. Elec,  25, 2297–2306 (1989).
    [CrossRef]
  16. B. Pesala, F. G. Sedgwick, A. V. Uskov, and C. J. Chang-Hasnain, “Polarization dependence of THz bandwidth fast light in semiconductor optical amplifiers,” Nano-Optoelectronics Workshop, 2007, i-NOW 07, International, 114–115 (2007).

2007 (1)

2006 (6)

Bala Pesala, Zhangyuan Chen, Alexander V. Uskov, and Connie Chang-Hasnain, “Experimental demonstration of slow and superluminal light in semiconductor optical amplifiers”, Opt. Express 14, 12968–12975 (2006).
[CrossRef] [PubMed]

R. W. Boyd, D. J. Gauthier, and A. L. Gaeta, “Applications of slow-light in telecommunications,” Opt. Photon. News, 19–23 (2006).

Y. Okawachi, M. A. Foster, J. E. Sharping, A. L. Gaeta, Q. Xu, and M. Lipson, “All-optical slow light on a photonic chip,” Opt. Express 14, 2317–2322 (2006).
[CrossRef] [PubMed]

A. E. Willner, L. Zhang, T. Luo, C. Yu, W. Zhang, and Y. Wang, “Data bit distortion induced by slow light in optical communication systems,” Proc. of SPIE,  6130, 61300T-1 (2006).

Susanta Sarkar, Yan Guo, and Hailin Wang, “Tunable optical delay via carrier induced exciton dephasing in semiconductor quantum wells,” Opt. Express 14, 2845–2850 (2006).
[CrossRef] [PubMed]

H. Su and S. . Chuang, “Room temperature slow and fast light in quantum-dot semiconductor optical amplifiers,” APL 18, 061102 (2006).

2005 (5)

2003 (1)

C. J. Chang-Hasnain, P. C. Ku, J. Kim, and S. L. Chuang, “Variable optical buffer using slow light in semiconductor nanostructures,” Proc. of IEEE 91, 1884–1897 (2003).
[CrossRef]

1989 (1)

G. P. Agrawal and O. N. Anders, “Self-Phase modulation and Spectral broadening of Optical pulses in semiconductor laser amplifiers,” IEEE Jour. of Quan. Elec,  25, 2297–2306 (1989).
[CrossRef]

Agrawal, G. P.

G. P. Agrawal and O. N. Anders, “Self-Phase modulation and Spectral broadening of Optical pulses in semiconductor laser amplifiers,” IEEE Jour. of Quan. Elec,  25, 2297–2306 (1989).
[CrossRef]

Anders, O. N.

G. P. Agrawal and O. N. Anders, “Self-Phase modulation and Spectral broadening of Optical pulses in semiconductor laser amplifiers,” IEEE Jour. of Quan. Elec,  25, 2297–2306 (1989).
[CrossRef]

Bigelow, M. S.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via brillouin slow light an optical fiber,” Phys. Rev. Lett. 94, 153902 (2005).
[CrossRef] [PubMed]

Boyd, R. W.

R. W. Boyd, D. J. Gauthier, and A. L. Gaeta, “Applications of slow-light in telecommunications,” Opt. Photon. News, 19–23 (2006).

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via brillouin slow light an optical fiber,” Phys. Rev. Lett. 94, 153902 (2005).
[CrossRef] [PubMed]

Chang-Hasnain, C. J.

F. G. Sedgwick, B. Pesala, J.-Y. Lin, W. S. Ko, X. Zhao, and C. J. Chang-Hasnain, “THz-bandwidth tunable slow light in semiconductor optical amplifiers,” Opt. Express 15, 747–753, (2007).
[CrossRef] [PubMed]

X. Zhao, P. Palinginis, B. Pesala, C. J. Chang-Hasnain, and P. Hemmer, “Tunable ultraslow light in vertical-cavity surface-emitting laser amplifier,” Opt. Express 13, 7899–7904 (2005).
[CrossRef] [PubMed]

P. Palinginis, F. Sedgwick, S. Crankshaw, M. Moewe, and C. J. Chang-Hasnain, “Room temperature slow light in a quantum-well waveguide via coherent population oscillation,” Opt. Express 13, 9909–9915 (2005).
[CrossRef] [PubMed]

C. J. Chang-Hasnain, P. C. Ku, J. Kim, and S. L. Chuang, “Variable optical buffer using slow light in semiconductor nanostructures,” Proc. of IEEE 91, 1884–1897 (2003).
[CrossRef]

B. Pesala, F. G. Sedgwick, A. V. Uskov, and C. J. Chang-Hasnain, “Polarization dependence of THz bandwidth fast light in semiconductor optical amplifiers,” Nano-Optoelectronics Workshop, 2007, i-NOW 07, International, 114–115 (2007).

