Abstract

A primary limitation of optical coherence microscopy is the lack of sufficient lateral resolution over a usable imaging volume for diagnostic applications, even with high-numerical aperture imaging optics. In this paper, we first motivate the benefit of refocusing at multiple depths in a highly scattering biological sample using optical coherence microscopy, which experimentally shows invariant 2.5 µm axial and 6.5 µm lateral resolution throughout the sample. We then present the optical system design of a hand-held probe with the advanced capability to dynamically focus with no moving parts to a depth of 2 mm in skin-equivalent tissue at 3 µm resolution throughout an 8 cubic millimeter imaging volume. The built-in dynamic focusing ability is investigated with an addressable liquid crystal lens embedded in a custom-designed optics optimized for a Ti:Sa pulsed broadband laser source of bandwidth 100nm centered at 800nm. The design was developed not only to account for refocusing into the tissue but also to minimize and compensate for the varying on-axis and off-axis optical aberrations that would be introduced throughout a 2 mm thick and 2 mm wide skin imaging volume. The MTF contrast functions and distortion plots at three different skin depths are presented.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. C. A. Puliafito, M. E. Hee, J. Schuman and J. G. Fujimoto, Optical Coherence Tomography of Ocular Disease (Thorofare: Slack Inc, 1995).
  2. J. A. Izatt, "Optical coherence microscopy in scattering media," Opt. Lett. 19, 590-5911994.
    [CrossRef] [PubMed]
  3. J. Welzel, "Optical Coherence Tomography in dermatology: a review," Skin Res. Technol. 7, 1-9 (2001).
    [CrossRef]
  4. N. D. Gladkova,  et al., "In vivo optical coherence tomography imaging of human skin: norm and pathology," Skin Res. Technol. 6, 6-16 (2000).
    [CrossRef]
  5. M. Moncrieff, "A simple classification of the resolution and depth of imaging systems for pigmented skin lesions," Melanoma Res. 12, 155-159 (2002).
    [CrossRef] [PubMed]
  6. J. M. Schmitt and G. Kumar, "Turbulent nature of refractive-index variations in biological tissue," Opt. Lett. 21, 1310-1312 (1996).
    [CrossRef] [PubMed]
  7. C. A. Akcay, P. Parrein, and J. P. Rolland, "Estimation of longitudinal resolution in optical coherence imaging," Appl. Opt. 41, 1-7 (2002).
    [CrossRef]
  8. V. Mahajan, Aberration Theory Made Simple, (SPIE Press, Bellingham, WA, 1991) pp. 30-34.
  9. C. A. Akcay, E. Clarkson, and J. P. Rolland, "Effect of source spectral shape on task-based assessment of detection and resolution in optical coherence tomography," Appl. Opt. 44, 7573-7580 (2005).
    [CrossRef] [PubMed]
  10. J. M. Schmitt, S. L. Lee, and K. M. Yung, "An optical coherence microscope with enhanced resolving power in thick tissue," Opt. Commun. 142, 203-207 (1997).
    [CrossRef]
  11. J. Izatt, Personal communication (2006).
  12. B. M. Hoeling A. Fernandez, R. Haskell, E. Huang, W. Myers, D. Petersen, S. Ungersma, R.Wang, M. Williams, and S. Fraser, "An Optical coherence microscope for three dimensional imaging for developmental biology," Opt. Express 6, 136-146 (2000).
    [CrossRef] [PubMed]
  13. F. Lexer C. K. Hitzenberger, W. Drexler, S. Molebny, H. Sattamann, M. Sticker and A. F. Fercher, "Dynamic coherent focus OCT with depth independent transversal resolution," J. Mod. Opt. 46, 541-553 (1999).
  14. B. Qi, A. P. Himmer, L. M. Gordon, X. D. Yang, L. D. Dickensheets, and I. A. Vitkin, "Dynamic focus control in high-speed optical coherence tomography based on a microelectromechanical mirror," Opt. Commun. 232, 123-128 (2004).
    [CrossRef]
  15. A. Divetia, T. Shieh, J. Zhang, Z. Chen, M. Bachman and G. Li, "Dynamically focused optical coherence tomography for endoscopic applications," Appl. Phys. Lett. 86, 103902 (2005).
    [CrossRef]
  16. W. Drexler, U. Morgner, F. S. Kartner, C. Pitris, S. A. Boppart, X. D. Li, E. P. Ippen, and J. G. Fujimoto, "In vivo ultrahigh-resolution optical coherence tomography," Opt. Lett. 24, 1221-1223 (1999).
    [CrossRef]
  17. R. Huber, M. Wojtkowski, J. G. Fujimoto, J. Y. Jiang and A. E. Cable, "Three-dimensional and C-mode OCT imaging with a compact, frequency swept laser source at 1300 nm," Opt. Express 13, 10523-38 (2005).
    [CrossRef] [PubMed]
  18. S. Murali and J. P. Rolland, "Dynamic-focusing microscope objective for optical coherence tomography," inProceedings of the International Lens Design Conference 6342, H1-H5 (2006).
  19. H. Ren and S. T. Wu, "Adaptive liquid crystal lens with large focal length tunability," Opt. Express 14, 11292-98 (2006).
    [CrossRef] [PubMed]
  20. L. G. Atkinson, S. N. Houde-Walter, D. T. Moore, D. P. Ryan, and J. M. Stagaman, "Design of a gradient-index photographic objective," Appl. Opt. 21, 993-998 (1982).
    [CrossRef] [PubMed]
  21. G. Vargas, E. K. Chan, J. K. Barton, H. G. Rylander and A. J. Welch, "Use of an agent to reduce scattering in skin,"Lasers Surg. Med. 24, 133-41 (1999).
    [CrossRef] [PubMed]

