Abstract

We demonstrate two solid-state sources of indistinguishable single photons. High resolution laser spectroscopy and optical microscopy were combined at T=1.4 K to identify individual molecules in two independent microscopes. The Stark effect was exploited to shift the transition frequency of a given molecule and thus obtain single photon sources with perfect spectral overlap. Our experimental arrangement sets the ground for the realization of various quantum interference and information processing experiments.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. Ch. Brunel, B. Lounis, Ph. Tamarat, and M. Orrit, "Triggered Source of Single Photons based on Controlled Single Molecule Fluorescence," Phys. Rev. Lett. 83, 2722-2726 (1999).
    [CrossRef]
  2. B. Lounis and W. E. Moerner, "Single photons on demand from a single molecule at room temperature," Nature 407, 491-493 (2000).
    [CrossRef] [PubMed]
  3. P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, "A Quantum dot single-photon turnstile device," Science 290, 2282-2285 (2000).
    [CrossRef] [PubMed]
  4. C. Kurtsiefer, S. Mayer, P. Zarda, and H. Weinfurter, "Stable solid-state source of single photons," Phys. Rev. Lett. 85, 290-293 (2000).
    [CrossRef] [PubMed]
  5. A. Kuhn, M. Hennrich, and G. Rempe, "Deterministic single-photon source for distributed quantum networking," Phys. Rev. Lett. 89, 067901 (2002).
    [CrossRef] [PubMed]
  6. M. Keller, B. Lange, K. Hayasaka, W. Lange, and H. Walther, "Continuous generation of single photons with controlled waveform in an ion-trap cavity system," Nature 431, 1075-1078 (2004).
    [CrossRef] [PubMed]
  7. E. Waks, K. Inoue, C. Santori, D. Fattal, J. Vuckovic, G. S. Solomon, and Y. Yamamoto, "Secure communication: Quantum cryptography with a photon turnstile," Nature 420, 762-762 (2002).
    [CrossRef] [PubMed]
  8. R. Alleaume, F. Treussart, G. Messin, Y. Dumeige, J.-F. Roch, A. Beveratos, R. Brouri-Tualle, J.-P. Poizat, and P. Grangier, "Experimental open-air quantum key distribution with a single-photon source," New J. Phys. 6, 92 (2004).
    [CrossRef]
  9. E. Knill, R. Laflamme, and G. J. Milburn, "A scheme for efficient quantum computation with linear optics," Nature 409, 46-52 (2001).
    [CrossRef] [PubMed]
  10. P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, and G. J. Milburn, "Linear optical quantum computing with photonic qubits," Rev. Mod. Phys. 79, 135-175 (2007).
    [CrossRef]
  11. C. Santori, D. Fattal, J. Vuckovic, G. S. Solomon, and Y. Yamamoto, "Indistinguishable photons from a singlephoton device," Nature 419, 594-597 (2002).
    [CrossRef] [PubMed]
  12. T. Legero, T. Wilk, M. Hennrich, G. Rempe, and A. Kuhn, "Quantum Beat of Two Single Photons," Phys. Rev. Lett 93, 070503 (2004).
    [CrossRef] [PubMed]
  13. A. Kiraz, M. Ehrl, T. Hellerer, O. E. M¨ustecaplioglu, C. Brauchle, and A. Zumbusch, "Indistinguishable photons from a single molecule," Phys. Rev. Lett. 94, 223602 (2005).
    [CrossRef] [PubMed]
  14. J. Beugnon, M. P. A. Jones, J. Dingjan, B. Darqui, G. Messin, A. Browaeys, and P. Grangier, "Quantum interference between two single photons emitted by independently trapped atoms," Nature 440, 779-782 (2006).
    [CrossRef] [PubMed]
  15. P. Maunz, D. L. Moehring, S. Olmschenk, K. C. Younge, D. N. Matsukevich, and C. Monroe, "Quantum interference of photon pairs from two remote trapped atomic ions," Nat. Phys 3, 538-541 (2007).
    [CrossRef]
  16. L. Mandel, "Photon interference and correlation effects produced by independent quantum sources," Phys. Rev. A 28, 929-943 (1983).
    [CrossRef]
  17. L. Kador, T. Latychevskaia, A. Renn and U. P. Wild, "Radio-frequency Stark effect modulation of singlemolecule lines," J. Lumin. 86, 189-194 (2000).
    [CrossRef]
  18. S. M. Mansfield and G. S. Kino, "Solid immersion microscope," Appl. Phys. Lett. 57, 2615-2616 (1990).
    [CrossRef]
  19. G. Wrigge, I. Gerhardt, J. Hwang, G. Zumofen, and V. Sandoghdar, "Efficient coupling of photons to a single molecule and the observation of its resonance fluorescence," submitted, ArXiv, http://arxiv.org/abs/0707.3398.
  20. K. Koyama, M. Yoshita, M. Baba, T. Suemoto, and H. Akiyama, "High collection efficiency in fluorescence microscopy with a solid immersion lens," Appl. Phys. Lett. 75, 1667-1669 (1999).
    [CrossRef]
  21. M. Orrit and J. Bernard, "Single Pentacene Molecules Detected by Fluorescence Excitation in a p-Terphenyl Crystal," Phys. Rev. Lett. 65, 2716-2719 (1990).
    [CrossRef] [PubMed]
  22. A.-M. Boiron, B. Lounis, and M. Orrit, "Single molecules of dibenzanthanthrene in n-hexadecane," J. Chem. Phys. 105, 3969-3974 (1996).
    [CrossRef]
  23. T. Nonn and T. Plakhotnik, "Fluorescence excitation spectroscopy of vibronic transitions in single molecules," Chem. Phys. Lett. 336, 97-104 (2001).
    [CrossRef]
  24. A. Kiraz, M. Ehrl, C. Bräuchle, and A. Zumbusch, "Low temperature single molecule spectroscopy using vibronic excitation and dispersed fluorescence detection," J. Chem. Phys. 118, 10821-10824 (2003).
    [CrossRef]
  25. F. Jelezko, B. Lounis, and M. Orrit, "Pump-probe spectroscopy and photophysical properties of single dibenzanthanthrene molecules in a naphthalene crystal," J. Chem. Phys. 107, 1662-1702 (1997).
    [CrossRef]
  26. C. Santori, S. Götzinger, Y. Yamamoto, S. Kako, K. Hoshino, and Y. Arakawa, "Photon correlation studies of single GaN quantum dots," Appl. Phys. Lett. 87, 051916 (2005).
    [CrossRef]