A. V. Uskov, F. G. Sedgwick, B. Pesala, and C. J. Chang-Hasnain, “Ultrafast Nonlinear Group Index and Fast Light in SOA,” Submitted to Optics Letters.

Chang-Hasnain, Connie

Chen, Zhangyuan

Chuang, S. .

H. Su and S. . Chuang, “Room temperature slow and fast light in quantum-dot semiconductor optical amplifiers,” APL 18, 061102 (2006).

Chuang, S. L.

C. J. Chang-Hasnain, P. C. Ku, J. Kim, and S. L. Chuang, “Variable optical buffer using slow light in semiconductor nanostructures,” Proc. of IEEE 91, 1884–1897 (2003).
[CrossRef]

Crankshaw, S.

Dahan, D.

Eisenstein, G.

Foster, M. A.

Gaeta, A. L.

Y. Okawachi, M. A. Foster, J. E. Sharping, A. L. Gaeta, Q. Xu, and M. Lipson, “All-optical slow light on a photonic chip,” Opt. Express 14, 2317–2322 (2006).
[CrossRef] [PubMed]

R. W. Boyd, D. J. Gauthier, and A. L. Gaeta, “Applications of slow-light in telecommunications,” Opt. Photon. News, 19–23 (2006).

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via brillouin slow light an optical fiber,” Phys. Rev. Lett. 94, 153902 (2005).
[CrossRef] [PubMed]

Gauthier, D. J.

R. W. Boyd, D. J. Gauthier, and A. L. Gaeta, “Applications of slow-light in telecommunications,” Opt. Photon. News, 19–23 (2006).

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via brillouin slow light an optical fiber,” Phys. Rev. Lett. 94, 153902 (2005).
[CrossRef] [PubMed]

Guo, Yan

Hemmer, P.

Hvam, J. M.

Kim, J.

C. J. Chang-Hasnain, P. C. Ku, J. Kim, and S. L. Chuang, “Variable optical buffer using slow light in semiconductor nanostructures,” Proc. of IEEE 91, 1884–1897 (2003).
[CrossRef]

Ko, W. S.

Ku, P. C.

C. J. Chang-Hasnain, P. C. Ku, J. Kim, and S. L. Chuang, “Variable optical buffer using slow light in semiconductor nanostructures,” Proc. of IEEE 91, 1884–1897 (2003).
[CrossRef]

Lin, J.-Y.

Lipson, M.

Luo, T.

A. E. Willner, L. Zhang, T. Luo, C. Yu, W. Zhang, and Y. Wang, “Data bit distortion induced by slow light in optical communication systems,” Proc. of SPIE,  6130, 61300T-1 (2006).

Moewe, M.

Mørk, J.

Okawachi, Y.

Y. Okawachi, M. A. Foster, J. E. Sharping, A. L. Gaeta, Q. Xu, and M. Lipson, “All-optical slow light on a photonic chip,” Opt. Express 14, 2317–2322 (2006).
[CrossRef] [PubMed]

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via brillouin slow light an optical fiber,” Phys. Rev. Lett. 94, 153902 (2005).
[CrossRef] [PubMed]

Palinginis, P.

Pesala, B.

F. G. Sedgwick, B. Pesala, J.-Y. Lin, W. S. Ko, X. Zhao, and C. J. Chang-Hasnain, “THz-bandwidth tunable slow light in semiconductor optical amplifiers,” Opt. Express 15, 747–753, (2007).
[CrossRef] [PubMed]

X. Zhao, P. Palinginis, B. Pesala, C. J. Chang-Hasnain, and P. Hemmer, “Tunable ultraslow light in vertical-cavity surface-emitting laser amplifier,” Opt. Express 13, 7899–7904 (2005).
[CrossRef] [PubMed]

A. V. Uskov, F. G. Sedgwick, B. Pesala, and C. J. Chang-Hasnain, “Ultrafast Nonlinear Group Index and Fast Light in SOA,” Submitted to Optics Letters.

B. Pesala, F. G. Sedgwick, A. V. Uskov, and C. J. Chang-Hasnain, “Polarization dependence of THz bandwidth fast light in semiconductor optical amplifiers,” Nano-Optoelectronics Workshop, 2007, i-NOW 07, International, 114–115 (2007).

