Abstract

We experimentally demonstrate the possibility to generate parabolic pulses via a single dispersion decreasing optical fiber with normal dispersion. We numerically and experimentally investigate the influence of the dispersion profile, and we show that a hybrid configuration combining dispersion decrease and gain has several benefits on the parabolic generated pulses.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. J. M. Dudley, C. Finot, G. Millot, and D. J. Richardson, "Self-similarity and scaling phenomena in nonlinear ultrafast optics," Nat. Phys. 3, 597-603 (2007).
    [CrossRef]
  2. M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, and J. D. Harvey, "Self-similar propagation and amplification of parabolic pulses in optical fibers," Phys. Rev. Lett. 84, 6010-6013 (2000).
    [CrossRef] [PubMed]
  3. C. Finot, S. Pitois, G. Millot, C. Billet, and J. M. Dudley, "Numerical and experimental study of parabolic pulses generated via Raman amplification in standard optical fibers," IEEE J. Sel. Top. Quantum Electron. 10, 1211-1218 (2004).
    [CrossRef]
  4. C. Finot and G. Millot, "Synthesis of optical pulses by use of similaritons," Opt. Express 12, 5104-5109 (2004).
    [CrossRef] [PubMed]
  5. C. Finot, S. Pitois, and G. Millot, "Regenerative 40-Gb/s wavelength converter based on similariton generation," Opt. Lett. 30, 1776-1778 (2005).
    [CrossRef] [PubMed]
  6. F. Parmigiani, C. Finot, K. Mukasa, M. Ibsen, M. A. F. Roelens, P. Petropoulos, and D. J. Richardson, "Ultra-flat SPM-broadened spectra in a highly nonlinear fiber using parabolic pulses formed in a fiber Bragg grating," Opt. Express 14, 7617-7622 (2006).
    [CrossRef] [PubMed]
  7. C. Finot, L. Provost, P. Petropoulos, and D. J. Richardson, "Parabolic pulse generation through passive nonlinear pulse reshaping in a normally dispersive two segment fiber device," Opt. Express 15, 852-864 (2007).
    [CrossRef] [PubMed]
  8. T. Hirooka and M. Nakazawa, "Parabolic pulse generation by use of a dispersion-decreasing fiber with normal group-velocity dispersion," Opt. Lett. 29, 498-500 (2004).
    [CrossRef] [PubMed]
  9. A. Plocky, A. A. Sysoliatin, A. I. Latkin, V. F. Khopin, P. Harper, J. Harrison, and S. K. Turitsyn, "Experiments on the generation of parabolic pulses in waveguides with length-varying normal chromatic dispersion," JETP Lett. 85, 319-322 (2007).
    [CrossRef]
  10. B. Kibler, C. Billet, P. A. Lacourt, R. Ferrière, L. Larger, and J. M. Dudley, "Parabolic pulse generation in comb-like profiled dispersion decreasing fibre," Electron. Lett. 42, 965-966 (2006).
    [CrossRef]
  11. A. Latkin, S. K. Turitsyn, and A. Sysoliatin, "On the theory of parabolic pulse generation in tapered fibre," Opt. Lett. 32, 331-333 (2007).
    [CrossRef] [PubMed]
  12. M. Nakazawa, E. Yoshida, H. Kubota, and Y. Kimura, "Generation of a 170 fs, 10 GHz transform-limited pulse train at 1.55 um using a dispersion-decreasing, erbium-doped active soliton compressor," Electron. Lett. 30, 2038-2039 (1994).
    [CrossRef]
  13. T. Kogure, J. H. Lee, and D. J. Richardson, "Wavelength and duration-tunable 10-GHz 1.3-ps pulse source using dispersion decreasing fiber-based distributed Raman amplification," IEEE Photon. Technol. Lett. 16, 1167-1169 (2004).
    [CrossRef]
  14. D. Méchin, S. H. Im, V. I. Kruglov, and J. D. Harvey, "Experimental demonstration of similariton pulse compression in a comblike dispersion-decreasing fiber amplifier," Opt. Lett. 31, 2106-2108 (2006).
    [CrossRef] [PubMed]
  15. G. P. Agrawal, Nonlinear Fiber Optics, Third Edition (San Francisco, CA Academic Press, 2001).
  16. V. A. Bogatyrev, M. M. Bubnov, E. M. Dianov, A. S. Kurkov, P. V. Mamyshev, A. M. Prokhorov, S. D. Rumyantsev, V. A. Semenov, S. L. Semenov, A. A. Sysoliatin, S. V. Chernikov, A. N. Gur'yanov, G. G. Devyatykh, and S. I. Miroshnichenko, "A single-mode fiber with chromatic dispersion varying along the length," J. Lightwave Technol. 9, 561-565 (1991).
    [CrossRef]
  17. C. Finot, G. Millot, C. Billet, and J. M. Dudley, "Experimental generation of parabolic pulses via Raman amplification in optical fiber," Opt. Express 11, 1547-1552 (2003).
    [CrossRef] [PubMed]
  18. C. Finot, "Influence of the pumping configuration on the generation of optical similaritons in optical fibers," Opt. Commun. 249, 553-561 (2005).
    [CrossRef]
  19. R. Trebino, Frequency-Resolved Optical Gating: the measurement of ultrashort laser pulses (Norwell, MA, Kluwer Academic Publishers, 2000).
  20. V. I. Kruglov, A. C. Peacock, J. M. Dudley, and J. D. Harvey, "Self-similar propagation of high-power parabolic pulses in optical fiber amplifiers," Opt. Lett. 25, 1753-1755 (2000).
    [CrossRef]
  21. V. I. Kruglov, and J. D. Harvey, "Asymptotically exact parabolic solutions of the generalized nonlinear Schrödinger equation with varying parameters," J. Opt. Soc. Am. B 23, 2541-2550 (2006).
    [CrossRef]
  22. C. Finot, and G. Millot, "Interactions of optical similaritons," Opt. Express 13, 5825-5830 (2005).
    [CrossRef] [PubMed]
  23. A. C. Peacock, R. J. Kruhlak, J. D. Harvey, and J. M. Dudley, "Solitary pulse propagation in high gain optical fiber amplifiers with normal group velocity dispersion," Opt. Commun. 206, 171-177 (2002).
    [CrossRef]
  24. P. H. Pioger, V. Couderc, P. Leproux, and P. A. Champert, "High spectral power density supercontinuum generation in a nonlinear fiber amplifier," Opt. Express 15, 11358-11365 (2007).
    [CrossRef] [PubMed]