2007 (2)

P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, and G. J. Milburn, "Linear optical quantum computing with photonic qubits," Rev. Mod. Phys. 79, 135-175 (2007).
[CrossRef]

P. Maunz, D. L. Moehring, S. Olmschenk, K. C. Younge, D. N. Matsukevich, and C. Monroe, "Quantum interference of photon pairs from two remote trapped atomic ions," Nat. Phys 3, 538-541 (2007).
[CrossRef]

2006 (1)

J. Beugnon, M. P. A. Jones, J. Dingjan, B. Darqui, G. Messin, A. Browaeys, and P. Grangier, "Quantum interference between two single photons emitted by independently trapped atoms," Nature 440, 779-782 (2006).
[CrossRef] [PubMed]

2005 (2)

C. Santori, S. Götzinger, Y. Yamamoto, S. Kako, K. Hoshino, and Y. Arakawa, "Photon correlation studies of single GaN quantum dots," Appl. Phys. Lett. 87, 051916 (2005).
[CrossRef]

A. Kiraz, M. Ehrl, T. Hellerer, O. E. M¨ustecaplioglu, C. Brauchle, and A. Zumbusch, "Indistinguishable photons from a single molecule," Phys. Rev. Lett. 94, 223602 (2005).
[CrossRef] [PubMed]

2004 (3)

T. Legero, T. Wilk, M. Hennrich, G. Rempe, and A. Kuhn, "Quantum Beat of Two Single Photons," Phys. Rev. Lett 93, 070503 (2004).
[CrossRef] [PubMed]