Pesala, Bala

Sarkar, Susanta

Schweinsberg, A.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via brillouin slow light an optical fiber,” Phys. Rev. Lett. 94, 153902 (2005).
[CrossRef] [PubMed]

Sedgwick, F.

Sedgwick, F. G.

F. G. Sedgwick, B. Pesala, J.-Y. Lin, W. S. Ko, X. Zhao, and C. J. Chang-Hasnain, “THz-bandwidth tunable slow light in semiconductor optical amplifiers,” Opt. Express 15, 747–753, (2007).
[CrossRef] [PubMed]

B. Pesala, F. G. Sedgwick, A. V. Uskov, and C. J. Chang-Hasnain, “Polarization dependence of THz bandwidth fast light in semiconductor optical amplifiers,” Nano-Optoelectronics Workshop, 2007, i-NOW 07, International, 114–115 (2007).

A. V. Uskov, F. G. Sedgwick, B. Pesala, and C. J. Chang-Hasnain, “Ultrafast Nonlinear Group Index and Fast Light in SOA,” Submitted to Optics Letters.

Sharping, J. E.

Y. Okawachi, M. A. Foster, J. E. Sharping, A. L. Gaeta, Q. Xu, and M. Lipson, “All-optical slow light on a photonic chip,” Opt. Express 14, 2317–2322 (2006).
[CrossRef] [PubMed]

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via brillouin slow light an optical fiber,” Phys. Rev. Lett. 94, 153902 (2005).
[CrossRef] [PubMed]

Su, H.

H. Su and S. . Chuang, “Room temperature slow and fast light in quantum-dot semiconductor optical amplifiers,” APL 18, 061102 (2006).

Uskov, A. V.

A. V. Uskov, F. G. Sedgwick, B. Pesala, and C. J. Chang-Hasnain, “Ultrafast Nonlinear Group Index and Fast Light in SOA,” Submitted to Optics Letters.

B. Pesala, F. G. Sedgwick, A. V. Uskov, and C. J. Chang-Hasnain, “Polarization dependence of THz bandwidth fast light in semiconductor optical amplifiers,” Nano-Optoelectronics Workshop, 2007, i-NOW 07, International, 114–115 (2007).

Uskov, Alexander V.

van der Poel, M.

Wang, Hailin

Wang, Y.

A. E. Willner, L. Zhang, T. Luo, C. Yu, W. Zhang, and Y. Wang, “Data bit distortion induced by slow light in optical communication systems,” Proc. of SPIE,  6130, 61300T-1 (2006).

Willner, A. E.

A. E. Willner, L. Zhang, T. Luo, C. Yu, W. Zhang, and Y. Wang, “Data bit distortion induced by slow light in optical communication systems,” Proc. of SPIE,  6130, 61300T-1 (2006).

Xu, Q.

Yu, C.

A. E. Willner, L. Zhang, T. Luo, C. Yu, W. Zhang, and Y. Wang, “Data bit distortion induced by slow light in optical communication systems,” Proc. of SPIE,  6130, 61300T-1 (2006).

Zhang, L.

A. E. Willner, L. Zhang, T. Luo, C. Yu, W. Zhang, and Y. Wang, “Data bit distortion induced by slow light in optical communication systems,” Proc. of SPIE,  6130, 61300T-1 (2006).

Zhang, W.

A. E. Willner, L. Zhang, T. Luo, C. Yu, W. Zhang, and Y. Wang, “Data bit distortion induced by slow light in optical communication systems,” Proc. of SPIE,  6130, 61300T-1 (2006).

Zhao, X.

Zhu, Z.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via brillouin slow light an optical fiber,” Phys. Rev. Lett. 94, 153902 (2005).
[CrossRef] [PubMed]

APL (1)

H. Su and S. . Chuang, “Room temperature slow and fast light in quantum-dot semiconductor optical amplifiers,” APL 18, 061102 (2006).

