Abstract

A liquid core waveguide as a refractometer is proposed. Microtunnels were created in standard optical fiber using tightly focused femtoscond laser inscription and chemical etching. A 1.2(h)×125(d)×500(l) µm micro-slot engraved along a fiber Bragg grating (FBG) was used to construct liquid core waveguide by filling the slot with index matching oils. The device was used to measure refractive index and sensitivity up to 10-6/pm was obtained.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. V. Bhatia and A. M. Vengsarkar, "Optical fiber long-period grating sensors," Opt. Lett. 21, 692-694 (1996).
    [CrossRef] [PubMed]
  2. K. Zhou, L. Zhang, X. Chen and I. Bennion, "Optic sensors of high refractive-index responsivity and low thermal cross sensitivity that use fiber Bragg gratings of >80° tilted structures," Opt. Lett. 31, 1193-1195 (2006).
    [CrossRef] [PubMed]
  3. C. -F. Chan, C. Chen, A. Jafari, A. Laronche, D. J. Thomson and J. Albert, "Optical fiber refractometer using narrowband cladding-mode resonance shifts," Appl. Opt. 46, 1142-1149 (2007).
    [CrossRef] [PubMed]
  4. A. Iadicicco, A. Cusano, A. Cutolo, R. Bernini, and M. Giordano, "Thinned fiber Bragg gratings as high sensitivity refractive index sensor, " IEEE Photon. Technol. Lett. 16, 1149-1151 (2004).
    [CrossRef]
  5. M. Holtz, P. K. Dasgupta, and G. Zhang, "Small-volume Raman spectroscopy with a liquid core waveguide," Anal. Chem. 71, 2934 -2938 (1999).
    [CrossRef]
  6. M. Brown, T Vestad, J Oakey, and D. W. M. Mar, "Optical waveguides via viscosity-mismatched microfluidic flows," Appl. Phys. Lett. 88, 134109 (2006).
    [CrossRef]
  7. M. C. Phan Huy, G. Laffont, V. Dewynter, P. Ferdinand, P. Roy, J. -L. Auguste, D. Pagnoux, W. Blanc, and B. Dussardier, "Three-hole microstructured optical fiber for efficient fiber Bragg grating refractometer," Opt. Lett. 32, 2390-2392 (2007)
    [CrossRef] [PubMed]
  8. F. M. Cox, A. Argyros, and M. C. J. Large, "Liquid-filled hollow core microstructured polymer optical fiber," Opt. Express 14, 4135-4140 (2006).
    [CrossRef] [PubMed]
  9. K. Davis, K. Miura, N. Sugimoto, and K. Hirao, "Writing waveguides in glass with a femtosecond laser," Opt. Lett. 21, 1729-1731 (1996).
    [CrossRef]
  10. C. B. Schaffer, A. Brodeur, J. F. García, and E. Mazur, "Micromachining bulk glass by use of femtosecond laser pulses with nanojoule energy," Opt. Lett. 26, 93-95 (2001).
    [CrossRef]
  11. C. Hnatovsky, R. S. Taylor, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, "Polarization-selective etching in femtosecond laser-assisted microfluidic channel fabrication in fused silica," Opt. Lett. 30, 1867-1869 (2005).
    [CrossRef] [PubMed]
  12. Y. Lai, K. Zhou, L. Zhang, and I Bennion, "Microchannels in conventional single-mode fibers," Opt. Lett. 31, 2559-2561 (2006).
    [CrossRef] [PubMed]
  13. C. Hensley, D. H. Broaddus, C. B. Schaffer, and A. L. Gaeta, "Photonic band-gap fiber gas cell fabricated using femtosecond micromachining," Opt. Express 15, 6690-6695 (2007).
    [CrossRef] [PubMed]
  14. A. van Brakel, C. Grivas, M. N. Petrovich, and D. J. Richardson, "Micro-channels machined in microstructured optical fibers by femtosecond laser," Opt. Express 15, 8731-8736 (2007).
    [CrossRef] [PubMed]
  15. X. Chen, K. Zhou, L. Zhang and I. Bennion, "Optical chemsensors utilizing long-period fiber gratings UV-inscribed in D-fiber with enhanced sensitivity through cladding etching," Photon. Technol. Lett. 16, 1352-1354 (2004).
    [CrossRef]

2007 (4)

2006 (4)

2005 (1)

2004 (2)

X. Chen, K. Zhou, L. Zhang and I. Bennion, "Optical chemsensors utilizing long-period fiber gratings UV-inscribed in D-fiber with enhanced sensitivity through cladding etching," Photon. Technol. Lett. 16, 1352-1354 (2004).
[CrossRef]

A. Iadicicco, A. Cusano, A. Cutolo, R. Bernini, and M. Giordano, "Thinned fiber Bragg gratings as high sensitivity refractive index sensor, " IEEE Photon. Technol. Lett. 16, 1149-1151 (2004).
[CrossRef]

2001 (1)

1999 (1)

M. Holtz, P. K. Dasgupta, and G. Zhang, "Small-volume Raman spectroscopy with a liquid core waveguide," Anal. Chem. 71, 2934 -2938 (1999).
[CrossRef]

1996 (2)

Anal. Chem. (1)

M. Holtz, P. K. Dasgupta, and G. Zhang, "Small-volume Raman spectroscopy with a liquid core waveguide," Anal. Chem. 71, 2934 -2938 (1999).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

M. Brown, T Vestad, J Oakey, and D. W. M. Mar, "Optical waveguides via viscosity-mismatched microfluidic flows," Appl. Phys. Lett. 88, 134109 (2006).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

A. Iadicicco, A. Cusano, A. Cutolo, R. Bernini, and M. Giordano, "Thinned fiber Bragg gratings as high sensitivity refractive index sensor, " IEEE Photon. Technol. Lett. 16, 1149-1151 (2004).
[CrossRef]

Opt. Express (3)

Opt. Lett. (7)

Photon. Technol. Lett. (1)

X. Chen, K. Zhou, L. Zhang and I. Bennion, "Optical chemsensors utilizing long-period fiber gratings UV-inscribed in D-fiber with enhanced sensitivity through cladding etching," Photon. Technol. Lett. 16, 1352-1354 (2004).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Geometry of a micro-slot across the optical fiber.

Fig. 2.
Fig. 2.

(a) Effective index of the slotted optical fiber against RI of the filling liquid. (b) Field distribution of the fundamental mode of the liquid core slab waveguide for different LRI (also shown in the online movie).

Fig. 3.
Fig. 3.

A through line written with the fs laser when the optical fiber is in (a) air and in (c) index matching oil. (b) The configuration using an adaptive glass slip and index matching oil

Fig. 4.
Fig. 4.

(a) Transmission loss against time as the microstructure was etched.

Fig. 5.
Fig. 5.

(a) The 1.2µm high micro-slot engraved in standard optical fiber with fs inscription and chemical etching. (b) Spectral evolution of the FBG during the fiber was etched, with top one as the initial state and the bottom one as finish state.

Fig. 6.
Fig. 6.

Reflection spectra of the micro-slot/FBG device when the RI of the oil is (a) below and (b) above that of optical fiber. Arrows in (b) locate the rightmost Bragg peak (corresponding to the fundamental mode) of the liquid core waveguide and the inset focuses on these peaks. (c) Wavelength shift and variation of the amplitude of the main Bragg peak with respect to RI of the oil. (d) Experimental and simulated wavelength shift of the liquid core FBGs. (e) Sensitivity of the device over the low RI and high RI regime.

Metrics