Abstract

A silicon photonic tunable optical dispersion compensator (TODC) is demonstrated based on a series of 5 thermally tunable Mach-Zehnder interferometers. The TODC has a 2.8mm×5.0 mm foot-print with continuously tunable dispersion from 0ps/nm to 2000ps/nm with a low tuning power of 80mW. This TODC is used to extend the reach of a 10Gb/s link from 85km to 150km.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. G. P. Agrawal, Fiber Optic Communication Systems (Wiley and Sons, NY, 1997), Chap. 9.
  2. L. Gruner-Nielsen, M. Wandel, P. Kristensen, C. Jorgensen, L. V. Jorgensen, B. Edvold, B. Palsdottir and D. Jakobsen, "Dispersion-Compensating Fibers," J. Lightwave Technol. 23, 3566-3579 (2005).
    [CrossRef]
  3. C. R. Doerr, R. Blum, L. L. Buhl, M. A. Cappuzzo, E. Y. Chen, A. Wong-Foy, L. T. Gomez, and H. Bulthuis, "Colorless Tunable Optical Dispersion Compensator Based on a Silica Arrayed-Waveguide Grating and a Polymer Thermooptic Lens," IEEE Photon. Technol. Lett. 18, 1222-1224 (2006).
    [CrossRef]
  4. Q. Yu and A. Shanbhag, "Electronic data processing for error and dispersion compensation" J. Lightwave Technol. 24, 4514-4525 (2006).
    [CrossRef]
  5. A. J. Weiss, "On the performance of electrical equalization in optical fiber transmission systems," IEEE Photon. Technol. Lett. 15, 1225-1227 (2003).
    [CrossRef]
  6. J. F. Brennan, E. Hernandez, J. A. Valenti, P. G. Sinha, M. R. Matthews, D. E. Elder, G. A. Beauchesne, and C. H. Byrd, "Dispersion and dispersion-slope correction with a fiber Bragg grating over the full C-band" Proc. OFC Digest 4, PD12-1 - PD12-3 (2001).
  7. F. Ouellette, "Dispersion cancellation using linearly chirped Bragg grating filters in optical waveguides," Opt. Lett. 12, 847-849 (1987).
    [CrossRef] [PubMed]
  8. X. Shu, K. Chisholm, J. Mitchell, I. Felmeri, P. Rhead, A. Gillooly, K. Sugden, I. Bennion, "Tunable dispersion compensator based on three distributed Gires-Tournois etalons" Opt. Commun. 251, 59-63 (2005).
    [CrossRef]
  9. K. Takiguchi and K. Okamoto, "Planar lightwave circuit dispersion equalizer with a wide operational frequency range," Electron. Lett. 30, 1404-1504 (1994).
    [CrossRef]
  10. C. K. Madsen, G. Lenz, A. J. Bruce, M. A. Capuzzo, L. T. Gomez and R. E. Scotti, "Integrated all-pass filters for tunable dispersion and dispersion slope compensation," IEEE Photon. Technol. Lett. 11, 1623-1625 (1999).
    [CrossRef]
  11. F. Horst, R. Germann, U. Bapst, D. Wisemann, B. J. Offrein and G. L. Bona, "Compact tunable FIR dispersion compensator in SiON technology," IEEE Photon. Technol. Lett. 15, 1570-1572 (2003).
    [CrossRef]
  12. J. Gehler, R. Wessel, F. Buchali, G. Thielecke, A. Heid, and H. Blow, "Dynamic adaptation of a PLC residual chromatic dispersion compensator at 40Gb/s" OFC Digest 2, 750-751 (2003).
  13. C. R. Doerr, M. Capuzzo, A. Wong-Foy, L. Gomez, E. Laskowski, and E. Chen, "Potentially inexpensive 10-Gb/s tunable dispersion compensator with low polarization sensitivity," IEEE Photon. Technol. Lett. 16, 1340-1342 (2004).
    [CrossRef]
  14. M. Morse, O. Dosunmu, G. Sarid, and Y. Chetrit, "Performance of Ge-on-Si p-i-n photodetectors for standard receiver modules," IEEE Photon. Technol. Lett. 18, 2442-2444 (2006).
    [CrossRef]

2006 (3)

C. R. Doerr, R. Blum, L. L. Buhl, M. A. Cappuzzo, E. Y. Chen, A. Wong-Foy, L. T. Gomez, and H. Bulthuis, "Colorless Tunable Optical Dispersion Compensator Based on a Silica Arrayed-Waveguide Grating and a Polymer Thermooptic Lens," IEEE Photon. Technol. Lett. 18, 1222-1224 (2006).
[CrossRef]

M. Morse, O. Dosunmu, G. Sarid, and Y. Chetrit, "Performance of Ge-on-Si p-i-n photodetectors for standard receiver modules," IEEE Photon. Technol. Lett. 18, 2442-2444 (2006).
[CrossRef]

Q. Yu and A. Shanbhag, "Electronic data processing for error and dispersion compensation" J. Lightwave Technol. 24, 4514-4525 (2006).
[CrossRef]

2005 (2)

L. Gruner-Nielsen, M. Wandel, P. Kristensen, C. Jorgensen, L. V. Jorgensen, B. Edvold, B. Palsdottir and D. Jakobsen, "Dispersion-Compensating Fibers," J. Lightwave Technol. 23, 3566-3579 (2005).
[CrossRef]

X. Shu, K. Chisholm, J. Mitchell, I. Felmeri, P. Rhead, A. Gillooly, K. Sugden, I. Bennion, "Tunable dispersion compensator based on three distributed Gires-Tournois etalons" Opt. Commun. 251, 59-63 (2005).
[CrossRef]

2004 (1)