2007

2006

2005

2004

T. Hirooka and M. Nakazawa, "Parabolic pulse generation by use of a dispersion-decreasing fiber with normal group-velocity dispersion," Opt. Lett. 29, 498-500 (2004).
[CrossRef] [PubMed]

C. Finot, S. Pitois, G. Millot, C. Billet, and J. M. Dudley, "Numerical and experimental study of parabolic pulses generated via Raman amplification in standard optical fibers," IEEE J. Sel. Top. Quantum Electron. 10, 1211-1218 (2004).
[CrossRef]

C. Finot and G. Millot, "Synthesis of optical pulses by use of similaritons," Opt. Express 12, 5104-5109 (2004).
[CrossRef] [PubMed]

T. Kogure, J. H. Lee, and D. J. Richardson, "Wavelength and duration-tunable 10-GHz 1.3-ps pulse source using dispersion decreasing fiber-based distributed Raman amplification," IEEE Photon. Technol. Lett. 16, 1167-1169 (2004).
[CrossRef]

2003

2002

A. C. Peacock, R. J. Kruhlak, J. D. Harvey, and J. M. Dudley, "Solitary pulse propagation in high gain optical fiber amplifiers with normal group velocity dispersion," Opt. Commun. 206, 171-177 (2002).
[CrossRef]

2000

V. I. Kruglov, A. C. Peacock, J. M. Dudley, and J. D. Harvey, "Self-similar propagation of high-power parabolic pulses in optical fiber amplifiers," Opt. Lett. 25, 1753-1755 (2000).
[CrossRef]

M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, and J. D. Harvey, "Self-similar propagation and amplification of parabolic pulses in optical fibers," Phys. Rev. Lett. 84, 6010-6013 (2000).
[CrossRef] [PubMed]