IEEE Jour. of Quan. Elec (1)

G. P. Agrawal and O. N. Anders, “Self-Phase modulation and Spectral broadening of Optical pulses in semiconductor laser amplifiers,” IEEE Jour. of Quan. Elec,  25, 2297–2306 (1989).
[CrossRef]

Opt. Express (8)

D. Dahan and G. Eisenstein, “Tunable all optical delay via slow and fast light propagation in a Raman assisted fiber optical parametric amplifier: a route to all optical buffering,” Opt. Express 13, 6234–6249 (2005).
[CrossRef] [PubMed]

Susanta Sarkar, Yan Guo, and Hailin Wang, “Tunable optical delay via carrier induced exciton dephasing in semiconductor quantum wells,” Opt. Express 14, 2845–2850 (2006).
[CrossRef] [PubMed]

X. Zhao, P. Palinginis, B. Pesala, C. J. Chang-Hasnain, and P. Hemmer, “Tunable ultraslow light in vertical-cavity surface-emitting laser amplifier,” Opt. Express 13, 7899–7904 (2005).
[CrossRef] [PubMed]

P. Palinginis, F. Sedgwick, S. Crankshaw, M. Moewe, and C. J. Chang-Hasnain, “Room temperature slow light in a quantum-well waveguide via coherent population oscillation,” Opt. Express 13, 9909–9915 (2005).
[CrossRef] [PubMed]

Bala Pesala, Zhangyuan Chen, Alexander V. Uskov, and Connie Chang-Hasnain, “Experimental demonstration of slow and superluminal light in semiconductor optical amplifiers”, Opt. Express 14, 12968–12975 (2006).
[CrossRef] [PubMed]

M. van der Poel, J. Mørk, and J. M. Hvam, “Controllable delay of ultrashort pulses in a quantum dot optical amplifier,” Opt. Express 13, 8032–8037 (2005).
[CrossRef] [PubMed]

F. G. Sedgwick, B. Pesala, J.-Y. Lin, W. S. Ko, X. Zhao, and C. J. Chang-Hasnain, “THz-bandwidth tunable slow light in semiconductor optical amplifiers,” Opt. Express 15, 747–753, (2007).
[CrossRef] [PubMed]

Y. Okawachi, M. A. Foster, J. E. Sharping, A. L. Gaeta, Q. Xu, and M. Lipson, “All-optical slow light on a photonic chip,” Opt. Express 14, 2317–2322 (2006).
[CrossRef] [PubMed]

Opt. Photon. News (1)

R. W. Boyd, D. J. Gauthier, and A. L. Gaeta, “Applications of slow-light in telecommunications,” Opt. Photon. News, 19–23 (2006).

Phys. Rev. Lett. (1)

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via brillouin slow light an optical fiber,” Phys. Rev. Lett. 94, 153902 (2005).
[CrossRef] [PubMed]

Proc. of IEEE (1)

C. J. Chang-Hasnain, P. C. Ku, J. Kim, and S. L. Chuang, “Variable optical buffer using slow light in semiconductor nanostructures,” Proc. of IEEE 91, 1884–1897 (2003).
[CrossRef]

Proc. of SPIE (1)

A. E. Willner, L. Zhang, T. Luo, C. Yu, W. Zhang, and Y. Wang, “Data bit distortion induced by slow light in optical communication systems,” Proc. of SPIE,  6130, 61300T-1 (2006).

Other (2)

A. V. Uskov, F. G. Sedgwick, B. Pesala, and C. J. Chang-Hasnain, “Ultrafast Nonlinear Group Index and Fast Light in SOA,” Submitted to Optics Letters.

B. Pesala, F. G. Sedgwick, A. V. Uskov, and C. J. Chang-Hasnain, “Polarization dependence of THz bandwidth fast light in semiconductor optical amplifiers,” Nano-Optoelectronics Workshop, 2007, i-NOW 07, International, 114–115 (2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Experimental set-up to realize fast light of 600 fs pulses in a SOA. The output of fiber laser is split into two branches. The signal branch goes through two concatenated SOAs and experiences fast light. The advance of the pulse is measured by performing cross correlation measurements using the reference.

Fig. 2.
Fig. 2.

(a) Auto correlation traces at the input and output of the amplifiers. The pulse broadening is mainly due to the dispersion in fibers.

Fig. 2.
Fig. 2.

(b) Normalized cross correlation traces showing the pulse advance after it propagates through two SOAs. The numbers indicated are the currents applied to each of the amplifiers. A time shift of 2 ps over the entire tuning range corresponds to an advance of 3.3 pulses.

Fig. 3.
Fig. 3.

Novel experimental scheme to study the effect of cascading multiple SOAs. By adjusting the time delay in the reference arm, we can selectively look at the pulses that have gone through the SOA multiple times.

Fig. 4.
Fig. 4.

(a) Electrical tuning of advance for a pulse propagating through the SOA once. A maximum advance of 0.64 ps is observed.

Fig. 4.
Fig. 4.

(b) Electrical tuning of advance for a pulse propagating through the SOA twice. Observed advance of 1.17 ps is roughly twice that of a single pass pulse.

Metrics