M. Keller, B. Lange, K. Hayasaka, W. Lange, and H. Walther, "Continuous generation of single photons with controlled waveform in an ion-trap cavity system," Nature 431, 1075-1078 (2004).
[CrossRef] [PubMed]

R. Alleaume, F. Treussart, G. Messin, Y. Dumeige, J.-F. Roch, A. Beveratos, R. Brouri-Tualle, J.-P. Poizat, and P. Grangier, "Experimental open-air quantum key distribution with a single-photon source," New J. Phys. 6, 92 (2004).
[CrossRef]

2003 (1)

A. Kiraz, M. Ehrl, C. Bräuchle, and A. Zumbusch, "Low temperature single molecule spectroscopy using vibronic excitation and dispersed fluorescence detection," J. Chem. Phys. 118, 10821-10824 (2003).
[CrossRef]

2002 (3)

E. Waks, K. Inoue, C. Santori, D. Fattal, J. Vuckovic, G. S. Solomon, and Y. Yamamoto, "Secure communication: Quantum cryptography with a photon turnstile," Nature 420, 762-762 (2002).
[CrossRef] [PubMed]

A. Kuhn, M. Hennrich, and G. Rempe, "Deterministic single-photon source for distributed quantum networking," Phys. Rev. Lett. 89, 067901 (2002).
[CrossRef] [PubMed]

C. Santori, D. Fattal, J. Vuckovic, G. S. Solomon, and Y. Yamamoto, "Indistinguishable photons from a singlephoton device," Nature 419, 594-597 (2002).
[CrossRef] [PubMed]

2001 (2)

E. Knill, R. Laflamme, and G. J. Milburn, "A scheme for efficient quantum computation with linear optics," Nature 409, 46-52 (2001).
[CrossRef] [PubMed]

T. Nonn and T. Plakhotnik, "Fluorescence excitation spectroscopy of vibronic transitions in single molecules," Chem. Phys. Lett. 336, 97-104 (2001).
[CrossRef]

2000 (4)

B. Lounis and W. E. Moerner, "Single photons on demand from a single molecule at room temperature," Nature 407, 491-493 (2000).
[CrossRef] [PubMed]

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, "A Quantum dot single-photon turnstile device," Science 290, 2282-2285 (2000).
[CrossRef] [PubMed]

C. Kurtsiefer, S. Mayer, P. Zarda, and H. Weinfurter, "Stable solid-state source of single photons," Phys. Rev. Lett. 85, 290-293 (2000).
[CrossRef] [PubMed]

L. Kador, T. Latychevskaia, A. Renn and U. P. Wild, "Radio-frequency Stark effect modulation of singlemolecule lines," J. Lumin. 86, 189-194 (2000).
[CrossRef]

1999 (2)

Ch. Brunel, B. Lounis, Ph. Tamarat, and M. Orrit, "Triggered Source of Single Photons based on Controlled Single Molecule Fluorescence," Phys. Rev. Lett. 83, 2722-2726 (1999).
[CrossRef]

K. Koyama, M. Yoshita, M. Baba, T. Suemoto, and H. Akiyama, "High collection efficiency in fluorescence microscopy with a solid immersion lens," Appl. Phys. Lett. 75, 1667-1669 (1999).
[CrossRef]

1997 (1)

F. Jelezko, B. Lounis, and M. Orrit, "Pump-probe spectroscopy and photophysical properties of single dibenzanthanthrene molecules in a naphthalene crystal," J. Chem. Phys. 107, 1662-1702 (1997).
[CrossRef]

1996 (1)

A.-M. Boiron, B. Lounis, and M. Orrit, "Single molecules of dibenzanthanthrene in n-hexadecane," J. Chem. Phys. 105, 3969-3974 (1996).
[CrossRef]

1990 (2)

M. Orrit and J. Bernard, "Single Pentacene Molecules Detected by Fluorescence Excitation in a p-Terphenyl Crystal," Phys. Rev. Lett. 65, 2716-2719 (1990).
[CrossRef] [PubMed]

S. M. Mansfield and G. S. Kino, "Solid immersion microscope," Appl. Phys. Lett. 57, 2615-2616 (1990).
[CrossRef]

1983 (1)