1994

M. Nakazawa, E. Yoshida, H. Kubota, and Y. Kimura, "Generation of a 170 fs, 10 GHz transform-limited pulse train at 1.55 um using a dispersion-decreasing, erbium-doped active soliton compressor," Electron. Lett. 30, 2038-2039 (1994).
[CrossRef]

1991

V. A. Bogatyrev, M. M. Bubnov, E. M. Dianov, A. S. Kurkov, P. V. Mamyshev, A. M. Prokhorov, S. D. Rumyantsev, V. A. Semenov, S. L. Semenov, A. A. Sysoliatin, S. V. Chernikov, A. N. Gur'yanov, G. G. Devyatykh, and S. I. Miroshnichenko, "A single-mode fiber with chromatic dispersion varying along the length," J. Lightwave Technol. 9, 561-565 (1991).
[CrossRef]

Electron. Lett.

B. Kibler, C. Billet, P. A. Lacourt, R. Ferrière, L. Larger, and J. M. Dudley, "Parabolic pulse generation in comb-like profiled dispersion decreasing fibre," Electron. Lett. 42, 965-966 (2006).
[CrossRef]

M. Nakazawa, E. Yoshida, H. Kubota, and Y. Kimura, "Generation of a 170 fs, 10 GHz transform-limited pulse train at 1.55 um using a dispersion-decreasing, erbium-doped active soliton compressor," Electron. Lett. 30, 2038-2039 (1994).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

C. Finot, S. Pitois, G. Millot, C. Billet, and J. M. Dudley, "Numerical and experimental study of parabolic pulses generated via Raman amplification in standard optical fibers," IEEE J. Sel. Top. Quantum Electron. 10, 1211-1218 (2004).
[CrossRef]

IEEE Photon. Technol. Lett.

T. Kogure, J. H. Lee, and D. J. Richardson, "Wavelength and duration-tunable 10-GHz 1.3-ps pulse source using dispersion decreasing fiber-based distributed Raman amplification," IEEE Photon. Technol. Lett. 16, 1167-1169 (2004).
[CrossRef]

J. Lightwave Technol.

V. A. Bogatyrev, M. M. Bubnov, E. M. Dianov, A. S. Kurkov, P. V. Mamyshev, A. M. Prokhorov, S. D. Rumyantsev, V. A. Semenov, S. L. Semenov, A. A. Sysoliatin, S. V. Chernikov, A. N. Gur'yanov, G. G. Devyatykh, and S. I. Miroshnichenko, "A single-mode fiber with chromatic dispersion varying along the length," J. Lightwave Technol. 9, 561-565 (1991).
[CrossRef]

J. Opt. Soc. Am. B

JETP Lett.

A. Plocky, A. A. Sysoliatin, A. I. Latkin, V. F. Khopin, P. Harper, J. Harrison, and S. K. Turitsyn, "Experiments on the generation of parabolic pulses in waveguides with length-varying normal chromatic dispersion," JETP Lett. 85, 319-322 (2007).
[CrossRef]

Nat. Phys.

J. M. Dudley, C. Finot, G. Millot, and D. J. Richardson, "Self-similarity and scaling phenomena in nonlinear ultrafast optics," Nat. Phys. 3, 597-603 (2007).
[CrossRef]

Opt. Commun.

C. Finot, "Influence of the pumping configuration on the generation of optical similaritons in optical fibers," Opt. Commun. 249, 553-561 (2005).
[CrossRef]

A. C. Peacock, R. J. Kruhlak, J. D. Harvey, and J. M. Dudley, "Solitary pulse propagation in high gain optical fiber amplifiers with normal group velocity dispersion," Opt. Commun. 206, 171-177 (2002).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. Lett.

M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, and J. D. Harvey, "Self-similar propagation and amplification of parabolic pulses in optical fibers," Phys. Rev. Lett. 84, 6010-6013 (2000).
[CrossRef] [PubMed]

Other

R. Trebino, Frequency-Resolved Optical Gating: the measurement of ultrashort laser pulses (Norwell, MA, Kluwer Academic Publishers, 2000).

G. P. Agrawal, Nonlinear Fiber Optics, Third Edition (San Francisco, CA Academic Press, 2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig 1.
Fig 1.