C. R. Doerr, M. Capuzzo, A. Wong-Foy, L. Gomez, E. Laskowski, and E. Chen, "Potentially inexpensive 10-Gb/s tunable dispersion compensator with low polarization sensitivity," IEEE Photon. Technol. Lett. 16, 1340-1342 (2004).
[CrossRef]

2003 (3)

F. Horst, R. Germann, U. Bapst, D. Wisemann, B. J. Offrein and G. L. Bona, "Compact tunable FIR dispersion compensator in SiON technology," IEEE Photon. Technol. Lett. 15, 1570-1572 (2003).
[CrossRef]

J. Gehler, R. Wessel, F. Buchali, G. Thielecke, A. Heid, and H. Blow, "Dynamic adaptation of a PLC residual chromatic dispersion compensator at 40Gb/s" OFC Digest 2, 750-751 (2003).

A. J. Weiss, "On the performance of electrical equalization in optical fiber transmission systems," IEEE Photon. Technol. Lett. 15, 1225-1227 (2003).
[CrossRef]

1999 (1)

C. K. Madsen, G. Lenz, A. J. Bruce, M. A. Capuzzo, L. T. Gomez and R. E. Scotti, "Integrated all-pass filters for tunable dispersion and dispersion slope compensation," IEEE Photon. Technol. Lett. 11, 1623-1625 (1999).
[CrossRef]

1994 (1)

K. Takiguchi and K. Okamoto, "Planar lightwave circuit dispersion equalizer with a wide operational frequency range," Electron. Lett. 30, 1404-1504 (1994).
[CrossRef]

1987 (1)

Electron. Lett. (1)

K. Takiguchi and K. Okamoto, "Planar lightwave circuit dispersion equalizer with a wide operational frequency range," Electron. Lett. 30, 1404-1504 (1994).
[CrossRef]

IEEE Photon. Technol. Lett. (6)

C. K. Madsen, G. Lenz, A. J. Bruce, M. A. Capuzzo, L. T. Gomez and R. E. Scotti, "Integrated all-pass filters for tunable dispersion and dispersion slope compensation," IEEE Photon. Technol. Lett. 11, 1623-1625 (1999).
[CrossRef]

F. Horst, R. Germann, U. Bapst, D. Wisemann, B. J. Offrein and G. L. Bona, "Compact tunable FIR dispersion compensator in SiON technology," IEEE Photon. Technol. Lett. 15, 1570-1572 (2003).
[CrossRef]

C. R. Doerr, M. Capuzzo, A. Wong-Foy, L. Gomez, E. Laskowski, and E. Chen, "Potentially inexpensive 10-Gb/s tunable dispersion compensator with low polarization sensitivity," IEEE Photon. Technol. Lett. 16, 1340-1342 (2004).
[CrossRef]

M. Morse, O. Dosunmu, G. Sarid, and Y. Chetrit, "Performance of Ge-on-Si p-i-n photodetectors for standard receiver modules," IEEE Photon. Technol. Lett. 18, 2442-2444 (2006).
[CrossRef]

A. J. Weiss, "On the performance of electrical equalization in optical fiber transmission systems," IEEE Photon. Technol. Lett. 15, 1225-1227 (2003).
[CrossRef]

C. R. Doerr, R. Blum, L. L. Buhl, M. A. Cappuzzo, E. Y. Chen, A. Wong-Foy, L. T. Gomez, and H. Bulthuis, "Colorless Tunable Optical Dispersion Compensator Based on a Silica Arrayed-Waveguide Grating and a Polymer Thermooptic Lens," IEEE Photon. Technol. Lett. 18, 1222-1224 (2006).
[CrossRef]

J. Lightwave Technol. (2)

OFC Digest (1)

J. Gehler, R. Wessel, F. Buchali, G. Thielecke, A. Heid, and H. Blow, "Dynamic adaptation of a PLC residual chromatic dispersion compensator at 40Gb/s" OFC Digest 2, 750-751 (2003).

Opt. Commun. (1)

X. Shu, K. Chisholm, J. Mitchell, I. Felmeri, P. Rhead, A. Gillooly, K. Sugden, I. Bennion, "Tunable dispersion compensator based on three distributed Gires-Tournois etalons" Opt. Commun. 251, 59-63 (2005).
[CrossRef]

Opt. Lett. (1)

Other (2)

G. P. Agrawal, Fiber Optic Communication Systems (Wiley and Sons, NY, 1997), Chap. 9.

J. F. Brennan, E. Hernandez, J. A. Valenti, P. G. Sinha, M. R. Matthews, D. E. Elder, G. A. Beauchesne, and C. H. Byrd, "Dispersion and dispersion-slope correction with a fiber Bragg grating over the full C-band" Proc. OFC Digest 4, PD12-1 - PD12-3 (2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

(a). Schematic of the silicon photonic tunable optical dispersion compensator; (b) cross-section SEM of thermally tunable waveguide.

Fig. 2.
Fig. 2.

(a). Phase shift as a function of electrical power dissipation for thermally tunable waveguide; (b) total electrical power needed to tune silicon photonic TODC as a function of required dispersion

Fig. 3.
Fig. 3.

(a). Insertion loss and (b) Group delay as a function of wavelength for 4 different bias voltages

Fig. 4.
Fig. 4.

Experimental setup for link testing of TODC. ECL=external cavity laser, EDFA=erbium doped fiber amplifier, PM=power monitor

Fig. 5.
Fig. 5.

(a). Power penalty as a function of link length for a 10Gb/s optical link with and without TODC; (b) eye diagrams after 160km for link without and with TODC

Fig. 6.
Fig. 6.

BER as a function of laser detuning from TODC optimal point

Metrics