L. Mandel, "Photon interference and correlation effects produced by independent quantum sources," Phys. Rev. A 28, 929-943 (1983).
[CrossRef]

Appl. Phys. Lett. (3)

S. M. Mansfield and G. S. Kino, "Solid immersion microscope," Appl. Phys. Lett. 57, 2615-2616 (1990).
[CrossRef]

K. Koyama, M. Yoshita, M. Baba, T. Suemoto, and H. Akiyama, "High collection efficiency in fluorescence microscopy with a solid immersion lens," Appl. Phys. Lett. 75, 1667-1669 (1999).
[CrossRef]

C. Santori, S. Götzinger, Y. Yamamoto, S. Kako, K. Hoshino, and Y. Arakawa, "Photon correlation studies of single GaN quantum dots," Appl. Phys. Lett. 87, 051916 (2005).
[CrossRef]

Chem. Phys. Lett. (1)

T. Nonn and T. Plakhotnik, "Fluorescence excitation spectroscopy of vibronic transitions in single molecules," Chem. Phys. Lett. 336, 97-104 (2001).
[CrossRef]

J. Chem. Phys. (3)

A. Kiraz, M. Ehrl, C. Bräuchle, and A. Zumbusch, "Low temperature single molecule spectroscopy using vibronic excitation and dispersed fluorescence detection," J. Chem. Phys. 118, 10821-10824 (2003).
[CrossRef]

F. Jelezko, B. Lounis, and M. Orrit, "Pump-probe spectroscopy and photophysical properties of single dibenzanthanthrene molecules in a naphthalene crystal," J. Chem. Phys. 107, 1662-1702 (1997).
[CrossRef]

A.-M. Boiron, B. Lounis, and M. Orrit, "Single molecules of dibenzanthanthrene in n-hexadecane," J. Chem. Phys. 105, 3969-3974 (1996).
[CrossRef]

J. Lumin. (1)

L. Kador, T. Latychevskaia, A. Renn and U. P. Wild, "Radio-frequency Stark effect modulation of singlemolecule lines," J. Lumin. 86, 189-194 (2000).
[CrossRef]

Nat. Phys (1)

P. Maunz, D. L. Moehring, S. Olmschenk, K. C. Younge, D. N. Matsukevich, and C. Monroe, "Quantum interference of photon pairs from two remote trapped atomic ions," Nat. Phys 3, 538-541 (2007).
[CrossRef]

Nature (6)

C. Santori, D. Fattal, J. Vuckovic, G. S. Solomon, and Y. Yamamoto, "Indistinguishable photons from a singlephoton device," Nature 419, 594-597 (2002).
[CrossRef] [PubMed]

J. Beugnon, M. P. A. Jones, J. Dingjan, B. Darqui, G. Messin, A. Browaeys, and P. Grangier, "Quantum interference between two single photons emitted by independently trapped atoms," Nature 440, 779-782 (2006).
[CrossRef] [PubMed]

B. Lounis and W. E. Moerner, "Single photons on demand from a single molecule at room temperature," Nature 407, 491-493 (2000).
[CrossRef] [PubMed]

M. Keller, B. Lange, K. Hayasaka, W. Lange, and H. Walther, "Continuous generation of single photons with controlled waveform in an ion-trap cavity system," Nature 431, 1075-1078 (2004).
[CrossRef] [PubMed]

E. Waks, K. Inoue, C. Santori, D. Fattal, J. Vuckovic, G. S. Solomon, and Y. Yamamoto, "Secure communication: Quantum cryptography with a photon turnstile," Nature 420, 762-762 (2002).
[CrossRef] [PubMed]

E. Knill, R. Laflamme, and G. J. Milburn, "A scheme for efficient quantum computation with linear optics," Nature 409, 46-52 (2001).
[CrossRef] [PubMed]

New J. Phys. (1)

R. Alleaume, F. Treussart, G. Messin, Y. Dumeige, J.-F. Roch, A. Beveratos, R. Brouri-Tualle, J.-P. Poizat, and P. Grangier, "Experimental open-air quantum key distribution with a single-photon source," New J. Phys. 6, 92 (2004).
[CrossRef]