2006 (2)

S. Murali and J. P. Rolland, "Dynamic-focusing microscope objective for optical coherence tomography," inProceedings of the International Lens Design Conference 6342, H1-H5 (2006).

H. Ren and S. T. Wu, "Adaptive liquid crystal lens with large focal length tunability," Opt. Express 14, 11292-98 (2006).
[CrossRef] [PubMed]

2005 (3)

2004 (1)

B. Qi, A. P. Himmer, L. M. Gordon, X. D. Yang, L. D. Dickensheets, and I. A. Vitkin, "Dynamic focus control in high-speed optical coherence tomography based on a microelectromechanical mirror," Opt. Commun. 232, 123-128 (2004).
[CrossRef]

2002 (2)

C. A. Akcay, P. Parrein, and J. P. Rolland, "Estimation of longitudinal resolution in optical coherence imaging," Appl. Opt. 41, 1-7 (2002).
[CrossRef]

M. Moncrieff, "A simple classification of the resolution and depth of imaging systems for pigmented skin lesions," Melanoma Res. 12, 155-159 (2002).
[CrossRef] [PubMed]

2001 (1)

J. Welzel, "Optical Coherence Tomography in dermatology: a review," Skin Res. Technol. 7, 1-9 (2001).
[CrossRef]

2000 (2)

1999 (3)

F. Lexer C. K. Hitzenberger, W. Drexler, S. Molebny, H. Sattamann, M. Sticker and A. F. Fercher, "Dynamic coherent focus OCT with depth independent transversal resolution," J. Mod. Opt. 46, 541-553 (1999).

W. Drexler, U. Morgner, F. S. Kartner, C. Pitris, S. A. Boppart, X. D. Li, E. P. Ippen, and J. G. Fujimoto, "In vivo ultrahigh-resolution optical coherence tomography," Opt. Lett. 24, 1221-1223 (1999).
[CrossRef]

G. Vargas, E. K. Chan, J. K. Barton, H. G. Rylander and A. J. Welch, "Use of an agent to reduce scattering in skin,"Lasers Surg. Med. 24, 133-41 (1999).
[CrossRef] [PubMed]

1997 (1)

J. M. Schmitt, S. L. Lee, and K. M. Yung, "An optical coherence microscope with enhanced resolving power in thick tissue," Opt. Commun. 142, 203-207 (1997).
[CrossRef]