(a). Fiber dispersion versus wavelength for different outer fiber diameters. (b) Longitudinal evolution of the outer fiber diameter (c) Longitudinal evolution of the dispersion used in numerical simulations for different configurations: dispersion decreasing fiber (profile A, black line), dispersion increasing fiber (profile B, red line), uniform dispersion fiber (profile C, blue line).

Fig 2.
Fig 2.

Experimental set-up. Erbium Doped Fiber Amplifier (EDFA), Optical BandPass Filter (OBPF), Optical Variable Attenuator (OVA), Optical Isolator (OI).

Fig. 3.
Fig. 3.

Impact of the dispersion profile : Profile A (black line), profile B (red line) and profile C (blue line). (a) Temporal intensity and chirp profiles after propagation in 1000 m long fiber. Intensity profile obtained in profile A is compared to a parabolic fit (b) Longitudinal evolution of the FWHM temporal width; (c) Longitudinal evolution of the - 20 dB spectral width.

Fig. 4.
Fig. 4.

Results of FROG characterisation of the input and output pulses (for an initial pulse energy of 200 pJ) : experimental intensity (bottom) and chirp (top) profiles compared to parabolic or sech fit.

Fig. 5.
Fig. 5.

(a). Comparison of the experimental spectra obtained in configuration A and B (1 nJ input pulse energy) with the results of numerical integration of NLSE; (b). Influence of the input pulse energy on the output pulse parameters : (b1) -20 dB spectral width (b2) temporal width (FWHM of autocorrelation signal).

Fig. 6.
Fig. 6.

Experimental optical spectra (0.7 nm resolution) obtained for profile A and B (black and red lines respectively). (a) central part of the spectra for an initial pulse energy of 1.2 nJ. (b) Spectra for input pulse energies of 2 and 2.2 nJ (solid and mixed lines respectively)

Fig. 7.
Fig. 7.

Temporal and spectral intensity profiles at the output of the DDF [(a) and (b), respectively] in the presence of different integrated gain values : passive configuration, 3 dB, 6 dB and 10 dB gain (black, yellow, cyan and blue solid lines, respectively). The results are compared for either input pulses with the same energy [(a1) and (b1)] or for output pulses with the same energy [(a2) and (b2)].

Fig. 8.
Fig. 8.

Longitudinal evolution of the pulse properties for pulses with the same output spectral width. Evolution of the 20-dB spectral width (a), of the FWHM temporal width (b) and of the peak-power (c). Results are compared for different gain values : passive configuration, 3 dB, 6 dB, 10 dB and 15 dB gain (black, yellow, cyan, blue and pink solid lines respectively).

Fig. 9.
Fig. 9.

Properties of the output parabolic pulses for different values of gain (0, 3, 6 and 9 dB) : -20-dB spectral width versus FWHM temporal width. The power spectral density is displayed by means of the colour map.

Fig. 10.
Fig. 10.

Results of the FROG characterisation of the output pulse (for an initial pulse energy of 30 pJ) : experimental intensity profile (bottom) and chirp (top) profiles, compared to a parabolic and linear fit, respectively.

Fig. 11.
Fig. 11.

Experimental properties of the output parabolic pulses for either passive or active (6-dB gain) DDF configurations : -20-dB spectral width versus the FWHM temporal width. The power spectral density is displayed by means of the colour map. Experimental data are plotted with triangles.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

i ψ z = β 2 2 D ( z ) 2 ψ T 2 γ ψ 2 ψ + i g 2 ψ ,
i u ξ = 1 2 D ( z ) 2 u τ 2 u 2 u + i Γ 0 2 u ,
u ( ξ , τ ) = N U , U ( ξ , τ ) = ψ P C , τ = T T 0 , ξ = z L D , Γ 0 = g L D ,
L D = T 0 2 β 2 , L NL = 1 γ P C , N = L D L NL .
u = u D ( z ) and ξ = 0 ξ D ( X ) dX ,
i u ξ = 1 2 2 u τ 2 u 2 u + i Γ 2 u ,
d D d ξ = Γ 0 D Γ D 2 , D ( ξ = 0 ) = 1
D ( ξ ) = Γ 0 Γ { 1 + Γ Γ 0 Γ 0 + Γ ( e Γ 0 ξ 1 ) }
D 0 ( ξ ) = 1 1 + Γ ξ

Metrics