Phys. Rev. A (1)

L. Mandel, "Photon interference and correlation effects produced by independent quantum sources," Phys. Rev. A 28, 929-943 (1983).
[CrossRef]

Phys. Rev. Lett (1)

T. Legero, T. Wilk, M. Hennrich, G. Rempe, and A. Kuhn, "Quantum Beat of Two Single Photons," Phys. Rev. Lett 93, 070503 (2004).
[CrossRef] [PubMed]

Phys. Rev. Lett. (5)

A. Kiraz, M. Ehrl, T. Hellerer, O. E. M¨ustecaplioglu, C. Brauchle, and A. Zumbusch, "Indistinguishable photons from a single molecule," Phys. Rev. Lett. 94, 223602 (2005).
[CrossRef] [PubMed]

Ch. Brunel, B. Lounis, Ph. Tamarat, and M. Orrit, "Triggered Source of Single Photons based on Controlled Single Molecule Fluorescence," Phys. Rev. Lett. 83, 2722-2726 (1999).
[CrossRef]

C. Kurtsiefer, S. Mayer, P. Zarda, and H. Weinfurter, "Stable solid-state source of single photons," Phys. Rev. Lett. 85, 290-293 (2000).
[CrossRef] [PubMed]

A. Kuhn, M. Hennrich, and G. Rempe, "Deterministic single-photon source for distributed quantum networking," Phys. Rev. Lett. 89, 067901 (2002).
[CrossRef] [PubMed]

M. Orrit and J. Bernard, "Single Pentacene Molecules Detected by Fluorescence Excitation in a p-Terphenyl Crystal," Phys. Rev. Lett. 65, 2716-2719 (1990).
[CrossRef] [PubMed]

Rev. Mod. Phys. (1)

P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, and G. J. Milburn, "Linear optical quantum computing with photonic qubits," Rev. Mod. Phys. 79, 135-175 (2007).
[CrossRef]

Science (1)

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, "A Quantum dot single-photon turnstile device," Science 290, 2282-2285 (2000).
[CrossRef] [PubMed]

Other (1)

G. Wrigge, I. Gerhardt, J. Hwang, G. Zumofen, and V. Sandoghdar, "Efficient coupling of photons to a single molecule and the observation of its resonance fluorescence," submitted, ArXiv, http://arxiv.org/abs/0707.3398.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

a) Experimental setup: Two low temperature microscopes with solid immersion lenses are placed in a liquid helium bath cryostat. AL: aspheric lens, SIL: solid-immersion lens, S: sample, LP: long pass filter, BS: beam splitter, HBT: Hanbury Brown and Twiss autocorrelator, consisting of a beam splitter, two APDs and a time correlator card (Pico Harp, Pico Quant). Details are given in the text. b) Jablonsky diagram of a dye molecule with the relevant energy levels.

Fig. 2.
Fig. 2.

(a) Fluorescence excitation spectrum of a single molecule excited via the 0-0 zero photon line. (b) Fluorescence excitation spectrum of the same molecule excited via the 0–1 transition. Insets: Laser scanning images of the molecule and its surrounding recorded at T=1.4 K under respective excitation conditions.

Fig. 3.
Fig. 3.

a) Spectrum of a single DBATT molecule in n-tetradecane under 0-1 excitation. The linewidth is limited by the spectrometer resolution. b) Zoom around the 0-0 ZPL. c) The 0-0 ZPL isolated by inserting a 0.5 nm bandpass filter.

Fig. 4.
Fig. 4.

(a) Second order photon correlation measurement of the zero-phonon line for a molecule excited via the 0-1 transition. Strong antibunching is clearly visible. (b) Fluorescence of the 0-0 ZPL analyzed by a Fabry-Perot cavity. Inset: A high resolution scan.

Fig. 5.
Fig. 5.

(a) Fluorescence excitation spectra of two molecules. Molecule (B) is shifted with respect to molecule (A) with increasing voltage. (b)–(d) cross sections as indicated in (a). At V=21V, the two spectra are fully overlapped.

Metrics