1996 (1)

1994 (1)

1982 (1)

Appl. Opt. (3)

Appl. Phys. Lett. (1)

A. Divetia, T. Shieh, J. Zhang, Z. Chen, M. Bachman and G. Li, "Dynamically focused optical coherence tomography for endoscopic applications," Appl. Phys. Lett. 86, 103902 (2005).
[CrossRef]

J. Mod. Opt. (1)

F. Lexer C. K. Hitzenberger, W. Drexler, S. Molebny, H. Sattamann, M. Sticker and A. F. Fercher, "Dynamic coherent focus OCT with depth independent transversal resolution," J. Mod. Opt. 46, 541-553 (1999).

Lasers Surg. Med. (1)

G. Vargas, E. K. Chan, J. K. Barton, H. G. Rylander and A. J. Welch, "Use of an agent to reduce scattering in skin,"Lasers Surg. Med. 24, 133-41 (1999).
[CrossRef] [PubMed]

Melanoma Res. (1)

M. Moncrieff, "A simple classification of the resolution and depth of imaging systems for pigmented skin lesions," Melanoma Res. 12, 155-159 (2002).
[CrossRef] [PubMed]

Opt. Commun. (2)

J. M. Schmitt, S. L. Lee, and K. M. Yung, "An optical coherence microscope with enhanced resolving power in thick tissue," Opt. Commun. 142, 203-207 (1997).
[CrossRef]

B. Qi, A. P. Himmer, L. M. Gordon, X. D. Yang, L. D. Dickensheets, and I. A. Vitkin, "Dynamic focus control in high-speed optical coherence tomography based on a microelectromechanical mirror," Opt. Commun. 232, 123-128 (2004).
[CrossRef]

Opt. Express (3)

Opt. Lett. (3)

Proceedings of the International Lens Design Conference (1)

S. Murali and J. P. Rolland, "Dynamic-focusing microscope objective for optical coherence tomography," inProceedings of the International Lens Design Conference 6342, H1-H5 (2006).

Skin Res. Technol. (2)

J. Welzel, "Optical Coherence Tomography in dermatology: a review," Skin Res. Technol. 7, 1-9 (2001).
[CrossRef]

N. D. Gladkova,  et al., "In vivo optical coherence tomography imaging of human skin: norm and pathology," Skin Res. Technol. 6, 6-16 (2000).
[CrossRef]

Other (3)

J. Izatt, Personal communication (2006).

V. Mahajan, Aberration Theory Made Simple, (SPIE Press, Bellingham, WA, 1991) pp. 30-34.

C. A. Puliafito, M. E. Hee, J. Schuman and J. G. Fujimoto, Optical Coherence Tomography of Ocular Disease (Thorofare: Slack Inc, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Schematic diagram of a Fourier-domain OCM set-up.

Fig. 2.
Fig. 2.

Images of an onion sample obtained by focusing (a) on the surface, (b) at 100µm and (c) at 250µm below the surface respectively. A fused image showing up to 425µm depth is shown in (d).

Fig 3.
Fig 3.

(a). Optical layout of a dynamically focusing microscope objective; (b) System performance for 4 µm resolution- MTF at the skin surface; (c) MTF at 1 mm inside skin tissue; (d) MTF at 2 mm inside skin tissue

Fig. 4.
Fig. 4.

Distortion across image height at (a) the skin surface; (b) 1 mm inside skin tissue; (c) 2 mm inside skin tissue

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

l c = 2 . ln 2 π λ ̅ 2 Δ λ = l FWHM 2
δ r = 1.22 λ ̅ N A objective
Δ n = n e n 0 = r 2 2 d f
n ( r , z ) = n 00 + n 01 z + n 02 z 2 + n 03 z 3 + n 04 z 4 + n 10 r 2 + n 20 r 4 + n 30 r 6 + n 40 r 8
n ( r ) = n 00 + n 10 r 2 + n 20 r 4 + ,

Metrics